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Unit commitment

(i) Temporal issues,
(i) Formulation,
(i) Mixed-integer programming,
(iv) Make-whole payments,
(v) Lagrangian relaxation,
(vi) Duality gaps,
(vii) Role of prices and implications for investment deoiss,



(viii) Transmission constraints,
(ix) Robust and stochastic unit commitment,
(xX) Homework exercises.



10.1 Temporal issues

e So far we have considered particular dispatch intervals.

e Demand has been represented by its assumed known averagevar
the dispatch interval, or its value at the end of the intengaloring
whether this demand was occurring:

— “now” (that is, in the next few minutes or next dispatch intd), or
— in the future (such as during an hour of tomorrow).

e Supply has been represented by assuming that unit comntitteeisions
had already been taken:

— each generator’'s commitment status is fixed.
e In this section we will generalize this in several ways, bysidering:

(i) variation of demand over time,
(i) ramp rates,
(i) unit commitment, and
(iv) day-ahead and real-time markets.
e We will discuss the relationship between day-ahead anetiraalmarkets
in Sectionll.



10.1.1 Variation of demand over time

e Suppose that we are considering the average demand in espetath
interval or period, say each hour, for tomorrow:

— (as in Sectior8.3.2 in some formulations we might prefer to consider
the demand power level at tleedof each interval instead of
representing the average level, with ramping of the demasdraed to
be linear between boundaries of intervals.)

e We are planninglay-ahead

e For now, we will continue to ignore unit commitment decison

e Foreach hout=1,...,nt, we have a specification or a forecast of the
average power demanb in dispatch interval.

e \We need to satisfy average power balance each hour (andyde;o
continuously, but this will be achieved by theal-time market).



10.1.2 Ramp-constrained economic dispatch
10.1.2.1 Decision variables

e \We generalize our previous formulation so tRatrepresents the average
power generated by generatoe= 1,....npinhourt =1,...,nt:

— (if we are considering a formulation where we are targettimggdemand
at the end of each interval, then we would similarly constter
generation level at the end of each interval instead of sguriing the
average level of generation, with ramping of generationmgsl to be
linear between boundaries of intervals.)

e We collect the entrieBy; together into a vectds € R"T.

e As previously, we can also consider the spinning reservdedi8}; be the
amount of spinning reserve provided by generétor hourt.

e \We collect the entrie§y together into a vectd®, € R"T.

e We collectP, andS, together into a vectox, € R2T.

e We collect the vectors, together into a vectox € R2"P"T

¢ In some examples, we will only consider energy and not reseémnwhich
case, we re-define= P € R™"T and re-define any associated functions,
matrices, and vectors appropriately.



10.1.2.2 System constraints

e Typical system equality constraints would include avenag®er balance
in each hour of tomorrow, which we will represent in the fofwx= b.
e For example:

Py
— for simplicity, if we ignore reserve,then=P= | : | € R™"T with
Pp
P1
PRk=1| : | eRM,
Panr

— letD € R be a vector of forecasts of average demand in each hour,
—letA=[—I --- —l]andb= -D,
— thenAx= b represents average power balance in each hour.

e Typical system inequality constraints would include reseequirements
and transmission constraints in each hour, which we willesgnt in the
form Cx < d.



System constraints, continued

e We will continue to us&* andu* for the Lagrange multipliers on the
system equality and inequality constraints, respectively
e However, we have changed the definition of the system contra

— in Section9, the vecto\*, for example, represented the Lagrange
multipliers on the system constraints of power balance et keation,
but was implicitly applying for just one given time or intatyso its
subscriptk related to location, whereas

— for most of the development of temporal issues, the vectavill
represent the Lagrange multipliers on the system constrafrpower
balance for each time, so it will have subsctipélating to time, but not
location,

— in Section10.8 we will consider both location and temporal issues, so
A* will have subscripts for both location and time.



10.1.2.3 Generator constraints including ramp-rate coaists

e Each generatdt has a feasible operating s&t

¢ In addition to minimum and maximum generation and spinnasgrve
constraints, there can lmter-temporal constraints in the specification
of Sk that limit the change in average production from hour to hour

e For example, if the ramp-rate limitis 1 MW per minute then glemerator
constraints for generatércould be:

Vt:].,...,nT, EkSPktSISky

Vt=1,...n7, 0<Sc<10

vt=1,....,nt, Py <P¢+Se <Pk

Vt=1,...,nt, PBi-1)—60<P¢ <P 1) +60— S,

e WherePRy andSg are the power and reserve for the last hour of today, and

e Where we have required that procured spinning reserve hialaleafor
deployment within any one 10 minute period throughout tharho



Generator constraints including ramp-rate constraintsntnued

e As previously, we can specify the feasible operating segjémeratok in
the form:

Sk = {X € R |8, < Mx < 8},

e wherel, € R« § < R, anddy € R'k.
e Other formulations of generator constraints besides caimge also fit
into this form.



10.1.2.4 Generator costs

e Generatok has a cost functioffii for its generation over the hours
t=1,...,n.

e Typically, if a unit is committed then the production in onauin does not
(directly) affect the costs in another hour so that the castsadditively
separable across time:

Vi, Tie(X Z fre(Xkt) s

e Wherexy; = %: .

e Typically, we would expect thafi; does not vary significantly from hour
to hour, except for:

— temperature and pressure related changes, and
— significant change in fuel availability or cost.

e This formulation ignores start-up and min-load costs:
— will be included later when we explicitly consider unit comiment.



10.1.2.5 Problem formulation
e The resulting ramp-constrained economic dispatch proldamthe form
of our generalized economic dispatch problem:

in {f(x)|Ax=b,Cx<d
ka?k'QSk{ (X)|Ax=b,Cx < d}

=  min {f(X)|Ax=Db,Cx< d,VK,& < < 8}

XeR2NPMT

e If f is convex then the problem is convex and can be solved witidata
algorithms for minimizing convex problems.
e For example, iff is linear then the problem is a linear program:

min {ch‘ Ax=b,Cx < d, vk, &, < Mg < Sk} | (10.1)
XERZPNT
e Note that this formulation does not exactly match any spemfrket
design, but will illustrate temporal coupling:

— is similar to some European day-ahead markets, includiag th
EUPHEMIA market coupling algorithm, but those markets amsxbude
other features such as “minimum income condition condsdin



10.1.2.6 Ramp-constrained example
e Suppose that we have two generatogs= 2, with costs:

Vi, flt(Plt) = 2P1;,100< Py < 300
Vi, f2t(P2t) = 5Px,100< Py < 300

e The generators have ramp-rate limitsAgf= 200 MW/h andA, = 100
MW/h, respectively.
e \We consider day-ahead dispatch across two howtrs; 2, with demands:

t o 1| 2
D; | 200| 400| 600

e Thet = 0 entry in the table is the demand for the last hour of today.

e Thet = 1,2 entries are the demands for the first two hours of tomorrow.

e Also, P;p =100 MW andP,g = 100 MW are the generations in the last
hour of today.

e \We ignore reserve requirements so that the only systemredmisis
supply-demand balance for power.

¢ \We solve the ramp-constrained economic dispatch problem.




Ramp-constrained example, continued
e The generator constraints for generdtet 1,2 are:
vt = 100= P, < P« < Py =300
vt = P t—1) — Bk < P < B t—1) + L,

e which we can represent in the for#p = {xc € R?|8, < M < o},
e by definingd, € R4, 'y € R**2, andd, € R* as:

17 27

P, 10 [ P |

Pc.o— Ak - 1 0] 5 | Pot+Ak
§k Ek 7rk— 01 76k— |5k
— N\ -11 Ay

e We label the Lagrange multlpllers on these generator irggua

uklcapacny IJ'klcapaC|ty
X
constraints as, respectivepj{< = uklramp T = E*klramp _
B IJkZCapaC|ty Ek*anpacity
I"|k2ram|o | Mioramp




Ramp-constrained example, continued

e Since generator 1 has lower costs, we would prefer to usstéaal of
generator 2.

e Since the ramp-rate limit for generator 1As= 200, for houtt = 1, we
consider setting:

Pi1 = Pio+A4Ag,
— 100+ 200,
— 300,
= Py
e With P;; = 300= P4, to meet demand we would have:
P1 = D1—Piy,
— 400- 300
= 100



Ramp-constrained example, continued
e However, we now have a problem in hdug 2, since:

— generator 1 would be at its maximus,

— generator 2 can only increase fyy = 100 from hour 1 to hour 2, so that
Poo < Pr1+ A1 =100+ 100= 200 MW, and

— supply would then be 100 MW less than demand in hour 2.

e SettingP;1 = 300 does not work!



