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Part III

Unconstrained optimization
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9

Case studies of unconstrained optimization

(i) Multi-variate linear regression (Section 9.1), and
(ii) State estimation in an electric power system (Section 9.2).
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9.1 Multi-variate linear regression

9.1.1 Motivation

• Suppose we have a hypothesized functional relationship between
dependent variables that vary according to some function of some
independent variables.

• We do not have a complete specification of the function relating the
variables.

• For example, if the hypothesized function is linear, the entries in
coefficient matrix will typically be unknown to us.

• These unknown entries are called the parameters of the function.
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9.1.2 Formulation

9.1.2.1 Measurement variables

• Assume that there is one dependent variable in our problem and call it ζ.
• Also assume that there are (n−1) independent variables.
• Collect the independent variables together into a vector ψ ∈ Rn−1.

9.1.2.2 Functional relationship

• We believe that there is an affine relationship between ζ and ψ.

∀ψ ∈ R
n−1,ζ = β†ψ+ γ. (9.1)

• We want to find the unknowns in the vector x =

[

β
γ

]

∈ Rn.
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9.1.2.3 Trials

• We can perform a number of “trials” with varying values for the
independent variables ψ.

• We use ψ(ℓ) and ζ(ℓ), respectively, to denote the value of the independent
variables ψ and the corresponding measured value of the dependent
variable ζ for the ℓ-th trial.
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× (ψ(1),ζ(1))

×
(ψ(2),ζ(2)) × (ψ(3),ζ(3))

×(ψ(4),ζ(4))

× (ψ(5),ζ(5))

× (ψ(6),ζ(6))
× (ψ(7),ζ(7))

Fig. 9.1. The values of
(ψ(ℓ),ζ(ℓ)) (shown as
×) and affine fit.
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9.1.2.4 Measurement error

ζ(ℓ) = β†ψ(ℓ)+ γ+ eℓ. (9.2)

• The measurement error eℓ is also called the residual.

Calibration error

• There may be a function c : R→ R, called the calibration function, such
that:

β†ψ(ℓ)+ γ = ζ(ℓ)− c(ζ(ℓ)).

Functional error

• The error eℓ may be due to error in the assumed functional form:

ζ = β†ψ+ψ†Γψ, (9.3)

• where Γ ∈ R(n−1)×(n−1) is a matrix of unknown parameters.
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Random error

• The error eℓ may be random with expected value, say, 0.
• That is, ζ also depends on other variables besides ψ that we can neither

control nor measure easily.
• It may be reasonable to model these errors as random variables that vary

independently of the trials as in the following examples.

Black-box circuit

• It may be reasonable to assume that the temperature is independent of the
injected currents.

Drug efficacy

• It may be reasonable to assume that immune system properties vary
randomly from patient to patient and are independent of the symptoms,
drugs, and treatment.

Discussion

• We should be very cautious about asserting independence between the
independent variables ψ(ℓ) and the error eℓ.
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9.1.2.5 Random error distribution

• We will only consider random error in this case study.

Central limit theorem

• Suppose that there are a number of factors that sum to eℓ in trial ℓ.
• The central limit theorem says that the sum of a large number of

independent random variables has a distribution that is approximately
Gaussian, with density:

1√
2πσℓ

exp

(

−(eℓ−µℓ)
2

2(σℓ)2

)

, (9.4)

• where µℓ is the expected value of eℓ, in our case 0, and σℓ is its standard
deviation.

Error correlation

• We will assume that eℓ is uncorrelated with eℓ′ for ℓ 6= ℓ′.
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Distribution of dependent variables

∀ζ(ℓ) ∈ R,φℓ(ζ(ℓ);ψ(ℓ),x) =
1√

2πσℓ

exp

(

−(ζ(ℓ)−β†ψ(ℓ)− γ)2

2(σℓ)2

)

.

• We use a semi-colon to separate the arguments of the function from the
parameters ψ(ℓ) and x.

Joint measurement distribution

• If the error distributions are jointly Gaussian and uncorrelated then the
joint probability density function, φ : Rm → R, is the product of the
individual probability densities:

∀ζ(1) ∈ R, . . . ,∀ζ(m) ∈ R,φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x)

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ζ(ℓ)−β†ψ(ℓ)− γ)2

2(σℓ)2

)

. (9.5)
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9.1.2.6 Problem variables

• After performing the trials, the values of ψ(ℓ) and ζ(ℓ) are known and we
will re-interpret them as constants.

• The unknowns are the parameters β and γ in the relationship (9.1).
• We have collected together these parameters into the vector x and they

will be re-interpreted as the variables in our problem formulation since
they are the values that are to be determined to solve our regression
problem.
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9.1.2.7 Maximum likelihood estimation

• Need a criterion for choosing the “best value.”
• Suppose that we are given:

– a collection of measurements ζ(1) ∈ R, . . . ,ζ(m) ∈ R,
– values of the parameters x ∈ Rn, and
– a distance δ ∈ R+.

• Suppose we take new measurements, ζ̃(1), . . . , ζ̃(m) using the same
values of the independent variables

• Consider the probability that the new measurements ζ̃(1), . . . , ζ̃(m) lie in
the set:

S(x) = {ζ̃(1)∈R, . . . , ζ̃(m)∈R|ζ(ℓ)−δ≤ ζ̃(ℓ)≤ ζ(ℓ)+δ,∀ℓ= 1, . . . ,m}.
• This probability is approximately equal to:

φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x)(2δ)m.
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Maximum likelihood estimation, continued

• We pick x ∈ Rn to maximize the probability that the new measurements
are in the set S(x), which is equivalent to maximizing:

φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x)

• over x ∈ Rn.
• We now maximize φ, re-interpreted to be the function φ : Rn → R defined

by:

∀x ∈ R
n,φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x)

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ζ(ℓ)−β†ψ(ℓ)− γ)2

2(σℓ)2

)

,

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

)

, (9.6)

• where x =

[

β
γ

]

.
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9.1.2.8 Problem

• The maximum likelihood estimation problem:

max
x∈Rn

φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x). (9.7)

9.1.3 Change of number of trials or correction of data

• We may find that after solving the maximum likelihood estimation using
trials 1, . . . ,m we conduct further trials or find that some of the data is in
error and needs to be corrected.

• We would like to be able obtain an updated estimation without starting
from scratch.
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9.1.4 Problem characteristics

9.1.4.1 Parameters re-interpreted as variables

• We have re-interpreted the parameters β and γ of the probability density
in (9.5) to be the variables in our optimization problem.

• We interpret ψ(ℓ) and ζ(ℓ) to be known values once the trials have been
completed.

9.1.4.2 Objective

• The objective φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x) is the product of terms.
• Each term in the product depends on x.

9.1.4.3 Number of parameters and trials

• If m ≤ n then there is no redundancy and we will not be able to reduce the
effects of measurement errors.

9.1.4.4 Generalizations

• In some cases, we may have a non-linear relationship between the
dependent and independent variables, as in (9.3).
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9.2 Power system state estimation

• We formulate a non-linear regression problem.

9.2.1 Motivation

9.2.1.1 Non-linear regression

• Suppose that we hypothesize a non-linear relationship, such as ζ = γ(ψ)β,
between scalars ψ and ζ with unknown parameters β and γ.

• A standard approach for this particular non-linear relationship is to take
logarithms of both sides to form the equation:

ln(ζ) = β ln(ψ)+ ln(γ),
Ψ = ln(ψ),
Z = ln(ζ).
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Non-linear regression, continued

• We have implicitly defined an onto function τ : R2
++ → R2 and a

transformed functional relationship specified by:

∀
[

ψ
ζ

]

∈ R
2
++,τ

([

ψ
ζ

])

=

[

ln(ψ)
ln(ζ)

]

,

Z = βΨ+Γ.

• It is not always possible to find such a transformation.
• For example, consider a functional relationship between scalars ψ and ζ

of the form:

ζ = γ(ψ)β+δψ.

• We cannot transform this equation in a way such that all the unknown
parameters β,γ, and δ (or their transformed versions) appear linearly.

• Such a problem is called a non-linear regression problem.
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9.2.1.2 Power system measurements

• We may want to observe the actual state of the system to check if the
system is operating within limits.

• The state estimation problem involves finding the voltage angles and
magnitudes in the system that best match the measured values.
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9.2.2 Formulation

9.2.2.1 Measurements

• Real and reactive power injection at a bus;
• Real and reactive power flow along a line; and
• Voltage magnitude.

neutral

1 23

✚✙
✛✘
∼

P̃1, Q̃1,Ũ1

P̃12, Q̃12

P̃13, Q̃13

t Y13
t

t

l
o
a
d

Y23
t

✚✙
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∼

Y12

Fig. 9.2. Three-bus
power system state
estimation problem.
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Real and reactive power injection

• Let B be the set of buses where there are measurements of the real and
reactive power injections into the system.

• In Figure 9.2, B= {1}.

Real and reactive line flow

• Let F be the set of lines where we have line flow measurements.
• In Figure 9.2, F= {(1,2),(1,3)}.

Voltage magnitude

• Finally, let U be the set of buses where there are voltage magnitude
measurements.

• In Figure 9.2, U= {1}.
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9.2.2.2 Variables

• Change the definition of x in Section 6.2 to include:

– the voltage angles at all buses except the reference bus, and
– the voltage magnitudes at all buses in the system, including the

reference bus.