Ramp-constrained example, continued

e Instead, we need both generatkes 1,2 each producing at their capacity

of P, = 300 MW in hour 2 to meet the demand, so tRat = P,» = 300
MW.

— Working backwards in time, generator 2 must be producingati200
MW in hour 1 because of its ramp rate constraintPsp> 200 MW.

— Since generator 2 has higher costs, we do not want it to peoohaze
than necessary, and so we will try to see if we carPset 200 MW.

— In this case, generator 1 must prodige = 200 MW in hour 1 to meet
demand oD, = 400.

— This solution satisfies the ramp-rate constraints and isnabt
e The ramp-constrained economic dispatch solution is:

t o 1| 2

D; | 200| 400| 600
Py || 100| 200| 300

P || 100| 200| 300




Ramp-constrained example, continued

e What are the values of the Lagrange multipliers?

e Standard linear programming software would provide theesl

e However, to answer this question without linear prograngraaftware,
we will consider several of the first-order necessary caoost

e Generatok = 1:

— neither at its maximum nor minimum in hour 1, is at its maximiam

hour 2, and no ramp constraints binding across any hours,
e Generatok = 2:

— neither at its maximum nor minimum in hour 1, is at its maximiam
hour 2, and the increasing ramp constraints are bindingsadveo
successive pairs of dispatch intervals, from0tot =1 and fromt =1
tot = 2.



Ramp-constrained example, continued
e Generator 1:

Is at its maximum in hour 2, and
no other binding constraints.

e That is the binding generator constraint for generator 1 is:
P12 < 300, (Lagrange multipliefj,¢aoacity):

e By complementary slackness, all Lagrange multipliers aregator
constraints for generator 1 are zero, except for the Lagramgjtiplier on
this one binding constraints, so that

* — . —% _ 7% —
El = 0, ullcapacity_ 07 ullramp_ 07 u12ramp_ 0.



Ramp-constrained example, continued

e By the first-order necessary conditions for generator 1 ur o
associated witl; 1:

0 = Ofaa(Pfy) — AL —[Mag '+ [Maa) ',
Of12(Pf7) — AL,

= 2—\7,
e Where:
["1 is the generator constraint matrix for generator 1,
1
[11= (1) Is the column of 1 associated withP;1, and
—1

K7 = 0, while the only non-zero entry @f} is Ty 5¢apnacity
e Thatis,A\] = 2.



Ramp-constrained example, continued
e Generator 2:

IS at its maximum in hour 2,
has its ramp rate constraint binding from hour 0 to hour 1, and
has its ramp rate constraint binding from hour 1 to hour 2.

e That is the binding generator constraints for generatoe2 ar

P>, < 300, (Lagrange muItipIieﬁEZCapacit),
P>1 < Pyo+Ay, (Lagrange multiplieﬁ’glramp),
P < Po1+ Ay, (Lagrange muItipIieﬁ’Z*Zramg.

e By complementary slackness, all Lagrange multipliers aregator
constraints for generator 2 are zero, except for the Lagramgjtipliers
on these three binding constraints, so #iat 0, 1134 ;apaci,= O-



Ramp-constrained example, continued

e By the first-order necessary conditions for generator 2aatsml with
P21Z

0 = Of2a(P5y) — A — [Maa] "W+ [M2a) B,
117 HZlcapaCIty 177 _El*;lcapacit);
_ |:|f21(P51)—)\’1(— (])- I"121ramp + é Eglramp- :
1 I"1220apaC|ty 1 _EanpaC|ty
_u22ramp ] _“22ramp

_ D C T *
= Uf21(P21) = A M1 capacity l‘_’l21ramp Hooramp

Tk Tk Tk
+ UZ1capacity+ Ueramp_ UZZramp

— DfZl( gl) - I+ﬂ§1ramp_ HEZramp
by complementary slackness, singe= 0,151 apacit,= 0

= 5—2+ l_fz(lramp_ rl§2ramp



Ramp-constrained example, continued

e Where:
["> is the generator constraint matrix for generator 2,
1
1. . .
o1 = ol s the column of » associated witl?,1, and
-1
lJZlC&lIfJaC"fy u21capaC|ty
W = uz”amp andf; = Ileramp are the Lagrange multipliers
- “22capac|ty “220apacnty
l'122ramp = “22ramp

on the generator constraints for generator 2, and we knaw tha

* 75
K= 0, M21capacity™ 0.
e Therefore[i, ,mp= M1rampt 3-



Ramp-constrained example, continued
e By the first-order necessary conditions for generator 2aatsml with

P222
0 = DOfpa(Psy) — A5 — [M22) "1+ [M22) ',

- DfZZ( PSZ) - 5 + rl§2capacity+ rl§2ramp
by complementary slackness,

* | 17K Ti:
= 5— )\2 + “22capacity+ H22ramp

e Where:
["> is the generator constraint matrix for generator 2,
0
(o0 = 2 Is the column of » associated witl,,, and
1

E; and[y; are the Lagrange multipliers on the generator constraimts f
generator 2.

e Therefore)\} = 5+H§20apacity+ HEZramp



Ramp-constrained example, continued
e Summarizing:

p—EZramp — p-Elramp‘l’ 3,
Né = 5+ HEanpacity‘|‘ ﬂEZramp
e These are two equations in four variables.
e Let’s try to find a non-negative solution for these two equatdiin the
four Variableq_rZ(Zramp Hglramp HEanpacity andA™:

We setﬁ’glramp = 0, hypothesizing that constraint is “just” binding,

Therefore;ﬂEZramp - I_Iélramp+ 3,

3,

We Sem§2capacity = 0, hypothesizing that constraint is “just” binding,
Therefore :)‘??: = 5+ Wékapacity“‘ TEZramp

5+0+3,

= 8.



Ramp-constrained example, continued
e The solution is:

Hélramp = 0,
l_f2<2ramp = 3,
|~_1§20apacity = 0,
A = 8.

e These particular values constitute one of multiple sohgifor the
Lagrange multipliers.

e Any other solution of the two equations having non-negataies for
the Lagrange multipliers on the inequality constraints @iovides
Lagrange multipliers for this problem.



10.1.3 Ramp-constrained offer-based economic dispatch
10.1.3.1 Generator offers

e Generatok makes an offer for its generation.

e The offer is usually required to be separable across hours.

e Sometimes market rules require the offer for each haarme fixed
independent of (as in PIM) and sometimes the offer can vary from hour
to hour (as in ISO-NE, NYISO, and ERCOT):

— market rules on fixed versus varying offers can affect thecese of
market power,
— discussed in market power course,
www.ece.utexas.edu/ ~ baldick/classes/394V_market_power/EE394V _

e Assuming that offers reflect marginal costs, the offer farayatork is:
Ofe,t =1,...,0T,

e Wherexy; = [Pkt] for simplicity, ignoring reserve and where we will
typically assume that the marginal costs do not vary witletieven
though the notation allows for such variation.


www.ece.utexas.edu/~baldick/classes/394V_market_power/EE394V_market_power.html

10.1.3.2 Offer-based economic dispatch and prices

e Using the offers, we can solve the first-order necessary aifidisnt
conditions for offer-based ramp-constrained economigath:

min  {f(x)|Ax=Db,Cx<d, VK, < IMNexk < &}.
xeR2MPMT
e The solution involves dispatctf for each generatdcand Lagrange
multipliers:
A* and* on system constraints, and
Ek* andfi; on generator constraints for each generktor

e By Theorem8.1in Section8.12.4.4 dispatch-supporting prices can be

constructed as previoustﬂ;MP = —[Ak]T)\* — [Ck]Tu*.

e To summarize: the generahzation of the problem to includean
complicated generator constraints and more complicatst@ sy
constraints does not fundamentally complicate the pricuhg, so long as
the generalized economic dispatch problem is convex:

— we will qualify this statement in the context ahticipatingprices.



10.1.3.3 Ramp-constrained example

e Continuing with the previous example from Sectith1.2.6 assume that
the generators offer at their marginal costs in each hour:

Ofi(Pyr) = 2,100< Py <300t =1,2,
Ofx(Py) = 5,100< Py <300t=1,2.

e From the previous analysis, we have thbkMP = A* and:

t 1| 2

D | 400 600
P;. | 200| 300

P | 200] 300
sMP 2] 8




Ramp-constrained example, continued
e The price for energy in hour=1is rt'F-,k'l/'P = A} = $2/MWh:

— generator 1 with offer pric&lf11(Py;) = $2/MWh is marginal, but

— the price idower than the offer price oflf21(P3;) = $5/MWh for
generator 2, even though this generator is dispatched atsove
minimum.



Ramp-constrained example, continued

e Generator 2 is operatingpoveits minimum in houtt =1, so itis
operating at a loss in hotir= 1 and could reduce its operating losses if it
operated at its minimum in hoti= 1.
e Why would generator operate above its minimum in hiotrl when the
price is only $2/MWh?
e The price for energy in hour= 2 is T[‘F;(';/'P = A5 = $8/MWh, which is
higher than the higher offer price of both generators!
e The price in hout = 2 is necessary to induce generator 2 to produce at a
loss in houtt = 1.
— The infra-marginal rent in hour= 2 equals the loss in hotie= 1 for
generator 2.
— Generator 2 is indifferent to any levels of production tmabive
P2 — Po1 = Ag.
— The prices support the dispatch but do not strictly suppsgatch.



Ramp-constrained example, continued

e Generator 2 is marginal in hotie= 2 in that changes to its offer price
Of22(Ps3,) in hourt = 2 would affect the pric@ in hourt = 2:

— the price in hout = 2 isA = Uf22(P5,) + (Of21(P1) — Of11(Pyy))-

e But note that offers of generators 1 and 2 in hbtr1 also affect the

price in hourt = 2:

— we might say that generators 1 and 2 are also “marginal” im bhpbut
this sense is somewhat different to the earlier use of “mafgsince
offer pricesf11(Py;) andOf21(P5;) of generators 1 and 2 in hote= 1
are both involved in setting the price for hdue 2.

e Prices are above the highest marginal cost because thdmaedneg
ramp-rate constraints.

— We also saw in Homework Exerci®e2 that prices can also rise above

the highest offer price in the presence of binding transiomss
constraints.



10.1.3.4 Discussion
e This example is somewhat unrealistic for several reasons:

— Ramp-rate constraints are typically not binding acrosgipialhours in
markets such as ERCOT (but increased wind generation maygeha
this in the morning ramp-up of demand and the evening randd
demand, and evening ramp up of net load in California alréagbhives
large ramps across multiple hours).

— The more expensive generator has the tighter ramp-ratéraons

— Some day-ahead markets, such as the ERCOT market, do neseapr
ramp-rate constraints (several other US ISOs do repreaspi rates in
day-ahead).

e This particular example requir@sticipationacross multiple intervals (in
this case hours) to find the optimal solution:

— Anticipation across multiple intervals is not always nezag for
finding the ramp-constrained optimum.
— See homework exercisé).5



Discussion, continued

e As will be discussed in SectidlD.2 day-aheadmarkets provide all
prices to market participants for a full day at once and caretfore
support anticipation:

— but, as mentioned, the ERCOT day-ahead market, for exaihpés, not
(currently) represent ramp-rate constraints,
— several other markets do represent ramp-rate constraidesytahead.

e Somereal-time markets do represent ramp-rate constraints across several
(five minute) dispatch intervals in so-callembkaheaddispatch:

— California market, PJM, and MISO,

— The typical arrangement with lookahead dispatch in thetiesd
market is to solve multi-interval dispatch (and in some sasut
commitment) for several intervals but to only commit to psand
dispatch for the next interval.



Discussion, continued

e If market participants do not anticipate prices in subsatjugervals (or
if these prices are not implemented) then the market cangentivize
sequences of dispatch through time that involve anticypati

— Real-time markets can represent ramp-rate constrainteamge in
generation between most recent interval and the next mtésee
Homework Exercisd 0.2, but

— Anticipation is required to incentivize actions when, faample, there
are binding ramp rate constraints betw@&®n or moresuccessiv@airs
of dispatch intervals (as was necessary in the ramp-constr@&xample
in Section10.1.3.3.

e Despite the implications of anticipation, the examplesihates that
inter-temporal constraints do npér sepresent fundamental difficulties
for pricing so long as future prices are anticipated:

— ramp-constrained economic dispatch is convex.



Discussion, continued

¢ In the next section, we will see that non-convexities introet by our
formulation of unit commitment decisions do pose difficegtfor pricing.

e Analogously, “minimum income condition constraints” imse European
market designs such as EUPHEMIA also pose difficulties fainy.



10.2 Formulation of unit commitment

e Now we consider the commitment of generators.

¢ In US day-ahead markets, the ISO makes decisions today about
commitment, dispatch, and prices for tomorrow, solvingdhg-ahead
unit commitment problem, resulting in:

— a commitment decision for each participating generatoeémh hour of
tomorrow,

— an energy dispatch decision and ancillary services deddmr each
generator for each hour of tomorrow, and

— prices for energy and ancillary services for each hour ofdimaw.

e That is, day-ahead prices are announced for all hours ofrta@mvp
allowing for anticipation.



Formulation of unit commitment, continued

e In contrast, in several European markets and the Austraiaket,
“decentralized” commitment decisions are typically magebneration
owners:

— the optimization formulation we will develop would typitabe solved
by individual owners for their own portfolio, even if thei®also a
day-ahead economic dispatch market, while the day-aheau&ilet
itself is similar to, but not exactly the same as, the forraiaof the
ramp-constrained economic dispatch formulation in thedastion,

—in US markets it is also generally possible for individuahgeation
owners to make such decentralized commitment decisions.

e Our motivation for developing centralized unit commitmenthat the
cost of incorrect decentralized commitment decisionsabel large,
particularly when transmission constraints are binding.

— However, the cost of incorrect decentralized commitmentsilens is
an empirical question that has not been studied in a sysiemay,
except for particular case studies such as in the ERCOT daestk
study, which estimated hundreds of millions of dollars inisgs.



Formulation of unit commitment, continued

e Unlike the economic dispatch problems and the generatizative have
considered so far, unit commitment requing&ger variables to represent
the decisions.

e The integer variables present difficulties in two relategsva

(i) solving the problem, and
(i) non-existence of dispatch- (and commitment-) sugpgrprices.

e In Section10.3 we will briefly describe mixed-integer linear
programming software for solving these problems, as nowl bgall
ISOs in the US.

¢ In Sectionl10.4, we will introduce make-whole payments as an approach
to provide incentives to generators to commit and dispabeisistent with
the commitment and dispatch solution obtained by the 1SO.



Formulation of unit commitment, continued

¢ In Section10.5 we will then applyLagrangian relaxation (introduced
in Sectiord.7.4), by dualizing the supply—demand constraints and
seeking the dual maximizer, as an approach to approximsatdiyng the
unit commitment problem.

e Lagrangian relaxation will help us to understand:

— the difficulty in solving unit commitment problems, and

— why the previous approach to finding dispatch-supportimngegrfor
convex problems using Theoredril from Section8.12.4.4works for
intertemporal issues such as ramping constraints, butrumgg|uite)
work in the context of unit commitment.

— the discussion generalizes the case considered in Séc8dh

¢ In the exercises, we will also explore alternative formolas$ of unit
commitment and more computationally efficient approacbdmding the
dual maximizer:

— see Exercise$0.3 10.4 and10.6



10.2.1 Decision variables

e We will consider a typical unit commitment formulation weetecisions
are made for each hour over a time horizon:

— day-ahead unit commitment involves 24 hours for tomorrow.

e As in the ramp-constrained economic dispatch formulation i
Section10.1.2 assume that generators can provide energy and one type of
reserve, so the continuous decision variables for genekatchour

Pkt

t=1,...,n7, arexyg = [Skt , typically with ny = 24.

e We collect the entries,; together into a vectox, € Z2" and collect the
vectorsx, together into a vectox € Z2"PhT,
¢ |n addition to these continuous decision variables, we rooissider
representation of the decision of a generator to be on or off.
e We will represent this witlinary variables:
_ | 0, if generatorik is off in hourt,
A = 1, if generatork is on in hourt.
e \We collect the entrieg; together into a vecta, € Z"T and collect the
vectorsz together into a vectar ¢ Z"P"T,



Decision variables, continued
e Other more general representations may be necessary incas®es:

— combined-cyclegenerators typically have multiple operating modes,
requiringinteger or several binary variables to represent the
commitment decision for each hour,

— additional continuous generator variables may be definetldw for
convenient representation of the objective or constraints

e Other market designs, such as EUPHEMIA also use binaryblasdo
represent some issues.

e Various “tricks” are typically used in the specification abplems with
integer and binary variables in order to facilitate solnatio

— some of these tricks are proprietary or not widely known, and

— we will simply consider a straightforward formulation iretmain
discussion,

— we will explore some of the tricks in Exercis&6.3 10.4 and10.6

o will involve expanding the decision vector to include addial
continuous generator variablas



10.2.2 Generator constraints

e \We can consider the requirement @y to be binary as consisting of two
requirements:

Z € {zc e R|0< 7z <1},
Zi € 2.

e The first requirement thak; be between 0 and 1 is an example of a
generator constraint that can be represented with lineguilities.