• Now x ∈ Rn, where n is equal to one less than twice the number of buses,
so that the vector x has been re-defined compared to Section 6.2.
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9.2.2.3 Measurement functions

• Recall the definitions of the functions pℓ,qℓ : Rn → R in (6.12) and (6.13)
that were used in the power flow case study:

∀x ∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓk cos(θℓ−θk)+Bℓk sin(θℓ−θk)]−Pℓ,

∀x ∈ R
n,qℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓk sin(θℓ−θk)−Bℓk cos(θℓ−θk)]−Qℓ.

• Let us define new functions by omitting the values of the real and reactive
injections, Pℓ and Qℓ.

• That is, define p̃ℓ : Rn → R and q̃ℓ : Rn → R to be:

∀x ∈ R
n, p̃ℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓk cos(θℓ−θk)+Bℓk sin(θℓ−θk)],

∀x ∈ R
n, q̃ℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓk sin(θℓ−θk)−Bℓk cos(θℓ−θk)].
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9.2.2.4 Measurement functions

• We denote the measurement functions by:

p̃ℓ, q̃ℓ, for the real and reactive power injection measurements, ℓ ∈ B,

p̃ℓk, q̃ℓk, for the real and reactive line flow measurements,(ℓ,k) ∈ F,

ũℓ, for the voltage magnitude measurements, ℓ ∈ U.

• We collect the measurement functions into a vector function g̃ and collect
the measurements together into a corresponding vector G̃:

∀x ∈ R
n, g̃(x) =













[

p̃ℓ(x)
q̃ℓ(x)

]

ℓ∈B
[

p̃ℓk(x)
q̃ℓk(x)

]

(ℓ,k)∈F
[ ũℓ(x) ]ℓ∈U













, G̃ =















[

P̃ℓ
Q̃ℓ

]

ℓ∈B
[

P̃ℓk
Q̃ℓk

]

(ℓ,k)∈F
[

Ũℓ

]

ℓ∈U















.

• Let us define a new index set M that specifies all the measurements.
• We re-index the entries of g̃ and G̃ using the set M, so that g̃ = (g̃k)k∈M

and G̃ ∈ RM.
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9.2.2.5 Error distribution

• Assuming independent Gaussian measurement errors then we can write
the probability density, φ : RM → R, of the measurement vector G̃ as the
product of probability densities:

∀G̃ ∈ R
M,φ(G̃;x) = ∏

ℓ∈B
φp̃ℓ(P̃ℓ;x)∏

ℓ∈B
φq̃ℓ(Q̃ℓ;x) ∏

(ℓ,k)∈F
φp̃ℓk(P̃ℓk;x)

× ∏
(ℓ,k)∈F

φq̃ℓk(Q̃ℓk;x)∏
ℓ∈U

φũℓ(Ũℓ;x),

• where each function φp̃ℓ(P̃ℓ;x),φq̃ℓ(Q̃ℓ;x),φp̃ℓk(P̃ℓk;x),φq̃ℓk(Q̃ℓk;x), and

φũℓ(Ũℓ;x) represents the probability density function of the corresponding
error distribution and is parameterized by x.
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Error distribution, continued

• For example,

∀P̃ℓ ∈ R,φp̃ℓ(P̃ℓ;x) =
1√

2πσp̃ℓ

exp

(

−( p̃ℓ(x)− P̃ℓ)
2

2(σp̃ℓ)
2

)

,

• where σp̃ℓ is the standard deviation of the measurement error of real
power at bus ℓ and where we have assumed that the expected error is zero.

• After the measurements are made, we can re-interpret φ to be a function
φ : Rn → R. That is, we re-interpret φ as being defined by:

∀x ∈ R
n,φ(G̃;x) = ∏

ℓ∈B
φp̃ℓ(P̃ℓ;x)∏

ℓ∈B
φq̃ℓ(Q̃ℓ;x) ∏

(ℓ,k)∈F
φp̃ℓk(P̃ℓk;x)

× ∏
(ℓ,k)∈F

φq̃ℓk(Q̃ℓk;x)∏
ℓ∈U

φũℓ(Ũℓ;x).

• Our maximum likelihood estimation problem is then:

max
x∈Rn

φ(G̃;x). (9.8)
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9.2.3 Change in measurement data

• We will consider how a change in measurement data affects the result.

9.2.4 Problem characteristics

9.2.4.1 Objective

• The objective of this problem is very similar to that of multi-variate linear
regression Problem (9.7), except that each term in the product has one of
the non-linear functions p̃ℓ, q̃ℓ, p̃ℓk, q̃ℓk, or ũℓ in the exponent instead of the

linear measurement equation ψ(ℓ)†β+ γ.
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9.2.4.2 Solvability

• The measurements shown in the system illustrated in Figure 9.2 have just
enough information to determine all the values of the entries in x.

• It is important to have redundancy of measurements in the system and to
“spread out” the measurements across the system as illustrated in
Figure 9.3.

neutral

1 23

✚✙
✛✘
∼

P̃1, Q̃1,Ũ1

P̃12, Q̃12

P̃2, Q̃2,Ũ2P̃3, Q̃3

t Y13
t

t

l
o
a
d

Y23
t

✚✙
✛✘
∼

Y12

Fig. 9.3. Three-bus
power system state
estimation problem
with spread out mea-
surements.
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10

Algorithms for unconstrained minimization

• In this chapter we will develop algorithms for unconstrained optimization
problems of the form:

min
x∈Rn

f (x),

• where x ∈ Rn and f : Rn → R.
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Key issues

• Descent directions to reduce the value of the objective,
• optimality conditions based on descent directions,
• optimality conditions for convex objectives,
• the development of iterative algorithms, and
• sensitivity analysis.
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10.1 Optimality conditions

10.1.1 Descent direction

10.1.1.1 Analysis

Definition 10.1 Let x̂ ∈ Rn and f : Rn → R. Then the vector ∆x ∈ Rn is
called a descent direction for f at x̂ if:

∃α ∈ R++ such that (0 < α ≤ α)⇒ ( f (x̂+α∆x)< f (x̂)).

✷
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10.1.1.2 Example

∀x ∈ R
2, f (x) = (x1−1)2 +(x2 −3)2. (10.1)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

Fig. 10.1. Descent
direction (shown as
the longer arrow) for
a function at a point

x̂ =

[

2
1

]

, shown as

a ◦. The contours of
the function decrease

towards x⋆ =

[

1
3

]

,

which is shown as a •.
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10.1.1.3 Steepest descent step direction

• ∆x =−∇f (x) is called the direction of steepest descent.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
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3

4

5

x1

x2

Fig. 10.2. Steepest
descent directions for
a function at various

points. The contours of
the function decrease

towards x⋆ =

[

1
3

]

,

which is shown as a •.
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10.1.1.4 Analysis

Lemma 10.1 Let f : Rn → R be partially differentiable with continuous

partial derivatives and let x̂ ∈ Rn, ∆x ∈ Rn. Suppose that ∇f (x̂)†∆x < 0.

Then ∆x is a descent direction for f at x̂.

Proof Let φ : R→ R be defined by:

∀t ∈ R,φ(t) = f (x̂+ t∆x).

By the chain rule,
dφ
dt

(t) =
∂ f

∂x
(x̂+ t∆x)∆x. Evaluating this at t = 0 yields:

dφ
dt

(0) =
∂ f

∂x
(x̂)∆x,

= ∇f (x̂)†∆x,

= −2ε,

say, where ε > 0 by assumption.
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Proof, continued But, by definition, since f is partially differentiable
with continuous partial derivatives,

dφ
dt

(0) = lim
α→0

f (x̂+α∆x)− f (x̂)

α
.

Let α ∈ R++ be small enough such that

(0 < |α| ≤ α)⇒
(∣

∣

∣

∣

f (x̂+α∆x)− f (x̂)

α
− dφ

dt
(0)

∣

∣

∣

∣

≤ ε
)

.

But this means that:

(0 < |α| ≤ α)⇒
(∣

∣

∣

∣

f (x̂+α∆x)− f (x̂)

α
− (−2ε)

∣

∣

∣

∣

≤ ε
)

,

which implies that:

(0 < |α| ≤ α)⇒
(

f (x̂+α∆x)− f (x̂)

α
≤−ε

)

.
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Proof, continued So:

(0 < α ≤ α) ⇒ ( f (x̂+α∆x)− f (x̂)≤−αε < 0),

⇒ ( f (x̂+α∆x) < f (x̂)),

and ∆x is a descent direction for f at x̂. ✷

• ∇f (x̂)†∆x is called the directional derivative of f at x̂ in the direction
∆x.

• Analytically, the condition in Lemma 10.1 that ∇f (x̂)†∆x < 0 requires that
the directional derivative in the direction ∆x be negative.

• Geometrically, this condition requires that the angle between ∆x and
−∇f (x̂) be less than 90◦ for ∆x to be a descent direction as illustrated in
Figure 10.3.
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Descent directions
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x2

Fig. 10.3. Various
descent directions for
a function a particu-

lar point x̂ =

[

3
−3

]

.

The contours decrease
towards the point

x⋆ =

[

1
3

]

, which is

shown as a •.

Title Page ◭◭ ◮◮ ◭ ◮ 36 of 138 Go Back Full Screen Close Quit



Corollary 10.2 Let x̂ ∈ Rn, let M ∈ Rn×n be positive definite, and let

f : Rn → R be partially differentiable with continuous partial derivatives

and such that ∇f (x̂) 6= 0. Then ∆x =−M ∇f (x̂) is a descent direction for

f at x̂.