— This fits our previous formulation for economic dispatch.
— As previously, suitabl®,, dx, andl'y can be found to express such

generator constraints in the form:
Zk J—
o, <T < k.
b=l 2] <5
— For example, the constraint<0z; < 1,Vt could be expressed as:
0<[l 0] [Zk] <1

Xk



Generator constraints, continued

e The requirement that generatois either off (and not producing) or on
(and producing between minimum and maximum capacity l)ncis
also be expressed with linear inequalities:

ignoring reserves, the requirements are:

Pzt < Pyt < Pyzig, Wi,

whereP, andPy are the minimum and maximum production capacities;
including one type of reserve specified 8y, the requirements are:

Pyzie < B¢ < |552kt7Vt,
Szt < St S_Skat,Vt
Pzt < Pt + S < Pz, Vi,

whereS, andS, are the lower and upper limits on reserve; and
— both of these requirements can be expressed in the form:

&, <k [)Z(kk] < 3.



Generator constraints, continued
e For example, consider a simplified single interval modeluding energy

and reserve, wit = [P ], S« = [Sa ], andx, = [%ﬂ

e \We can express the generator constraints in the dgrea My [)Z(t] < Oy

by definingly € R™3, §, € R, anddy € Rk, with r, = 6, as follows:

B 10 [ 0] (M

—Pcx 10 _M 0

| %01 | o] = |M
I—k— _s( 01 7§k_ -M 76k_ 0l
a9 |
_—|3k 1 1_ - - - -

e whereM is a sufficiently large number (and the constraints cornedjng
to these entries are effectively ignored).
e With nt periods,k = 6nr.



Generator constraints, continued

e Summarizing, the requirement thgt be integer-valued and the
requirements om yields a non-convex feasible operating set for each

generator:
Zk —
< < .

e Although the constrainty, < )Z(kk < d are convex, the integrality of

Sk = { [)Z(kk] € Z" x R

7, makes the feasible s8f non-convex, as in the example in
Sectior4.8.3
e This means that the unit commitment problem is a non-convetlem.
e The non-convexity makes solution difficult and complicatespricing
rule as discussed in SectidiB.



10.2.3 Generator costs

e We now assume that the cost function for generkidepends on both,
andxy, so thatfy : Z" x R — R.

e For convenience, we will sometimes assume fhditas been extrapolated
to a functionfy : R" x R2"T — R,

e The cost function for generat&represents:

the cost of producing energy and of providing reserve (diyea
considered in the dispatch problem),

start-up costs and

no-load or min-load costs(typically associated with auxiliary costs as
illustrated in Figureb.2).

e Because start-up costs can dependlmgngesn commitment status, the
cost function is no longer (completely) additively sepdeab



Generator costs, continued

e However, costs can usually be considered to be the sum o cost
associated with:

start-up costs, expressible in terms of the integer vagsaR] (but not
additively separable across time in the most straightfadwa
formulation),

no-load or min-load costs, additively separable across,tand
expressible in terms of the integer variakigst = 1,...,ny, and

incremental energy and reserves costs, additively selgaaialnss time,
and expressible in terms of the continuous production kbes;
in each intervat = 1,. .., nt for which the unit is running.



10.2.3.1 Start-up costs

e For a generator with a steam boiler, start-up costs inclodebst of the
energy needed to warm up the boiler:

— this cost will vary with the time since last shut-down, but
— we will ignore the variation of start-up costs with the timece last
shut-down.

e Start-up costs could also vary withbecause of variation in fuel costs:

— the formulation developed here will allow for start-up odtat vary
with t, but
— all examples will have start-up costs that are independent o



Start-up costs, continued
e Start-up costs can be expressed in termg.of

nr
Zsﬂzkt(l— Z (t-1))5 (10.2)
t=

where:

Sk are the start-up costs for starting up in intervagnoring variation of
start-up cost with time since last shutdown, and
Zo Is the commitment status at the end of today.

e That is, start-up costs are only incurred when a generatsroffan hour
t—1(sothatl—z ;1)) = 1) and onin hout (so thatzi = 1).
e This formulation is non-linear and non-separable across:ti
— by defining additional variablag € R"T and constraints, a linear
re-formulation is possible that is more suitable for usdnsiandard
software (see in Exercisi.4);
— for now, we will continue with the non-linear formulatiomse it
emphasizes the coupling of decisions between hours, butilvese the
linear re-formulation in Sectiofh0.3



10.2.3.2 Minimum-load costs

e Minimume-load (Min-load) costs are the costs to operate @ntimimum
capacity,P = Py, S = 0 during an interval when the unit is committed.

e Min-load costs depend ap and are additively separable across time and
can be expressed in the form:

nr

wherejkt is the min-load costs per interval for operatindPat
e In some markets, including ERCOT, the min-load cdsisare expressed
as the product of:
a min-load average energy cost per unit energy, multiplied b

the minimum capacity?,.

¢ In some markets, such as MIS@Ap-load costsare specified, in which
case energy offers are interpreted as specifying costgdoiuption above
Zero:

— actual values of production are still required to be at ovalbminimum
capacityP,.



10.2.3.3 Incremental energy and reserves costs

e Incremental energy and reserves costs for operating abmmom
production depend on the valuexf in each interval for which the unit is
running, and are additively separable across time.

e We will again assume that energy and reserves costs aregha&ss
additively separable as the sum of terms due to producingged
providing reserves, as in Secti8ril2.1.3

e Consider the marginal cosi#y:p for generatok to produce energy and
the marginal costslfi;sto provide reserve in interva) assuming that the
generator is in-service.

e The operating cost during an intertavhen generatdk is in-service is
equal to the sum of the min-load costs and the incrementad)gad
reserve costs for operation above minimum capdgity



Incremental energy and reserves costs, continued

e The incremental energy and reserve costs for operatioreatnagvmum
capacityP, in intervalt can be evaluated from the sum of the two
integrals:

/
kt_Ek

e WherePy; is the generation level arfgl; the reserve contribution.

e Min-load costs (and start-up costs) must be added to thenmental
energy and reserves costs to evaluate the cost functioref@rgtoik.

Pre=Pkt S=S«t
/P t katp(Pﬁt)dP{qu/q(io Ofies(Ske) d S
=



10.2.4 Objective

e Adding together the start-up costs, the min-load coststlamdtcremental
energy and reserve costs, the cost function of genekasatherefore:

nT
Zy
Vz € ZnT7vx S RnT) f ([Xk]) — t; [Skt(l_ Zk,(t—l)) +ikt

qusk

Pet=Pkt .
‘i‘/P kt katP(Pﬁt)dH’(t—l—/q( Ofkes(Set) St | Zt- (10.3)

/ _
k= Pk t—

e Typically, the incremental reserve cog(%‘:os‘t Ofes(S) dg,; are zero.

e This function is non-linear i )Z(kk )

e By considering the generator constraints, and by includomge
additional variablesi and constraints, the form 010.3 can be
Z

re-formulated so that it is linear i%xk
Uk

(see in Exercise$0.3and10.4).




Objective, continued

e As previously, we define the objective of the unit commitmenatblem to
be the sum of the cost functions of all of the generators:

2 4 - Z
Nnphn npn -
Vze Z"P"T x e RPN f ([XD —kzlfkdxk])-



10.2.5 System constraints
e Typical system equality constraints would include avenag®er balance
in each hour of tomorrow, which we will represent in the gahérm
Ax=D.
e For example, as in Sectidr0.1.2.2

Py
— if we ignore reserve, thex=P= | : | € R™"T with
Prp
P
Pe=| ¢ | €eRT,
Py

—letD € R be a vector of forecasts of average demand in each hour,
—letA=[—I --- —l]andb= -D,
— thenAx = b represents average power balance in each hour.

e Typical system inequality constraints would include reseequirements
and transmission constraints in each hour, which we willeasgnt in the
general fornrCx < d.



10.2.6 Problem
e The unit commitment problem is:

e 7 (1<)
vk, [ €Sk X
B zeZ”P”gEQRZ”P”T { f <[X]>
(10.4)

e In principle, the ISO obtains offers from the market papoits that
specify f, and then solves Problert@.4) for optimal commitment and
dispatch, which we will denote by* andx*, respectively.

¢ In some examples and some of the development, we will onlgiden
energy and not reserve, in which case; P € R"™"T as in the example
in Section10.2.5

Ax=Db,Cx < d}

Ax= b,Cx < d, vk, &, < I [)fkk] < Sk}.



10.2.7 Generator offers

e How to specify the offers from generators to the 1ISO?

¢ Building on offer-based economic dispatch, we will stilkame that the
dependence of offers on power and reserves are specified gsatflient
of costs with respect to power and reserves.

e We will assume that the dependence of offers on power andvessare
required to be separable across time, so that the offerpaotisd by:

_ | Bfep| 4 _
Ofy = [katS] gd=1...,nt,

e with the understanding that the offer function dependemcpawer and
reserves is only meaningful in interviaiff z; = 1, and where we are
considering only one type of reserve for simplicity.

e We will call this collection of functionglf:,t = 1,...,nT, the
incrementalenergy and reserve offers, to emphasize that there are other
components of the cost, namely start-up costs and min-losis.c

e Although the notation allows for different incremental ejyeand reserve
costs for each interval, market rules may restrict this choi



Generator offers, continued

e To specify the start-up costs, the valuesgft = 1 ..,ht are required.
e To specify the min-load costs, the valuesfclg ,...,NhT are required.
e We will assume that the generator specmes

astart-up offer equal to its start-up costs,

amin-load offer equal to its min-load costs, and

anincremental energy and reserve offerequal to its incremental
energy and reserve Ccosts.

e Theoffer cost function can then be reconstructed from the start-up offer,
the min-load offer, and and the incremental energy and ves#fers
using 0.3, given that the minimum production lev}, is known.

e Assuming that the incremental reserve offer costs are #egayffer cost

function is:
Z
Xk
Pee=

t
sc(l1-Z 1)+ i+ [ DOfiep(Pe) AR | Za

=Pk

Vz, € 2", ¥x € R"T f (

nt

"4




Generator offers, continued

¢ In contrast to the economic dispatch problem, it is necggsagxplicitly
represent the cost function (and not just its derivativaheunit
commitment problem in order to:

— compare alternative costs of committing and dispatchiffgreint
combinations of generators in Problet®(4), and
— (as we will see in Sectioh0.4) to calculatemake-wholecosts.

e The assumption that costs are truthfully revealed by ther®fk not
innocuous:

— the analysis of energy offers in Secti8ri1l.2does not apply to start-up
and minimum-load offers, even if each generator cannotttie
energyprices.

— markets such as ERCOT have additional procedures to veaty t
start-up and minimum-load offers reflect costs.



10.3 Mixed-integer programming

e Commercial software for solving mixed-integer programgnimoblems
has become much more capable in the last two decades.

e The highest performance algorithms are for mixed-inteigeal
programming (MILP).

e Exercisesl0.3and10.4show how to re-formulate the unit commitment
Problem (0.4 so that it has a linear objective by incorporating addgion
continuous variables and linear constraints into the bl

e This allows the unit commitment problem to be re-formulatded a
mixed-integer linear program of the form of problem44).



10.3.1 Mixed-integer programming formulation of unit comitment
e That is, unit commitment can be formulated as:

Z Z B
rrZun {CT X[ |AX=D0,Cx<d,VK,® < Tk | X | < 6k} : (10.5)
xeeRZ”P”T: u Uk

ue RPT

where:

— the decision variables can now include additional contusuariablesi
besides the energy generation and reserve contributiordar to
represent start-up issues (see Exerci€e8and10.4),

Z

Xk

Uk
constraints to represent start-up issues (and also tos&mreninimum
up- and down-times; see Exercite.4), and

— the integer variablezand the additional continuous variablet
represent start-up issues do not appear in the system amonstr
Ax=Dhb,Cx<d.

— the generator constraindg < Mk < & now include additional




Mixed-integer programming formulation of unit commitmentontinued

e All US ISOs now use mixed-integer programming algorithmssfalving
unit commitment.

e In principle, MILP algorithms can exactly solve the unit amitment
problem.

e In practice requirements on the time-to-solve may reqhia¢ & feasible
but sub-optimal solution be accepted.

e We will nevertheless suppose that the ISO can solve Proklér) ((or
its linear re-formulation, Probleni(.5), and that the minimizer iz* and
X* (together withu* in the case of the linear re-formulation).



10.3.2 Unit commitment example

e Consider the previous example in SectibB.3where a single generator
was available to meet a demand»t 3 MW in the single interval
nt=1.

e The generator had two variables associated with its operati
— the “unit commitment” variable € 7Z, and
— the “production” variablec=P € R.

e The cost functiorf : Z x R — R for the generator and its generator
constraints are:

f (KD =4z+x,z€ {0,1},22<x< 4z

e With min-load costs of 6, and marginal cost of incrementargy of 1.
e This unit commitment problem is in the form of a mixed-intetjeear
program, which we repeat frord 45):

min {4z+4x| —x=-3,0<z<1,2z2< x < 4z}, (10.6)
zeZXeR

e The solution iz = 1 andx* = 3, with generator costzA+ x* = 7.



10.3.3 Unit commitment example with two generators

e Now suppose that there are two generators available to neeghand of
D MW in the single intervahr = 1.

e Generatok = 1,2 each has two variables associated with its operation:
— the “unit commitment” variabley € Z, and
— the “production” variable = P € R.

e The cost functiondy : Z x R — R, k= 1,2 for the generators and their
generator constraints are:

fl( 4 ) — 421+X1721€{071}7221§X1§4217

fo ( 22 ) = 20+2X,2p € {0, 1},0.522 < Xo < 4275.
e This unit commitment problem is also in the form of a mixetkger
linear program:

min {421 + 7o 4+ X1 + 2X2
2€72 x2€R

—X1—% =-D,0<z<1,
271 < X1 <421,052, < xo <4z |°




Unit commitment example with two generators, continued

e Minimum capacity of generator 1 is 2, while minimum capadaity
generator 2 is 0.5:

— ForD < 0.5 there is no feasible solution,
— For 05 < D < 2, the only feasible (and therefore optimal) solution is
Z;=x;=0,z=1,x=D.
e Maximum capacity of generator 1 and of generator 2 is 4:
— For D > 8 there is no feasible solution.
— For 4< D < 8, both generators must be on, generator 1 has the lower
marginal cost, s@; = 25 = 1,x{ = 4,x;, =D — 4.
e For 2< D < 3, generator 2 is cheapest to meet demand.
e For 3< D < 4, generator 1 is cheapest to meet demand.
e ForD = 3, generator 1 and 2 have the same cost of 7 to meet demand.
e If there was more than one interval, if the generators hattgpacosts,
and if demand varied across intervals, then the problemavoeimore
difficult to solve because of the interaction between startasts and the
min-load and incremental energy costs. (See Exefdisg)



10.4 Make-whole costs
10.4.1 Implementing the results of unit commitment

e \We now consider payments to the generators.

e Based on the discussion in Sectiéh&0and8.11and based on
Theorem8.1in Section8.12.4.4 we might consider setting prices for
energy based on the Lagrange multipliers on the supply—dernalance
constraint and other system constraints from a continuptis@ation
problem.

e In most US ISOs, the practice is to define the continuous prolidy
settingz andu in Problem (0.5 to be equal to the optimal valugsand
u* and then solve the resulting continuous problem:

Z* k-
min {c'|x |[|Ax=bCx<d,Vk & <T| x| <d ¢, (10.7)
XxeR2NpNT U Uﬁ

e which is in the same form as the ramp-constrained econorspatth
Problem (0.1), is convex, and has similar properties to Problé. D).