Proof Note that ∇f (x̂)†∆x =−∇f (x̂)†
M ∇f (x̂)< 0, since M is positive

definite and ∇f (x̂) 6= 0. Apply Lemma 10.1. ✷

• The “middle” arrow in Figure 10.3 shows the steepest descent step
direction at x̂, corresponding to the choice M = I.

• The other directions correspond to other choices of positive definite M

and also yield descent directions in that f is also reducing in these
directions away from x̂.
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10.1.2 First-order conditions

10.1.2.1 Necessary conditions

Theorem 10.3 Let f : Rn → R be partially differentiable with continuous

partial derivatives. If x⋆ is a local minimizer of f then ∇f (x⋆) = 0.

Proof We prove the contra-positive. That is, we prove that if
∇f (x⋆) 6= 0 then x⋆ is not a local minimizer. Let M ∈ Rn×n be positive
definite. By Corollary 10.2, ∆x =−M ∇f (x⋆) is a descent direction for f

at x⋆ and so x⋆ is not a local minimizer of f . ✷

• The statement and proof of Theorem 10.3, respectively, suggest two
approaches to finding a minimizer of f :

(i) solve ∇f (x) = 0, or
(ii) from the current point x, move in the direction ∆x =−M ∇f (x),

where M is positive definite.
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10.1.2.2 Example of insufficiency
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x̂ ˆ̂x x⋆

f (x)

Fig. 10.4. Graph of f

and points (illustrated
by the ◦) satisfying
∇f (x) = 0 but which
may or may not corre-

spond to a minimum.
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Example of insufficiency, continued
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x̂ ˆ̂x x⋆

Fig. 10.5. First deriva-
tive ∇f of the function f

shown in Figure 10.4.
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Example of insufficiency, continued

• ∇f (x) = 0 is not sufficient to guarantee a minimum.
• We call points that satisfy ∇f (x) = 0 critical points.
• Not all critical points are minimizers.
• For the function shown in Figure 10.4:

(i) x̂ =−3, f (x̂) = 8, a local maximizer and maximum of f ,
respectively,

(ii) ˆ̂x = 0, f ( ˆ̂x) = 0, a horizontal inflection point of f , and
(iii) x⋆ = 3, f (x⋆) =−8, a local minimizer and minimum of f ,

respectively.
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10.1.3 Second-order conditions

10.1.3.1 Necessary conditions

Analysis

Theorem 10.4 Let f : Rn → R be twice partially differentiable with

continuous second partial derivatives and suppose that x⋆ is a local

minimizer of f . Then:

∇f (x⋆) = 0, (10.2)

∇2f (x⋆) is positive semi-definite. (10.3)

✷
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Example
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x̂ ˆ̂x x⋆

Fig. 10.6. Second

derivative ∇2f of the
function f shown in
Figure 10.4.
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Example, continued

• Again consider the function f shown in Figure 10.4.
• Its first and second derivatives are shown in Figures 10.5 and 10.6,

respectively.
• Since f : R→ R in this case, the Hessian ∇2f : R→ R is positive

semi-definite if and only if it is non-negative.
• The critical points of f are at:

x̂ =−3. At this point, the Hessian of f , shown in Figure 10.6, is negative
and hence not positive semi-definite. Therefore, by Theorem 10.4, x̂ =−3
cannot be a local minimizer of f .

ˆ̂x = 0. At this point, the Hessian of f is zero and hence positive
semi-definite. The second-order necessary conditions are satisfied but by
inspection of Figure 10.4, ˆ̂x = 0 is clearly not a minimizer.

x⋆ = 3. This point is a local minimizer of f . Figure 10.6 and Theorem 10.4
both concur that the Hessian is positive semi-definite.
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10.1.3.2 Sufficient conditions

Analysis

Theorem 10.5 Let f : Rn → R be twice partially differentiable with

continuous second partial derivatives and suppose that:

∇f (x⋆) = 0,

∇2f (x⋆) is positive definite.

Then x⋆ is a strict local minimizer of f .

Proof By hypothesis, ∇2f (x⋆) is positive definite and ∇2f is continuous.
Therefore:

∃ε ∈ R++ such that (‖x⋆− x‖ ≤ ε)⇒ (∇2f (x) is positive definite).
(10.4)

Let ∆x be any step direction such that 0 < ‖∆x‖ ≤ ε and define φ : R→ R

by:

∀t ∈ R,φ(t) = f (x⋆+ t∆x).
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Proof, continued Then:

dφ
dt

(t) =
∂ f

∂x
(x⋆+ t∆x)∆x,

dφ
dt

(0) =
∂ f

∂x
(x⋆)∆x,

= ∇f (x⋆)†∆x,

= 0, by hypothesis, (10.5)

d2φ
dt2 (t) = ∆x† ∂2 f

∂x2 (x⋆+ t∆x)∆x,

> 0,∀0 < t ≤ 1, (10.6)

where the last inequality follows from (10.4) since ∆x 6= 0 and since:

(0 < t ≤ 1)⇒ (‖x⋆− (x⋆+ t∆x)‖= t ‖∆x‖ ≤ ‖∆x‖ ≤ ε).
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Proof, continued We have that φ(0) = f (x⋆) and:

∀∆x ∈ R
n,(0 < ‖∆x‖ ≤ ε)⇒

f (x⋆+∆x) = φ(1),

= φ(0)+
∫ 1

t=0

dφ
dt

(t)dt,

= φ(0)+
∫ 1

t=0

[

dφ
dt

(0)+
∫ t

t ′=0

d2φ
dt2 (t ′)dt ′

]

dt,

= φ(0)+ dφ
dt

(0)+
∫ 1

t=0

∫ t

t ′=0

d2φ
dt2 (t ′)dt ′dt,

= φ(0)+
∫ 1

t=0

∫ t

t ′=0

d2φ
dt2 (t ′)dt ′dt, by (10.5),

> f (x⋆), since the integrand is strictly positive by (10.6).

That is, x⋆ is a strict local minimizer. ✷

• Positive semi-definiteness of the second derivative matrix at a critical
point ˆ̂x is not sufficient to guarantee that ˆ̂x is a minimizer.
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Example

• Continuing with the example from Section 10.1.1.2, note that:

∀x ∈ R
2, f (x) = (x1−1)2 +(x2 −3)2,

∀x ∈ R
2,∇2f (x) =

[

2 0
0 2

]

,

• which is positive definite.

• Therefore, by Theorem 10.5, the point x⋆ =

[

1
3

]

is a strict local

minimizer of f .
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Example of insufficiency

∀x ∈ R, f (x) =−(x)4.

−1.5 −1 −0.5 0 0.5 1 1.5
−5

−4

−3

−2

−1

0

1

x

f

ˆ̂x

Fig. 10.7. A critical
point ˆ̂x = 0, illustrated
by the ◦, where the sec-
ond derivative matrix is
positive semi-definite at
ˆ̂x yet the point is not a

minimizer.
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Example of insufficiency, continued

• Consider the point ˆ̂x = 0 as illustrated in Figure 10.7.
• In this case:

∇f ( ˆ̂x) = [−4( ˆ̂x)3],

= [0],

∇2f ( ˆ̂x) = [−12( ˆ̂x)2],

= [0],

• so that:

∀∆x ∈ R,0 = ∆x∇2f ( ˆ̂x)∆x ≥ 0,

• and so ∇2f ( ˆ̂x) is positive semi-definite.

• However, ˆ̂x = [0] is clearly not a minimizer of f .
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10.1.4 Convex objectives

10.1.4.1 First-order sufficient conditions

Analysis

• If f is twice partially differentiable with continuous partial derivatives
and the second derivative matrix of f is positive semi-definite everywhere

then the objective is convex by Theorem 2.7.
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Corollary 10.6 Let f : Rn → R be convex and partially differentiable with

continuous partial derivatives on Rn and let x⋆ ∈ Rn. If ∇f (x⋆) = 0 then

f (x⋆) is the global minimum and x⋆ is a global minimizer of f .

Proof Recall Theorem 2.6. The hypothesis of Theorem 2.6 is satisfied
for S= Rn. Consequently, (2.31) holds, which we repeat:

∀x,x′ ∈ S, f (x)≥ f (x′)+∇f (x′)†
(x− x′).

Letting x′ = x⋆ and S= Rn in (2.31) and noting that ∇f (x⋆) = 0, we
obtain:

∀x ∈ R
n, f (x)≥ f (x⋆).

That is x⋆ is a global minimizer of f . ✷
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Example

• Continuing with the example from Sections 10.1.1.2 and 10.1.3.2, note
that ∇2f is positive definite so that f is convex.

• Therefore, by Corollary 10.6, the point x⋆ =

[

1
3

]

is the global minimizer

of f .
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10.1.4.2 Uniqueness of minimizer

Theorem 10.7 Let f : Rn → R be twice partially differentiable with

continuous second partial derivatives on Rn. If ∇2f is positive definite

throughout Rn and minx∈Rn f (x) possesses a minimum then the

associated minimizer is unique.

Proof Applying Theorems 2.3 and 2.2 to ∇f we find that there is at
most one point that satisfies the necessary conditions for minimizing f .
Alternatively, Theorem 2.7 and Item (iii) of the conclusion of
Theorem 2.4 imply the same result. ✷
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10.2 Approaches to finding minimizers

10.2.1 Steepest descent

x(ν+1) = x(ν)−α(ν)∇f (x(ν)). (10.7)

10.2.1.1 Advantages

• Unless ∇f (x(ν)) = 0, it is always possible to find a step-size α(ν) such that

the objective will be reduced from f (x(ν)) by updating the iterate to

x(ν)−α(ν)∇f (x(ν)).

10.2.1.2 Example

• Consider the quadratic function illustrated in Figure 10.2.
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Example, continued

∇f (x) =

[

2(x1 −1)
2(x2 −3)

]

,

x(0) =

[

3
−5

]

,

∇f (x(0)) =

[

2(3−1)
2(−5−3)

]

,

=

[

4
−16

]

,

x(1) = x(0)+α(0)∆x(0),

=

[

3
−5

]

+α(0)

[

−4
16

]

.

• If we set α(0) = 0.5 then x(1) = x⋆ =

[

1
3

]

so that we would have reached

the minimizer in one iteration.
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10.2.1.3 Disadvantages

• Progress towards the solution may be very slow if the contour sets of the
function are very “eccentric.”
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Fig. 10.8. Scaled ver-
sions of the steepest

descent step directions
for an objective, defined
in (10.8), with contour
sets that are highly
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a •.
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10.2.1.4 Example

• Figure 10.8 shows scaled versions of the steepest descent step directions
for a quadratic function f : R2 → R defined by:

∀x ∈ R
2, f (x) = (x1−1)2 +(x2 −3)2 −1.8(x1 −1)(x2 −3), (10.8)

=
1

2
x†Qx+ c†x+ constant,

Q = ∇2f (x),

=

[

2 −1.8
−1.8 2

]

,

c =

[

3.4
−4.2

]

.

• This function has the same minimizer, x⋆ =

[

1
3

]

, as the function in

Figure 10.2, but has eccentric contour sets.
• This function is more typical of functions encountered in practice.
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Example, continued

• For a step-size of α(ν), the next iterate has objective value:

f (x(ν+1)) = f (x(ν)−α(ν)∇f (x(ν))).

• Even if we choose α(ν) at each iteration to minimize

f
(

x(ν)−α(ν)∇f (x(ν))
)

exactly with respect to α(ν), it can take many

iterations to find the minimum of a quadratic function having eccentric
contour sets.

• The iterates will “zig-zag” back and forth across the axes of the eccentric
contour sets, making slow progress towards x⋆.

• Non-quadratic functions with eccentric contour sets will exhibit similarly
poor behavior using the steepest descent step direction.
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Example, continued

• Using the function defined in (10.8), we obtain:

∀x ∈ R
2,∇f (x) =

[

2(x1 −1)−1.8(x2 −3)
2(x2 −3)−1.8(x1 −1)

]

.

• Again, suppose that we use x(0) =

[

3
−5

]

as the initial guess.

• Then:

∇f (x(0)) =

[

2(3−1)−1.8(−5−3)
2(−5−3)−1.8(3−1)

]

=

[

18.4
−19.6

]

,

• and the steepest descent step direction at x(0) is ∆x(0) =

[

−18.4
19.6

]

.
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Example, continued

• We update according to:

x(1) = x(0)+α(0)∆x(0) =

[

3
−5

]

+α(0)

[

−18.4
19.6

]

.

• For the value of α(0) that minimizes f (x(0)+α(0)∆x(0)) over choices of

α(0), x(1) ≈
[

−1.8467
0.1628

]

, which is relatively far from the minimizer of f .

• Figure 10.9 illustrates the progress of iterations using steepest descent

step direction, starting at x(0) =

[

3
−5

]

, and assuming that at the ν-th

iteration the step-size α(ν) is chosen to minimize f (x(ν)+α(ν)∆x(ν)).
• Figure 10.9 shows that after two iterations of steepest descent we are

close to the minimizer of this function.
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Example, continued
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Fig. 10.9. Progress
of iterations, shown
as ◦, using steepest
descent step directions
for an objective, defined

in (10.8), with contour
sets that are highly
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a •. The initial

guess was x(0) =

[

3
−5

]

.
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Example, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

Fig. 10.10. Progress
of iterations, shown
as ◦, using steepest
descent step directions

for an objective, defined
in (10.8), with contour
sets that are highly
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a •. The initial

guess was x(0) =

[

−2
−5

]

.
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Example, continued

• However, starting at x(0) =

[

−2
−5

]

, the progress is much slower, as

illustrated in Figure 10.10, requiring six steepest descent step directions
to get close to the minimizer.

• In higher dimensions, with n larger than 2, the steepest descent algorithm
will repeatedly take us in directions that do not point directly towards the
minimizer.

• The steepest descent step direction can be arbitrarily close to being at
right angles to the direction that points towards the minimizer.

• Moreover, we cannot expect to exactly minimize f (x(ν)+α(ν)∆x(ν)) over

choices of α(ν) as assumed in Figures 10.9 and 10.10.
• This typically increases further the number of iterations required to find a

useful answer.
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10.2.1.5 Example with non-quadratic objective

∀x ∈ R
2, f (x) = 0.01× (x1 −1)4 +0.01× (x2 −3)4 +(x1−1)2 +(x2 −3)2

−1.8(x1 −1)(x2 −3). (10.9)
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Fig. 10.11. Scaled ver-
sions of the steepest
descent step directions
for an objective, defined
in (10.9), with contour

sets that are perturbed
eccentric ellipses. The
contours of the function
decrease towards x⋆ =
[

1
3

]

, which is shown as

a •.
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Example with non-quadratic objective, continued

∀x ∈ R
2,∇f (x) =

[

0.04(x1 −1)3 +2(x1 −1)−1.8(x2 −3)
0.04(x2 −3)3 −1.8(x1 −1)+2(x2 −3)

]

.

• Again, suppose that we use x(0) =

[

3
−5

]

as the initial guess.

• Then, ∇f (x(0)) =

[

18.72
−40.08

]

and the steepest descent step direction at x(0)

is ∆x(0) =

[

−18.72
40.08

]

.

• We update according to:

x(1) = x(0)+α(0)∆x(0) =

[

3
−5

]

+α(0)

[

−18.72
40.08

]

.

• Figure 10.12 shows the progress of a steepest descent algorithm assuming

that at the ν-th iteration the step-size α(ν) is chosen to minimize

f (x(ν)+α(ν)∆x(ν)).

Title Page ◭◭ ◮◮ ◭ ◮ 66 of 138 Go Back Full Screen Close Quit



Example with non-quadratic objective, continued
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Fig. 10.12. Progress
of iterations, shown
as ◦, using steepest
descent step directions
for an objective, defined

in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a •. The initial

guess was x(0) =

[

3
−5

]

.
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Example with non-quadratic objective, continued

• Figure 10.13 shows the progress of a steepest descent algorithm starting

at x(0) =

[

−2
−5

]

, again with the step-size chosen to minimize

f (x(ν)+α(ν)∆x(ν)) at each iteration.
• The iterates again zig-zag back and forth across the axis of the contour

sets and many iterations are required to approach the minimizer.
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Example with non-quadratic objective, continued
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Fig. 10.13. Progress
of iterations, shown
as ◦, using steepest
descent step directions

for an objective, defined
in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a •. The initial

guess was x(0) =

[

−2
−5

]

.
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10.2.2 Solving ∇f (x) = 0

• Another approach to minimizing f is based on the observation that
∇f (x) = 0 is a system of either linear or non-linear equations having the
same number of equations as variables.

10.2.2.1 Linear first-order necessary conditions

Analysis

• Suppose that f : Rn → R is quadratic of the form:

∀x ∈ R
n, f (x) =

1

2
x†Qx+ c†x,

• In this case, the equations ∇f (x) = 0 are linear and of the form
Qx+ c = 0.

• We can solve the equations:

Qx⋆ =−c.
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Example

∀x ∈ R
2, f (x) = (x1−1)2 +(x2 −3)2 −1.8(x1 −1)(x2−3),

=
1

2
x†Qx+ c†x+ constant,

Q = ∇2f (x),

=

[

2 −1.8
−1.8 2

]

,

c =

[

3.4
−4.2

]

.

• Solving Qx⋆ =−c we obtain the minimizer x⋆ =

[

1
3

]

.

Title Page ◭◭ ◮◮ ◭ ◮ 71 of 138 Go Back Full Screen Close Quit



10.2.2.2 Non-linear first-order necessary conditions

Analysis

• Apply the Newton–Raphson update to solve ∇f (x) = 0.

∇2f (x(ν))∆x(ν) = −∇f (x(ν)),

x(ν+1) = x(ν)+α(ν)∆x(ν),

• The choice of step is called the Newton–Raphson step direction to
minimize f .
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Example with quadratic objective

• For a quadratic function, the necessary conditions are linear.
• Nevertheless, we can consider applying the Newton–Raphson update to

solve them as though they were non-linear.
• For a quadratic function f : Rn → R defined by:

∀x ∈ R
n, f (x) =

1

2
x†Qx+ c†x,

• where Q ∈ Rn×n and c ∈ Rn, the Newton–Raphson step direction is the

solution to Q∆x(ν) =−Qx(ν)− c.
• Using this update with step-size one yields a point satisfying the

first-order necessary conditions for minimizing f .
• Figure 10.14 shows scaled versions of the Newton–Raphson step

directions for the function (10.8) at various points.