Implementing the results of unit commitment, continued

e Typically MILP implementations solve a continuous problefithe form
of Problem (0.7) during the solution process, so that the Lagrange
multipliers on the system constrairds = b,Cx < d in Problem 0.7
are available as lay-productof the MILP algorithm.

e Note that the minimizer of ProbleniQ.7) is the same as the minimizer
of Problem (0.5

— key difference is that there are well-defined Lagrange ipligtis on the
system constraintdx = b,Cx < d in Problem (0.7), whereas
Problem (0.5 does not have well-defined Lagrange multipliers
because of the integer variables.



Implementing the results of unit commitment, continued

e Let A\* andy®, respectively, be the Lagrange multipliers on the system
constraintsAx = b,Cx < d in Problem (0.7).

e As in discussion of offer-based economic dispatch and ilmcak
marginal pricing, we can define prices using the pricing:rule

neMP — AT — (o . (10.8)

e \We have labeled these prices with superscript LMP to empédbkat the
prices are from the solution of essentially the same prolasihe
problem solved for LMPs and in ramp-constrained econonspatch:

— formulation so far has not represented transmission caingiy but
these will be considered in Sectid0.§

— as in the discussion of ramp constraints in Secti0ri.3.2 a sequence
of LMPs for the intervals in the day are being calculated,

— if ramp rates were included in the unit commitment formwlagithey
would also be represented in Problehd (7).



Implementing the results of unit commitment, continued
e If the generators happen to be committed consistently mithen, by

Theorem8.1in Section8.12.4.4 the priceS'[!q(MP provide incentives for
profit-maximizing generators to dispatch consistenthnwiite solutionx*.

e However, these pricei;kMP will not always provide incentives for
profit-maximizing generators twommitand dispatch consistently with
the solutionz® andx* (andu”*):

— revenue from energy payment may not cover the start-up|oaith- and
incremental energy costs,

— this issue was explored in Sectidt¥.4and specifically in
Sections4.8.3and4.8.4in the context of a very simple unit
commitment problem for which there was no choice of pricesmergy
that could provide incentives for a profit-maximizing geater to
commitand dispatch consistently with the ISO solution, and

— the same issue can occur in general in unit commitment pmable
because of the non-convexity.



10.4.2 Unit commitment example

e Consider the previous example in Sectidn8.3and10.3.2where a
single generator was available to meet a demarid f3 MW in the
single intervaint = 1.

e The unit commitment probleni(.6 is:

min {4z+x| —x=-3,0<z<1,22<x <4},
zeZ.xeR

e The corresponding problemi@.7) (with simplifications since there are no
start-up variables nor constraints and no system inegualitstraints) is:

miﬂg{4z*+x| —x=-30<7<127 <x<4z7},
Xe
e which has solutiorx* = 3.
e The Lagrange multiplier on the supply-demand constraiit is 1.



Unit commitment example, continued

e Recall that if the generator were patdor its production then its profit
maximizing behavior would be:

0, ifrt<2,
x_{00r4, if T= 2,
4, if t> 2.

e This meant that no price would equate supply to demand of 3 MW.
e In particular, if we set the price usin@@.8, we have:

eMP =1

e The revenue for generating = 3 at this price isn!(-MP x X* =3, but the
cost of generating at this level is 7.

e A profit-maximizing generator will not choose to commit arehgrate at
the levelx* = 3 if the compensation is only based on its energy

production remunerated at the priceﬂHV'P.



10.4.3 Unit commitment example with two generators

e Consider the previous example in Sectidn3.3 with two generators
available to meet a demand BfMW in the single intervaht = 1.
e The unit commitment probleni.6 is:

X1 —Xp=-D,0<z<1, }

i {421+22+X1+2X2 271 < X1 < 471,052 < %o < 42,

272 x2cR

e The corresponding problemi@.7) (with simplifications since there are no
start-up variables nor constraints and no system ineguaitstraints) is:

—Xp=-D,0< 7" <1, }

S {421+22+X1+2X2 221 <x1 < 47;,0.5z; < xp < 4z

x2cR
e which has solutionx* and Lagrange multipliek* on the supply-demand
balance constraint of:
x1—0x2 D,A*=2,for05<D < 3,
X; =D,x5 = 0)\* 1, for3< D < 4,
X =4,x5=D—4,A*=2,for4<D<8.




Unit commitment example with two generators, continued

e Using (10.8, we again set the pricxﬂ;kMP equal to the Lagrange
multiplier A* on the supply-demand balance constrairi —x, = —D.

e Figurel1l0.1shows the resulting pric&!;kMP versus demanD:

— we could also interpret this curve as showing the supplyeas/in

Section6.5.

e We again find that profit-maximizing generators will not tgdly choose
to commit and generate at the lex€lif the compensation is only based

on its energy production remunerated at the prica&é\ﬂp.
e Moreover, note that the prices are not non-decreasing \eiiachd:

— in contrast, in Figuré.6the supply curve was non-decreasing.



Unit commitment example with two generators, continued

M
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Fig. 10.1. Locational
o ‘ ‘ L ‘ ‘ ‘ L D marginal priceTr,';KMP

versus demandD for
two generator system.




10.4.4 Aligning generator profit-maximization with ISO dessons

e The essential problem in both examples is that compenshéised on
prices for energy (and reserves in the more general case)tdo n
compensate the generator for all of the costs of committn a
dispatching at the levels andx* determined in the 1ISO unit commitment
problem:

— note that the ISO solicited the start-up, min-load, andanental
energy offers from the generators, and used this informatalecide
on the commitment and dispatch,

— the ISO is asking the generators to incur operating cosedoas the
ISO’s decisions,

— from basic notions of property rights, the ISO must expedctttieast
compensate the generator for the generator offer coste@ttin
committing and dispatching consistently with the ISO decis.



Aligning generator profit-maximization with ISO decisiongontinued

e \We consider an approach to aligning generator profit-maation with
ISO unit commitment by compensating the generator for fesrafosts at
the 1SO-determined commitment and dispatch levels.

e It involves an additional payment that is conditional on gle@erator
committing according to the 1SO solution.

e Suppose the ISO determines energy and reserve prces

— for example, using1(0.8), with resulting price for generatdr
P = —[Ad ™ = [ad

e We consider the profit maximizing response to these prices.



Aligning generator profit-maximization with ISO decisiongontinued
e For some generators, their profit maximizing generatiortas these
energy and reserves prices will be consistent with the |SsDsaba:

— these generators are paid based on these energy and rqgeress
— no further payment besides remuneration based on energgsenes.

e For the rest of the generators, additional revenue is napegspay based
on:
— the energy and reserves prices, plus
— an additionalmake-wholepayment that is contingent on the generators
committing consistently with the 1ISO decision.
e What would the make-whole payment be for the generator tocadk to
produce 3 MW, given an energy price of $1/MWh?



Aligning generator profit-maximization with ISO decisiongontinued

e \We seek a general expression for the make-whole payment/tuad
induce behavior consistent with optimal commitment angalsh.

e Suppose the ISO specifies a vector of energy and reserve price
Ty, € R for each generatdr.

— for example, LMPs as defined ia@.9),
— will consider another choice of prices in Sectibh.5
¢ \We consider two cases:
(i) generatok can choose its commitmeqt* and dispatch and
reservesq” to maximize its operating profit givem,, , and
(i) generatorik commits and dispatches consistent with the solution of
the ISO optimal commitmers; and dispatch and reservgs



10.4.4.1 Generator profit maximization
o Generatok operating profit maximum, given pricesg,, is:

M (1) = [ﬁggﬁ{[nxkka— fi ( [)Z(kkD } :

e Where, as previously, the double star refers to generamatipng profit
maximization.



10.4.4.2 Profit under optimal commitment and dispatch fr8@ problem

e Given pricest, and given that generat&roperated according to the
optimal commitmeng; and dispatchi; determined by the ISO, the profit
for generatok would be:

el



10.4.4.3 Comparison of profits
e Note that, by definition:

i) > [~ |
%3
i) = [ (| ] ).
e then the profit maximizing decision of generakas consistent with the
ISO optimal commitment and dispatch:

— the vector of pricesy, supportsthe ISO optimal commitment and
dispatch.

20

e Moreover, if:



10.4.5 Make-whole payment
e \We consider the two possible cases:

o If ME*(15 ) = [T ] T — fi ( [iﬂ ):

— then the profit maximizing behavior of generakan response tar,
alone is consistent with optimal commitment and dispatch,
— no make-whole payment is needed.

o If M (1) > 15, )T — i < [iﬂ ):

— then the profit maximizing behavior of generakan response tar,
alone is inconsistent with optimal commitment and dispatch
— an additional make-whole payment of:

i)~ (im0 ] ) )

IS necessary to induce behavior that is consistent withrati
commitment and dispatch.