• They all point towards the minimizer x⋆ =

[

1
3

]

.
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Example with quadratic objective, continued
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Fig. 10.14. Scaled ver-
sions of the Newton–

Raphson step directions
for an objective, defined
in (10.8), with contour
sets that are highly ec-
centric ellipses. The
contours of the function
decrease towards x⋆ =
[

1
3

]

, which is shown as

a •.
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Example with non-quadratic objective

∀x ∈ R
2, f (x) = 0.01(x1 −1)4 +0.01(x2 −3)4 +(x1−1)2 +(x2 −3)2

−1.8(x1 −1)(x2 −3),

∀x ∈ R
2,∇2f (x) =

[

0.12(x1 −1)2 +2 −1.8
−1.8 0.12(x2 −3)2 +2

]

.

• Again, suppose that we use x(0) =

[

3
−5

]

as the initial guess.

• The Newton–Raphson step direction at x(0) is the solution to:
[

2.48 −1.8
−1.8 9.68

]

∆x(0) =

[

−18.72
40.08

]

,

∆x(0) ≈
[

−5.250
3.164

]

.
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Example with non-quadratic objective, continued

• We update according to:

x(1) = x(0)+α(0)∆x(0) =

[

3
−5

]

+α(0)

[

−5.250
3.164

]

.

• For step-size α(0) = 1, we obtain x(1) =

[

−2.250
−1.836

]

.

• Figure 10.15 shows the progress of a Newton–Raphson algorithm starting

at x(0) =

[

3
−5

]

and assuming that at the ν-th iteration the step-size α(ν)

were chosen to minimize f (x(ν)+α(ν)∆x(ν)).
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Example with non-quadratic objective, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Fig. 10.15. Progress of
iterations, shown as ◦,
using Newton–Raphson
step directions for
an objective, defined
in (10.9), with contour

sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a •. The initial

guess was x(0) =

[

3
−5

]

.
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Example with non-quadratic objective, continued

• Figure 10.16 shows the progress of a Newton–Raphson algorithm starting

at x(0) =

[

−2
−5

]

, again with the step-size chosen to minimize

f (x(ν)+α(ν)∆x(ν)) at each iteration.
• The progress is much faster than for the steepest descent step direction for

the same value of initial guess.
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Example with non-quadratic objective, continued
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Fig. 10.16. Progress of
iterations, shown as ◦,

using Newton–Raphson
step directions for
an objective, defined
in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the func-

tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a •. The initial

guess was x(0) =

[

−2
−5

]

.
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10.2.2.3 Advantages

• Convergence to the solution of ∇f (x) = 0 will be rapid, at least for initial
guesses that are near to a solution of the equations or after the iterate
becomes close to a solution of the equations.

• If f is quadratic then, as discussed in Section 10.2.2.2, the

Newton–Raphson step direction with step-size α(ν) = 1 takes us to a
critical point in just one iteration.

• Since ∇2f (x) is symmetric, we can take advantage of symmetry in
factorization.
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10.2.2.4 Disadvantages

• For non-quadratic objectives and particularly at points that are far from
the minimizer, the Newton–Raphson step direction is not necessarily a
better direction than the steepest descent step direction.

• Factorization of the Hessian may require considerable effort if n is large
or the Hessian is dense.

• If ∇f (x(ν)) is not known analytically then it may be difficult or impossible

to directly calculate ∇2f (x(ν)).
• If ∇2f (x(ν)) is not positive definite, then the Newton–Raphson update

may take us towards a maximum or a point of inflection.
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10.2.3 Generalization of Newton–Raphson and steepest descent

• In this section we generalize the Newton–Raphson and steepest descent
updates in a way that can combine the advantages of each approach.

10.2.3.1 Uniform treatment of updates

∆x(ν) =−M ∇f (x(ν)), (10.10)

• with M ∈ Rn×n positive definite as in Corollary 10.2 to guarantee descent.
• M = I yields the steepest descent step direction.

• M = [∇2f (x(ν))]
−1

(if the Hessian ∇2f is positive definite) yields the
Newton–Raphson step direction.
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10.2.3.2 Modified update

• To calculate ∆x(ν) satisfying (10.10), we would solve the linear system:

∇2f (x(ν))∆x(ν) =−∇f (x(ν)). (10.11)

• Suppose that at the j-th stage of the factorization there are no positive
diagonal pivots available.

• By Lemma 5.4, this means that ∇2f (x(ν)) is not positive definite, so that
the Newton–Raphson step direction, even if it is defined, may not be a
descent direction.

• Let us modify the factorization by adding a positive quantity E j j to A
( j)
j j to

make the pivot positive, where A( j) is the matrix obtained at the j-th stage

of the factorization of ∇2f (x(ν)).
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Modified update, continued

• Adding E j j to A
( j)
j j is equivalent to adding the matrix:

E =



















0
. . .

0
E j j

0
. . .

0



















(10.12)

• to ∇2f (x(ν)).
• By construction, ∇2f (x(ν))+E is symmetric and positive definite.

• Its inverse M = [∇2f (x(ν))+E]
−1

exists and is also symmetric and
positive definite.

• By Corollary 10.2, the search direction defined by (10.10) using this M is
a descent direction.

• This is called a modified factorization.
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10.2.3.3 Further variations

• We have considerable flexibility to either:

(i) construct positive definite approximations to [∇2f (x)]
−1

, or
(ii) approximately solve the equation:

∇2f (x)∆x =−∇f (x),

• in a way that guarantees that for the resulting ∆x we have that
∆x =−M∇f (x) for some positive definite M.
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10.2.4 Step-size

10.2.4.1 Need for step-size selection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f

f (x(ν))

x(ν) x̌x(ν+1)

Fig. 10.17. The need
for a step-size rule. The
function f is illustrated
with a solid line to-

gether with a quadratic
approximation to it,
illustrated as a dashed
line. The quadratic
approximation is a
second-order Taylor
approximation of f

about x(ν) = 0.3.
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Need for step-size selection, continued

• Suppose that we use the Newton–Raphson step direction to minimize the

function shown in Figure 10.17, starting at x(ν) = 0.3.

∇2f (x(ν))∆x(ν) = −∇f (x(ν)),

∆x(ν) = 0.5.

• For this choice, x̌ = x(ν)+∆x(ν) = 0.8 minimizes the quadratic
approximation to f .

• However:

f (x̌) = f (x(ν)+∆x(ν))),

> f (x(ν)).

• A step-size of α(ν) = 1 would lead to an increase in the objective.
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10.2.4.2 Armijo step-size rule

• Suppose that we had chosen α(ν) that is small enough so that f is
accurately represented by a second-order Taylor approximation about

x(ν).

• Then:

f (x(ν)+α(ν)∆x(ν))

≈ f (x(ν))+α(ν) [∇f (x(ν))]
†
∆x(ν)+

1

2
(α(ν))2[∆x(ν)]

†
∇2f (x(ν))∆x(ν),

by a second-order Taylor approximation,

≈ f (x(ν))+α(ν) [∇f (x(ν))]
†
∆x(ν)− 1

2
(α(ν))2[∆x(ν)]

†
∇f (x(ν)),

assuming that ∆x(ν) approximately solves ∇2f (x(ν))∆x(ν) =−∇f (x(ν)),

= f (x(ν))+α(ν)
(

1− 1

2
α(ν)

)

[∇f (x(ν))]
†
∆x(ν),

≤ f (x(ν))+
1

2
α(ν) [∇f (x(ν))]

†
∆x(ν). (10.13)
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Armijo step-size rule, continued

• In practice, the reduction may not be as small as predicted by (10.13) and
we may have to accept a smaller reduction.

• We choose an acceptance tolerance 0 < δ < 1.

• We start with tentative step-size α(ν) = 1 and calculate the trial objective

f (x(ν)+α(ν)∆x(ν)).
• The step-size is accepted if:

f (x(ν)+α(ν)∆x(ν))≤ f (x(ν))+
δ
2

α(ν) [∇f (x(ν))]
†
∆x(ν). (10.14)

• Otherwise, reduce the step-size by a factor of, say, one half and repeat the
process until an iterate is produced that satisfies (10.14).
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10.2.4.3 Wolfe condition

• The rule for reducing the step-size discussed in the last section does not
check for “improvement” in the gradient ∇f .

• An alternative that makes use of gradient information rather than
objective values is provided by the Wolfe condition:

∣

∣

∣
[∇f (x(ν)+α(ν)∆x(ν))]

†
∆x(ν)

∣

∣

∣
≤ η

∣

∣

∣
[∇f (x(ν))]

†
∆x(ν)

∣

∣

∣
. (10.15)

• The Wolfe condition ensures that the directional derivative in the

direction ∆x(ν) evaluated at the next iterate, [∇f (x(ν+1))]
†∆x(ν), is small

compared to the directional derivative in the direction ∆x(ν) at the current

iterate, [∇f (x(ν))]
†∆x(ν).
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10.2.4.4 Combined Armijo and Wolfe conditions

• The Wolfe condition (10.15) is often used in conjunction with the Armijo
condition (10.14).

• The Armijo condition (10.14) ensures that the step-size is not so large as
to invalidate the quadratic approximation of the objective.

• The Wolfe condition (10.15) ensures that the gradient of the objective is
reduced sufficiently by the step.
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10.2.4.5 Curve fitting

• If f is relatively easy to evaluate, then we can evaluate it at several points

along the line x(ν)+α∆x(ν) for 0 ≤ α ≤ 1 and then fit a polynomial curve.

• We can minimize a quadratic function of α using the following:

(i) If the coefficient of (α)2 in the quadratic function is positive, then

the minimum of the function occurs at the point x(ν)+α∆x(ν) for α
such that the derivative of the quadratic function with respect to α is
equal to zero. If this value of α lies outside the range [0,1] then the
closest end-point should be selected.

(ii) If the coefficient of (α)2 in the quadratic function is negative, then
the minimizer is one of the end-points α = 0 or α = 1.

10.2.4.6 Trust region

• In a trust region approach the selection of an appropriate search
direction and step-size both explicitly consider the region over which a
second-order Taylor approximation represents the function f accurately.

Title Page ◭◭ ◮◮ ◭ ◮ 92 of 138 Go Back Full Screen Close Quit



10.2.5 Stopping criteria

• A typical criterion is to require that

∥

∥

∥
∇f (x(ν))

∥

∥

∥
and

∥

∥

∥
∆x(ν)

∥

∥

∥
be

sufficiently small.
• By Theorem 2.6, if f is convex then any minimizer x⋆ of f (x) must

satisfy:

f (x⋆) ≥ f (x(ν))+ [∇f (x(ν))]
†
(x⋆− x(ν)),

≥ f (x(ν))−
∣

∣

∣
[∇f (x(ν))]

†
(x⋆− x(ν))

∣

∣

∣
,

≥ f (x(ν))−
∥

∥

∥∇f (x(ν))
∥

∥

∥

∥

∥

∥x⋆− x(ν)
∥

∥

∥ . (10.16)

• If we know an a priori bound on the minimizer, then we can bound
∥

∥

∥
x⋆− x(ν)

∥

∥

∥
independently of x⋆ by some ρ.

• We can ensure that f (x(ν)) is within ε f of the value of the global

minimum by iterating until

∥

∥

∥
∇f (x(ν))

∥

∥

∥
≤ ε f/ρ.
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Stopping criteria, continued

• The stopping criterion is often implemented in practice as a slightly
different relative criterion by testing if:

∥

∥

∥∇f (x(ν))
∥

∥

∥≤ ε f

ρ

(

1+ | f (x(ν))|
)

.
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10.2.6 Avoiding critical points that are not minimizers

• If, at some iteration ν, we find that ∇f (x(ν)) = 0 then our basic algorithm
cannot make further progress.

• If f is convex, then by Corollary 10.6, x(ν) is a minimizer and f (x(ν)) is a
minimum.

• If f is not convex, then we may be at a point of inflection or a local
maximizer.
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Avoiding critical points that are not minimizers, continued

• In Figure 10.18, the iterate x(ν) = 0.5 is a horizontal inflection point of the
objective.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x

f

x(ν−1) x(ν)

Fig. 10.18. Iterate that
is a horizontal inflection

point of the objective
function.
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Avoiding critical points that are not minimizers, continued

• If the first-order necessary conditions are satisfied, but we can detect that
the current iterate is not a minimizer, then we can restart the algorithm by

perturbing x(ν) by a random amount to move it away from the point of
inflection or local maximum.

• Alternatively, at a horizontal inflection, we can use the previous iterate in
a secant approximation as discussed in Section 7.2.1.5, to seek a descent
direction.

• For example, in Figure 10.18, using a secant approximation based on

x(ν−1) and x(ν) would yield a descent direction.
• If we are not at a horizontal inflection point then another approach is to

look for negative eigenvalues of the Hessian and move in the direction of
the corresponding eigenvector.
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10.3 Sensitivity

• Suppose that the objective f is parameterized by a parameter χ ∈ Rs.
That is, f : Rn×Rs → R.

• We imagine that we have solved the unconstrained minimization problem:

min
x∈Rn

f (x;χ),

• for a base-case value of the parameters, say χ = 0, to find the base-case
minimizer x⋆.

• We now consider the sensitivity of the minimizer and minimum to
variation of the parameters around χ = 0.
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10.3.1 Implicit function theorem

Corollary 10.8 Let f : Rn×Rs → R be twice partially differentiable with

continuous second partial derivatives. Consider the minimization

problem:

min
x∈Rn

f (x;χ),

where χ ∈ Rs is a parameter. Suppose that x⋆ is a local minimizer of this

problem for the base-case value of the parameters χ = 0. We call x = x⋆

a base-case minimizer. Define the (parameterized) Hessian

∇2
xxf : Rn×Rs → Rn×n by:

∀x ∈ R
n,∀χ ∈ R

s,∇2
xxf (x;χ) = ∂2 f

∂x2 (x;χ).

Suppose that ∇2
xxf (x⋆;0) is positive definite, so that x⋆ satisfies the

second-order sufficient conditions for the base-case problem. Then, there

is a local minimizer of f (x;χ) for χ in a neighborhood of the base-case

values of the parameters χ = 0 and the local minimizer is a partially

differentiable function of χ in this neighborhood. The sensitivity of the
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local minimizer x⋆ with respect to variation of the parameters χ,

evaluated at the base-case χ = 0, is given by:

∂x⋆

∂χ (0) =−[∇2
xxf (x⋆;0)]

−1
K(x⋆;0),

where K : Rn ×Rs → Rn×s is defined by:

∀x ∈ R
n,∀χ ∈ R

s,K(x;χ) = ∂2 f

∂x∂χ(x;χ).

The sensitivity of the corresponding local minimum f ⋆ to variation of the

parameters χ, evaluated at the base-case χ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂ f

∂χ (x⋆;0).

If f (•;χ) is convex for each χ in a neighborhood of 0 then the minimizers

and minima are global in this neighborhood.
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Proof The sensitivity of the local minimizer follows from
Corollary 7.5, noting that by assumption the Hessian is positive definite
in a neighborhood of the base-case minimizer and parameters.
The sensitivity of the local minimum follows by totally differentiating
the value of the local minimum f ⋆(χ) = f (x⋆(χ);χ) with respect to χ. In
particular,

∂ f ⋆

∂χ (0) =
d f (x⋆(χ);χ)
dχ (0),

=
∂ f

∂χ (x⋆;0)+
∂ f

∂x
(x⋆;0)

∂x⋆

∂χ (0),

on totally differentiating f (x⋆(χ);χ) with respect to χ,

=
∂ f

∂χ (x⋆;0),

since the first-order necessary conditions at the base-case are
∂ f

∂x
(x⋆;0) = 0.

The global results follow from Corollary 10.6. ✷
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Discussion

• If ∇2
xxf (x⋆;0) has already been factorized then each sensitivity of x⋆ with

respect to an entry of χ requires only a forwards and backwards
substitution.

• The sensitivity of the local minimum is called the envelope theorem.
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10.3.2 Example

• Consider the parameterized objective function f : R2×R→R defined by:

∀x ∈R
2,∀χ ∈ R, f (x;χ) = (x1− exp(χ))2+(x2−3exp(χ))2+5χ.

• This is a parameterized version of the function defined in (10.1).
• For χ = 0, the parameterized function is the same as the function defined

in (10.1) and from the discussion in Section 10.1.1.2 we know that the

base-case unconstrained minimizer is x⋆ =

[

1
3

]

.

• By Corollary 10.8, there is a minimizer of f (•;χ) for χ in a neighborhood
of the base-case value of the parameter χ = 0 and the minimizer is a
differentiable function of χ in this neighborhood.

• The sensitivity of the minimizer x⋆ with respect to variation of the
parameter χ, evaluated at the base-case χ = 0, is given by:

∂x⋆

∂χ (0) =−[∇2
xxf (x⋆;0)]

−1
K(x⋆;0),
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Example, continued

• where ∇2
xxf : R2×R→ R2×2 and K : R2×R→ R2×1 are defined by:

∀x ∈ R
2,∀χ ∈ R,∇2

xxf (x;χ) =
∂2 f

∂x2 (x;χ),

=

[

2 0
0 2

]

,

∇2
xxf (x⋆;0) =

[

2 0
0 2

]

,

∀x ∈ R
2,∀χ ∈ R,K(x;χ) =

∂2 f

∂x∂χ(x;χ),

=

[

−2exp(χ)
−6exp(χ)

]

,

K(x⋆;0) =

[

−2
−6

]

,

• where we observe that ∇2
xxf (x⋆;0) is positive definite.
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Example, continued

• The sensitivity of the minimizer x⋆ to variation of the parameter χ,
evaluated at the base-case χ = 0, is:

∂x⋆

∂χ (0) = −[∇2
xxf (x⋆;0)]

−1
K(x⋆;0),

= −
[

2 0
0 2

]−1[−2
−6

]

,

=

[

1
3

]

.
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Example, continued

• The sensitivity of the minimum f ⋆ to variation of the parameter χ,
evaluated at the base-case χ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂ f

∂χ (x⋆;0).

• We have that:

∂ f

∂χ (x;χ) = 2(x1− exp(χ))(−exp(χ))+2(x2−3exp(χ))(−3exp(χ))+5,

• and so the sensitivity is:

∂ f ⋆

∂χ (0) =
∂ f

∂χ (x⋆;0) = 5.
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10.4 Summary

• Descent directions,
• Optimality conditions,
• Algorithms,
• Sensitivity analysis.
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11

Solution of the unconstrained minimization case
studies

• Multi-variate linear regression case study in Section 11.1, and
• Power system state estimation case study in Section 11.2.
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11.1 Multi-variate linear regression

11.1.1 Transformation of objective

• Recall Problem (9.7):

max
x∈Rn

φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x),

• where φ : Rn → R was defined in (9.6), which we repeat here:

∀x ∈ R
n,φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x)

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

)

.