Make-whole payment, continued
e \We can combine both cases by observing that the paymentas &qu

M (1) — <[nxk]Tx;; — fy < KED) , (10.9)
in both cases.

e Note that make-whole payment is only made to genetatbbgeneratork
commits according ta.
e By design, the make-whole payment adjusts the profit for iggaek so

pk
that ikﬁ IS generatok’s profit maximizing commitment and dispatch.

e In principle, no additional inducement is necessary foregatork to
behave consistently with centralized optimal unit comneitrinand
dispatch.



10.4.6 Simplified make-whole payment

e To develop a simplified make-whole payment, observe thaethee three
possibilities for profit-maximizing behaviag* andx* by generatok in
response to the price,, :

(i) the generator would prefer not to commit, so thiat= 0 and
%%
X = 0and 0= M (1, ) > [ ] ™x¢ — fi ( [j; ,
(ii) the generator prefers to commit and dispatch constilstwith
ISO optimal commitment and dispatch, so thgt= 7z and

k

x* = x¢, andMir (1) = [ ] Tx¢ — fi ZE >0, or

(i) the generator prefers to commit and dispatch, but mststently
with ISO optimal commitment and dispatch, so thgt# z;

and/ong* # x¢, andMi* (1) > [T | %t — fi ([i‘;] )



Simplified make-whole payment, continued
e Note that for the first alternative, a make-whole payment of

fi ( [)Z(ED — [nxk]Tx;; would be required to make generakandifferent

between:

— not committing, and

— commitment and dispatching consistently with ISO optimal
commitment and dispatch.

¢ In the second alternative, no make-whole payment is red|sirece
profit-maximization is consistent with ISO optimal commént and
dispatch.

e SO, if we ignore the third alternative (or can otherwise fiilthe
generator from committing and dispatching inconsistetti wie 1ISO
solution), then the make-whole payment can be simplified to:

max{o, fi ( [%D - [nxk]Txﬁ}. (10.10)



Simplified make-whole payment, continued
e The simplified make-whole payment of m%@, fi ( [)Z(‘;D — [nxk]Txﬁ}
K
is used in ERCOT and other markets, even though it does netthav
correct incentives in the case that both:
M (M) # 0, andMi* (e, ) > fy < [)ft ) — [ ]

e The make-whole is paid only if the generakoactually commits “close
enough” toz; during the operating day.

e (There is also generally a requirement that the generaspattihes “close
enough” to the dispatch signals in the real-time market. See
Sectionl1.3.2)




10.4.7 Simplified make-whole payment in unit commitment exale

e For the previous example in Sectiohs.3 10.3.2 and10.4.2we have
that the simplified make-whole payment is equal to:

AlE xT* = s £ — 9y,
max{O,f([XD [n]x} - :ax{O? 3}

consistent with compensating the generator for the difiezdbetween its
costs and the remuneration from energy.



10.4.8 Simplified make-whole payment in unit commitment exale with
two generators

e Consider the previous example in Sectidi®s3.3and10.4.3 with two
generators available to meet a deman®dflW in the single interval
nt =1.

e Figurel0.2shows the resulting simplified make-whole payment versus
demandD.



Unit commitment example with two generators, continued

Simplified make-whole payment
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10.4.9 Discussion of locational marginal prices and makdiale

e The combination of locational marginal prices and make{elpoovides
a straightforward approach to aligning profit maximizatiath the 1ISO
commitment and dispatch:

— the locational marginal prices are available as a by-prodiithe unit
commitment optimization, and

— the simplified make-whole can be conveniently calculated daily
basis to ensure that the operating profits are non-negadidg-day.

e Most ISOs in the US currently use a pricing rule based on ionat
marginal pricing for energy and reserves as specified®8 and a
simplified make-whole rule based ob0(10.



Discussion of locational marginal prices and make-wholertinued

e However, there are several drawbacks of locational malrgmaes and
make-whole payments:

— the make-whole payments could potentially be large and ,labav
discussed in more detail in Secti@f.7, it is not as “visible” to the
market as energy prices, which makes investment decislong a
profitable new entry more difficult;

— energy prices are not monotonically non-decreasing witheissing
total production, so that an increase in demand can resaltiecrease
in price as in the two generator example when demand incseds®/e
3, which can be misleading to market participants if suppliyght; and

— the offers of generators that are at their maximum or minimum
production do no play a role in setting price, although tkests are
economically significant in determining unit commitment.

¢ In the next sections, we will consider an alternative pgcapproach that
reduces the severity of these issues.



10.5 Lagrangian relaxation
10.5.1 Alternative approaches to pricing

e The discussion of make-whole in the last section was notifspé&x
locational marginal prices:

— the make-whole payment could even be used aithtrary prices.

e In this section, we will consider an alternative pricingerblased on
Lagrangian relaxation of the unit commitment problem,east of the
rule in (10.8 that is based on setting the integer variables at theinsti
values.

e Will consider possible advantages of such a rule.



10.5.2 Description

e Asin Sectiongt.8.3and4.8.4 we will apply Lagrangian relaxation to the
unit commitment problem:

— previously used by ISOs to approximately solve unit comraitim
before it was supplanted by MIP software.

e Recall from Sectiod.7.4that Lagrangian relaxation involves maximizing
a dual problem.
e We dualize the system constraints to obtain the maximiggiroblem:

)\Tl%{w,r[?kjrggk{f ([)Z(D + AT (Ax— b)+uT(Cx—d)}}. (10.11)

e This problem is called theagrangian dual problem.
e Solving this problem is analogous to solving the econonspalich
problem by dualizing the system constraints:

— in contrast to economic dispatch and the analysis in thes&ton,
here we maintain the commitment decisions as discreteidacis
variables in the inner problem.



Description, continued
e Dualizing separates the unit commitment problem into:

— a sub-problem for each generator equivalent to profit maatron for
the generator given the value of dual variables, and

— the problem of finding the values of the dual variables thatimee the
dual.

e We will consider a pricing rule based on either the curretieaf the
dual variables at a particular iteration or based on the miaer of the
dual.

e Since convenient calculation of the dual involves the cariudl as
introduced in Sectiod.8.3 we refer to these prices asnvex hull prices
(CHP).

e In particular, we define theonvex hull pricesto be:

TEXCEHP: — AN — [ad T, (10.12)

e WhereA™ andp* maximize the dual problem, Problerh((11J).
e Each generator (conceptually) maximizes its operatinfjtdor the given
vector of prices, as specified by the current values of théwduables.



Description, continued

e The dual variables are updated until a maximum of the duadtion is
obtained:

— As suggested in Exercigk9, there are more efficient approaches to
finding or approximating the dual maximizer (see ExerdiQe#).

e There may be a duality gap.

e Since the duality gap is typically non-zero, ath hocpost-processing
heuristics are required in order to produce a solution thtdfes the
system constraints:

— the heuristics to find a feasible solution from the resultsagrangian
relaxation are very detailed and “brittle,” particularlytvtransmission
constraints.

— the heuristics are problematic in a market setting, wherartcplar
heuristic may have significant implications for profitafyilor be
vulnerable to “strategic” offers, allowing market pantiants to
influence outcomes through changes to offers that do noésept
economic fundamentals.



Description, continued

e As mentioned in Sectioh0.3 all North American ISOs now use
mixed-integer programming software to solve a linear fdatian of the
unit commitment problem, since it has several advantagess ov
Lagrangian relaxation including that there is generalbgle
post-processing required, even if the MIP is not solved towgdity.

e PJM estimates $60 million per year or more of savings (out of
approximately $10 billion) with MILP formulation comparéal previous
Lagrangian relaxation and linear programming based dlguos.

e Other US ISOs report similar savings.



Description, continued

e Lagrangian relaxation solution is here only being used fmdehe
convex hull prices, not to find the commitment and dispatch.

e The maximizer of the dual can provide important insights joices even
if it does not yield the optimal unit commitment.

e In Exercisel0.6 we will also consider a more efficient way to calculate
the dual maximizer that builds on Exercé®.

e In MISO, prices based on (an approximation of) the dual m&emare
used in conjunction with values of commitment and dispatafained by
the 1ISO in a MILP solution.