• First define f̂ : Rn → R by:

∀x ∈ R
n, f̂ (x) =− ln(φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x)).
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Transformation of objective, continued

• Then:

∀x ∈ R
n, f̂ (x) = − ln

(

m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

))

,

= −
m

∑
ℓ=1

[

ln

(

1√
2πσℓ

)

− (ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

]

,

=
m

∑
ℓ=1

[

(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

]

−
m

∑
ℓ=1

ln

(

1√
2πσℓ

)

,

• where we recall that:

x =

[

β
γ

]

∈ R
n.
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Transformation of objective, continued

• Assuming that σℓ = σ,∀ℓ= 1, . . . ,m, we can define f : Rn → R by:

∀x ∈ R
n, f (x) = σ2

[

f̂ (x)+
m

∑
ℓ=1

ln

(

1√
2πσℓ

)

]

,

=
1

2

m

∑
ℓ=1

(ψ(ℓ)†β+ γ−ζ(ℓ))2,

=
1

2

m

∑
ℓ=1

(Aℓx−bℓ)
2,

where Aℓ =
[

ψ(ℓ)†
1
]

∈ R1×n and bℓ = ζ(ℓ) ∈ R,

=
1

2
(Ax−b)†(Ax−b),

where A =





A1
...

Am



 ∈ Rm×n and b =





b1
...

bm



 ∈ Rm,

=
1

2
‖Ax−b‖2

2 .
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Transformation of objective, continued

• By Theorem 3.1, so long as either:

(i) Problem (9.7) has a maximum or
(ii) the problem:

min
x∈Rn

f (x), (11.1)

has a minimum,

• then they both have the same set of optimizers.
• Problem (11.1) involves minimizing (half of) the sum of squares of linear

functions of x and is called a linear least-squares problem.
• We refer to the corresponding specification of the affine function defined

in (9.1) as a least-squares fit to the data.
• The necessary conditions for a minimum of Problem (11.1) are a set of

linear simultaneous equations.
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11.1.2 Comparison of objectives

• The necessary conditions for a minimum of Problem (11.1) are a set of
linear simultaneous equations.

• In contrast, the necessary conditions for a maximum of Problem (9.7) are
a set of non-linear simultaneous equations since φ is non-quadratic.

11.1.3 Derivatives of objective

∀x ∈ R
n,∇f (x) = A†(Ax−b), (11.2)

∀x ∈ R
n,∇2f (x) = A†A. (11.3)
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11.1.4 Optimality conditions

• ∇2f (x) is positive semi-definite.
• Therefore the objective f is convex.
• First-order conditions are sufficient.
• Solving either Problem (11.1) or Problem (9.7) yields the same set of

minimizers.

• In summary, by solving ∇f (x) = 0 for x⋆ =

[

β⋆

γ⋆
]

we will find a

maximizer of Problem (9.7).
• Setting ∇f (x) = 0 and re-arranging, we obtain:

Ax = B , (11.4)

• where A = A†A and B = A†b.
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11.1.5 Further transformation

• The condition number of A†A can be large.
• Instead of calculating and factorizing A†A, we QR factorize A itself to

obtain (ignoring any permutations of the rows or columns of A):

A = QR,

• with Q ∈ Rm×m unitary, R =

[

U
0

]

∈ Rm×n upper triangular, with

U ∈ Rn×n upper triangular and U is non-singular if A has linearly
independent columns.

• We have:

∀x ∈ R
n, f (x) =

1

2
(Ax−b)†(Ax−b),

=
1

2
(x†A† −b†)(Ax−b),

=
1

2
(x†R†Q†−b†)(QRx−b), by definition of QR,
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Further transformation, continued

=
1

2
(x†R†Q†−b†QQ†)(QRx−QQ†b), since Q is unitary,

=
1

2
(x†R†−b†Q)Q†Q(Rx−Q†b), on factorizing,

=
1

2
(x†R†−b†Q)(Rx−Q†b), because Q is unitary,

=
1

2

(

x†

[

U
0

]†

−b†Q

)

([

U
0

]

x−Q†b

)

, where R =

[

U
0

]

,

=
1

2

∥

∥

∥

∥

[

U
0

]

x−Q†b

∥

∥

∥

∥

2

2

,

=
1

2

∥

∥

∥

∥

∥

[

U
0

]

x−
[

[Q‖]
†

[Q⊥]
†

]

b

∥

∥

∥

∥

∥

2

2

, where Q =
[

Q‖ Q⊥ ],

with Q‖ ∈ Rm×n′,Q⊥ ∈ Rm×(m−n′),
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Further transformation, continued

=
1

2

∥

∥

∥

∥

∥

[

Ux− [Q‖]
†
b

0x− [Q⊥]
†
b

]∥

∥

∥

∥

∥

2

2

,

=
1

2

∥

∥

∥
Ux− [Q‖]

†
b

∥

∥

∥

2

2
+

1

2

∥

∥

∥
[Q⊥]

†
b

∥

∥

∥

2

2
, by definition of the L2 norm.

• Geometrically, we have resolved the vector Ax−b into the sum of two
vectors:

Ux− [Q‖]
†
b, which depends on x, and

0x− [Q⊥]
†
b =−[Q⊥]

†
b, which does not depend on x.

• The columns Q‖ are such that [Q‖]
†
b “aligns” with Ux.

• The columns Q⊥ are such that (−[Q⊥]
†
b) is perpendicular to Ux.

• If U is non-singular then the first-order necessary conditions for

minimizing

∥

∥

∥
Ux− [Q‖]

†
b

∥

∥

∥

2

2
are Ux = [Q‖]

†
b.
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Further transformation, continued

✻

Ux′− [Q‖]
†
b

✻

Ux′′− [Q‖]
†
b

✲

−[Q⊥]
†
b

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

Ax′−b

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿

Ax′′−b

Fig. 11.1. Resolution

of the vector Ax − b

into two perpendicular
vectors for the values
x = x′ and x = x′′.
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Further transformation, continued

• We can obtain the solution to Problem (11.1) by:

– evaluating y⋆ = [Q‖]
†
b, and

– performing a backwards substitution to solve Ux⋆ = y⋆.

• The solution x⋆ =

[

β⋆

γ⋆
]

specifies the maximum likelihood estimate of the

relationship between the independent and dependent variables:

∀ψ ∈ R
n−1,ζ = [β⋆]†ψ+ γ⋆.
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11.1.6 Relationship of optimality conditions to linear regression

• In designing the values of ψ(ℓ) for the trials, there are two related issues
to be addressed:

(i) Providing enough variety in the trials to ensure that ∇2f = A†A is
positive definite. We discuss this issue in Sections 11.1.6.1
and 11.1.6.2.

(ii) Providing enough redundancy so that the effects of measurement
error can be “averaged out.” We discuss this briefly in
Section 11.1.6.3.
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11.1.6.1 Insufficient variety in the trials

• If ∇2f (x) is singular then there will be many possible values of the
parameters x that satisfy the maximum likelihood criterion in the
model (9.1), based on the data from trials ℓ= 1, . . . ,m.

11.1.6.2 Sufficient variety in the trials

• On the other hand, if there is an n element subset {ℓ1, ℓ2, . . . , ℓn} of the
trials {1, . . . ,m} such that the n rows of A corresponding to these trials are

linearly independent, then ∇2f (x) = A†A is non-singular.

11.1.6.3 Redundancy and validation of model

• We may want to find not only the maximum likelihood estimator but also
estimate the variance of the error.

• In general, it requires that m be larger, and typically considerably larger,
than n.
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11.1.7 Changes in the problem

11.1.7.1 Additional trials

• If additional trials are added then there will be additional rows added to A

and additional entries added to b, necessitating factorization of the
augmented A.
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11.1.7.2 Sensitivity

• We consider the sensitivity of the coefficients β⋆ and γ⋆ to changes in the
measurements.

• That is, for each ℓ= 1, . . . ,m, we will imagine that the ℓ-th measurement
is actually ζ(ℓ)+χℓ, with χ ∈ Rm.

• We calculate the sensitivity of β⋆ and γ⋆ to χ, evaluated at χ = 0.
• By Corollary 10.8, the sensitivity of the minimizer x⋆ is given by:

∂x⋆

∂χ (0) =−[∇2
xxf (x⋆;0)]

−1
K(x⋆;0),

• where ∇2
xxf : Rn×Rm → Rn×n and K : Rn×Rm → Rn×m are defined by:

∀x ∈ R
n,∀χ ∈ R

m,∇2
xxf (x;χ) =

∂2 f

∂x2 (x;χ),

= A†A,

∀x ∈ R
n,∀χ ∈ R

m,K(x;χ) =
∂2 f

∂x∂χ(x;χ),

= −A†.
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Sensitivity, continued

• That is, the sensitivity to χℓ is given by [A†A]
−1

A†Iℓ, where Iℓ ∈ Rm is a
vector with zeros in all places except the ℓ-th place, which is a one.

• This is the same as the solution of a regression problem that had the same
values of independent variables as in the base-case, but where the vector
of measurements was changed from b to Iℓ.

• Using the analysis in Section 11.1.5, we can calculate the sensitivity to χℓ

by:

– evaluating y = [Q‖]
†
Iℓ, and

– performing a backwards substitution to solve U
∂x⋆

∂χ (0) = y.
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11.2 Power system state estimation

11.2.1 Transformation of objective

• We use a similar transformation to the one in Section 11.1.
• We define:

∀x ∈ R
n, f (x) = − lnφ(G̃;x)+ ∑

ℓ∈M
ln

1√
2πσℓ

, (11.5)

∀x ∈ R
n, f (x) = ∑

ℓ∈M

(g̃ℓ(x)− G̃ℓ)
2

2σ2
ℓ

,

=
1

2
(g̃(x)− G̃)

†
[Σ]−2(g̃(x)− G̃), (11.6)

• where:

Σ ∈ RM×M is the diagonal matrix with ℓ-th diagonal entry equal to
σℓ, ℓ ∈M,

g̃ : Rn → RM is the vector of all measurement functions, and
G̃ ∈ RM is the vector of all measurements.
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Transformation of objective, continued

• The transformed problem is:

min
x∈Rn

f (x). (11.7)

• We have a least-squares problem since the objective is the sum of squares
of terms.

• Since each term (g̃(x)− G̃) is non-linear, we classify Problem (11.7) as a
non-linear least-squares problem.
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11.2.2 Derivatives of objective

∀x ∈ R
n,∇f (x) = J̃(x)

†
[Σ]−2(g̃(x)− G̃),

= ∑
ℓ∈M

∇g̃ℓ(x)[Σℓ]
−2(g̃ℓ(x)− G̃ℓ), (11.8)

∀x ∈ R
n,∇2f (x) = J̃(x)

†
[Σ]−2

J̃(x)+ ∑
ℓ∈M

∇2g̃ℓ(x)[Σℓ]
−2(g̃ℓ(x)− G̃ℓ),

(11.9)

• where J̃ is the Jacobian of g̃ and ∇g̃ℓ is the transpose of the ℓ-th row of J̃.
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11.2.3 Optimality conditions and algorithms

11.2.3.1 Qualitative comparison between Problems (9.8) and (11.7)

• The first-order necessary conditions for Problem (9.8), ∇φ(G̃;x) = 0, are
non-linear.

• The first-order necessary conditions for Problem (11.7), ∇f (x) = 0, are
also non-linear.

• Consider the measurement functions in detail:

(i) Each voltage magnitude measurement function, ũk(x) = uk, is
linear.

(ii) The real and reactive injection measurement functions and the real
and reactive flow measurement functions are approximately linear.
This observation and the expression for ∇f , (11.8), mean that the
necessary conditions for Problem (11.7), ∇f (x) = 0, are also
approximately linear.

• The transformation (11.5) transforms a non-linear objective into an
approximately quadratic objective.
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Qualitative comparison between Problems (9.8) and (11.7), continued

• The necessary conditions for minimizing Problem (11.7) are
approximately linear.

• We use the hypotheses of the chord and Kantorovich theorems to
qualitatively compare the convergence properties of the Newton–Raphson
update applied to:

– Problem (9.8); that is, ∇φ(x) = 0, and
– Problem (11.7); that is, ∇f (x) = 0.

• Since ∇f is approximately linear, then ∇2f is approximately constant and
a Lipschitz constant can be found for ∇2f that is smaller than a Lipschitz
constant for ∇2φ.

• We expect the radii ρ−,ρ+, and ρ defined in Theorems 7.3 and 7.4 to be
larger for the problem of solving ∇f (x) = 0 than for the problem of
solving ∇φ(x) = 0.

• That is, we can expect to converge to a solution from a poorer initial
guess if we apply the chord or Newton–Raphson methods to solve
∇f (x) = 0 instead of applying it to solve ∇φ(x) = 0.
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11.2.3.2 Problem (11.7)

Hessian

• The Hessian ∇2f from (11.9) consists of the sum of two terms:

(i) J̃(x)
†
[Σ]−2

J̃(x), which is of the form A†A for A = [Σ]−1
J̃(x) and so

the matrix J̃(x)
†
[Σ]−2

J̃(x), is positive semi-definite, and

(ii) ∑ℓ∈M∇2g̃ℓ(x)[Σℓ]
−2(g̃ℓ(x)− G̃ℓ), which can turn out to be not

positive semi-definite.

Search direction

• Recall that in defining a search direction, we found that

∆x(ν) =−M∇f (x(ν)) is a descent direction if M is positive definite.

• We know that J̃(x)
†
[Σ]−2

J̃(x) is positive semi-definite, but we do not
know if the Hessian is positive semi-definite.

• Instead of using the exact Newton–Raphson update, we approximate ∇2f

by its first term:

J̃(x)
†
[Σ]−2

J̃(x). (11.10)
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Search direction, continued

• We solve for the approximate update direction:

J̃(x(ν))
†
[Σ]−2

J̃(x(ν))∆x(ν) = −∇f (x(ν)),

= J̃(x(ν))
†
[Σ]−2(G̃− g̃(x(ν))). (11.11)

• This approximation is called the Gauss–Newton method.

• We must still consider the possibility that J̃(x(ν))
†
[Σ]−2

J̃(x(ν)) is not
positive definite.

• We can follow the approach discussed in Section 10.2.3.2 and add terms
to the diagonal of the matrix during factorization to ensure that the
modified matrix is positive definite.
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Search direction by solving a related linear least-squares problem

• The use of (11.11) to calculate a search direction suffers from a similar
drawback to the solution of (11.4) in the linear case.

• By defining A = [Σ]−1
J̃(x(ν)) and b = [Σ]−1(G̃− g̃(x(ν))), note that (11.11)

is equivalent to A†A∆x(ν) = A†b, which is the same form as the optimality
condition for the multi-variate linear regression problem.

• We can therefore find ∆x(ν) by noting that ∆x(ν) is the solution to the
linear least-squares problem:

min
∆x∈Rn

1

2
‖A∆x−b‖2

2 . (11.12)
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Levenberg–Marquardt

• An alternative approach is to approximate the possibly not positive

semi-definite term ∑ℓ∈M∇2g̃ℓ(x)[Σℓ]
−2(g̃ℓ(x)− G̃ℓ) by the positive

definite matrix λI, where λ > 0 is chosen to be large enough to make the
resulting approximation of the Hessian positive definite.

• This is called the Levenberg–Marquardt method. and is related to the
trust region approach mentioned in Section 10.2.4.

Further approximation

• We can further approximate J̃ using the fast-decoupled or other
approximations to the Jacobian of the power flow equations, as in the
discussion of the solution of the power flow equations in Section 8.2.4.2.
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11.2.4 Placement of meters in the system

11.2.4.1 Insufficient variety in the measurements

neutral

1 23

✚✙
✛✘
∼

P̃1, Q̃1,Ũ1

P̃12, Q̃12

P̃13, Q̃13

t Y13
t

t

l
o
a
d

Y23
t

✚✙
✛✘
∼

Y12

Fig. 11.2. The three-
bus power system
state estimation prob-
lem, repeated from

Figure 9.2.
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Insufficient variety in the measurements, continued

• If the measurements are not spread out throughout the system or if there

is a measurement failure, then J̃(x)
†
[Σ]−2

J̃(x) can be singular.
• For example, consider the system in Figure 9.2, which is repeated in

Figure 11.2.
• The are five unknown variables: u1,θ2,u2,θ3, and u3.
• There are seven measurements: P̃1, Q̃1,Ũ1, P̃12, Q̃12, P̃13, and Q̃13.
• However, since:

p̃1(x) = p̃12(x)+ p̃13(x),

q̃1(x) = q̃12(x)+ q̃13(x),

• there is redundant information concerning bus 1.
• This would enable us to estimate the voltage magnitude and flows around

node 1, even in the presence of measurement errors.
• There is just enough information to estimate all the voltage and flows in

the system.
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Insufficient variety in the measurements, continued

• Suppose that there is a failure of the voltage measurement in the system
in Figure 11.2.

• In this case, there will be many sets of voltages and angles θ2, |v2|,θ3, and
|v3| that are consistent with maximizing the likelihood of the observed
measurements.

• We say that the system is unobservable.
• If we are designing a measurement system, then singularity of

J̃(x)
†
[Σ]−2

J̃(x) for a candidate meter placement plan suggests that we
should add more meters to the plan.

• If we are operating a measurement system and we find that because of,

for example, meter failures, the matrix J̃(x)
†
[Σ]−2

J̃(x) is singular, then we
cannot estimate the state completely.

• In practice, in the latter case, the user of the software usually specifies
pseudo-measurements; that is, guesses at what the actual measurement
would be, based on experience, so that a rough estimate of the complete
state can be found.
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11.2.4.2 Sufficient variety in the measurements

neutral

1 23

✚✙
✛✘
∼

P̃1, Q̃1,Ũ1

P̃12, Q̃12

P̃2, Q̃2,Ũ2P̃3, Q̃3

t Y13
t

t

l
o
a
d

Y23
t

✚✙
✛✘
∼

Y12

Fig. 11.3. The three-
bus power system state

estimation problem
with spread out mea-
surements repeated
from Figure 9.3.
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Sufficient variety in the measurements, continued

• Usually, if there is sufficient variety in the measurements, the positive

semi-definite matrix J̃(x)
†
[Σ]−2

J̃(x) will turn out to be positive definite for
almost all, if not all values of x, and hence be non-singular.

• If it is non-singular then the approximate update equation (11.11) has a
unique solution.

• For example, for the arrangement in Figure 9.3, which is repeated in
Figure 11.3, for almost all values of x there is a five element subset of the

rows of J̃(x) that is linearly independent, so that J̃(x)
†
[Σ]−2

J̃(x) is
non-singular.

• This remains true even in the presence of a single failure of a voltage
measurement.

11.2.4.3 Sensitivity

• We can consider variation of the estimate with variation in the
measurement data.
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