10.5.3 Unit commitment example

e Consider again the previous one generator example in $edti8.3
and10.4.2in the context of duality gaps where a single generator was
available to meet a demand bf= 3 MW in the single intervaht = 1.

e Now consider the case of a generator with a parametrizedwostion:

(5

e Wheref3 > 0 is a parameter.
e Suppose that the generator is paitbr its power productiox and that it
finds the value of production that maximizes profit specifigd b

(1)

e \WWe perform similar analysis to previously to find the profitamaizing x
(andz).

) =47+ Bx,z€ {0,1},22< x <4z,



Unit commitment example, continued

e To maximize profitrx — f (KD = (11— B)x — 4z, we must compare:

the profit forz= 0 andx = 0, (namely, a profit of 0), to
the maximum profit over £ x < 4 forz=1.

e \We consider various cases far
n<p
0 > —4
> (m—B)x—4, for2<x<4.

e S0, the profit is maximized fa™ = 0,x* = 0.
B<m<1+P
e Then(m—PB)x<4for2<x<4,

0> (m—PB)x—4, for2<x<4.
e S0, the profit is again maximized far* = 0,x™* = 0.



Unit commitment example, continued
m=1+f
e Then 0> (TT—P)x—4 for2<x< 4.
e Also, 0= (TI—PB)x—4 forx=4.
e S0, the profit has two maximizers:
z*=0,x*=0, and
Z* =1x" =4,
> 1+
0 < (T1—B)x—4, for x=4.
e Moreover, the right-hand side increases with increagjrap it is

maximized over X x < 4 byx = 4.
e S0, the profit is maximized fa™ = 1, x** = 4.



Unit commitment example, continued

e Therefore, if the generator were paidor its production then its profit
maximizing behavior would be:

0, if m<1+p,
x_{(MH4 if T= 1+,
4, if m>1+.

e If we have just one generator having marginal ¢b8ten there will still
typically be no price that equates supply to demand, unlessadd were
changed td = 0 or 4.

e The price,;t= 1+ 3, at which the generator starts to produce depends on
B.

e We still typically have a duality gap since the minimum of Bleam (10.4)

Is strictly greater than the maximum of Probleb®(11).



10.5.4 Larger example

e Suppose that we generalize the example problem from thedatibn to
the case where there are multiple generators with differesit
characteristicg§ and a larger demand.

e Suppose that demand wls= 303 MW.

e Assume that there are no reserve requirements, soP for generatok.

e Suppose that there are 100 generators, with gendtatdr, ..., 100
having cost function:

fk([)z(kk]) = 4z + BrXk, Z € {0, 1}, 2z < X < 4z,

e Where:
Vk=1,...,100,Bx = 1+ k/100
e The feasible operating set for each generhtsr

Sk: { [it]'zke{o71}722kgxk§4zk}



10.5.4.1 Solution

e Each generator has a slightly different operating costtfancwith
higher values ok associated with more expensive generators.
e The optimal commitment is for:

— generators 1..,75 to be committed and producing at full capacity of 4,
— generator 76 to be committed and producing 3, and
— generators 7,7..,100 to be off.
e Minimum cost is therefore:
75
Z [4x 1+ (1+k/100) x 4]+ [4x 1+ (14 76/100) x 3] = 72328.
K=1
e This is the minimum of ProblenilQ.4), which we could find in this case
by inspection because of the simple structure of the problem
e We will investigate the maximizer of the dual problem, Pesbl(10.11J),
and see the insights it provides into the minimum and minemdf
Problem (0.4).



10.5.4.2 Maximizer of dual
e The dual problem, Problemi(.11J), in this case is:

I;\neaI‘RX{Vkl,...r,rllg)r(]l[ikk]eSk {f (KD - (5 kli)xk> }} |

e Suppose we seét so that 2+ 75/100< A < 24 76/100.

— For example, suppose that we set the price ta be2.755.

—We have that By < Afork=1,...,75 and 1 B¢ > A for
k=76,...,100.

— Generatork=1,...,75 will produce 4 MW.

— Generator& = 76,...,100 will produce nothing.

— Total production will be 300 MW.



Maximizer of dual, continued
e Summarizing, suppose we geso that 2+ 75/100< A < 24 76/100,

— In particular, suppose that we set the price ta\be2.755,
— Then the dual function is:

k=1
= (22265

e For values oA <2+ 75/100, the value of the dual will be less than or
equal to 722.265.

D(2.759) = §[4>< 1+ (1+k/100) x 4] +2.755x (5— 7254> ,
k=1



Maximizer of dual, continued
e Now suppose that we sktso that 2+ 76/100< A < 2+ 77/100.

— For example, suppose that we set the price ta be2.765.
—We have that By < Afork=1,...,76 and 1 B¢ > A for
k=77, ...,100.

— Generatork=1,...,76 will produce 4 MW.

— Generator&k = 77,...,100 will produce nothing.

— Total production will be 304 MW.

— The dual function is:
76 76

D(2.765 = Z [4x 1+ (1+k/100) x 4] +2.765x (5 Z 4) :
K=1 K=1
= 722275

e For values oA > 2+ 77/100, the value of the dual will be less than or
equal to 722.275.
e The maximizer of the dual, Problerh@.11), isA* = 2.76.



Maximizer of dual, continued
e Now suppose that we set the energy price to be:

nCHP _\~—~ 276

e Profit-maximizing generators would choose to generate lbs\e:

— Generatork=1,...,75 will produce 4 MW.

— Generatok = 76 is indifferent to either not producing or producing 4
MW.

— Generator&k = 77,...,100 will produce nothing.

— Total production is either 300 or 304 MW.

— The dual function is:

k=1
76

— Z [4x 14 (1+k/100) x 4] +2.76 x
k=1

= (2228

D(2.76) = §[4>< 1+ (1+k/100) x 4] + 2.76 x (B §4> ,



Maximizer of dual, continued

e There is no price were supply equals demand of 303 MW.

e However, the supply-demand constraint is violated bglativelysmaller
amount than in the smaller examples in Sectid@3and10.5.3

e Moreover, the commitment and dispatch decisions for gemesa
k=1,....,75and 77...,100 in the generator profit maximization

problems are correct given that the price[%HP: 2.76.

e The duality gap is 7228— 72228 = 1.

e The duality gap is relatively smaller as a fraction of the imuam of the
unit commitment problem.



10.6 Duality gaps
10.6.1 Discussion

e Typically there is a duality gap between the minimum of th un
commitment problem and the maximum of its dual:

The maximum of the dual obtained by dualizing the systemtcaimss is
strictly less than the minimum of the primal problem.

The commitment variablez™ and the dispatch variables* resulting
from the generator profit maximization sub-problems do atisfy/
the system constraints.

e However, the duality gap i®lativelysmaller in the larger example in
Section10.5.4than in the single generator example in SectiOrb.3and
the system constraints are violated by a relatively smalt@ount, so the
commitment and dispatch values corresponding to the dusihnizer
can provide a useful approximate guide to the optimum of the u
commitment Problem1(.4).



Discussion, continued

e If the generator cost characteristics are heterogeneeushle duality gap
(and the violation of the system constraints) becomesivelgtsmaller as
the number of generators grows large.

e This is the key to application of Lagrangian relaxation tgéscale
systems since the post-processing step to create a fesslbten
involves a smaller adjustment for larger systems.

e What are reasons for heterogeneity and homogeneity in gtduactions
of generators?



10.6.2 Non-existence of dispatch-supporting prices

e Unfortunately, the non-zero duality gap means that pricethe system
constraints alone cannot encourage profit-maximizing Igtoes to
commit and dispatch in a way that is (exactly) consistentwytimal
commitment and dispatch.

e For each value of the price vector, some system constraihfianito be
satisfied by the resulting profit-maximizing decisions & fenerators.



Non-existence of dispatch-supporting prices, continued

e As Stoft argues, by modifying demand slightly we can typicabtain
dispatch supporting prices:

— if the generation stock is heterogeneous then modificatibie/small,

— in the larger example, the modification would be at most 2 MW,

— since there are other uncertainties and errors in dispatciay be
reasonable to ignore the duality gap in this case.

e This is the basis of a principled argument against cengdlimit
commitment:

— might still utilize a centralized day-ahead economic disbgrocess,
but unit commitment decisions would be taken by individuarket
participants.



Non-existence of dispatch-supporting prices, continued

¢ In a centralized day-ahead economic dispatch market wittentralized
unit commitment and without start-up or min-load offers rked
participants are faced with making “marked-up” energy aserve offers
that cover their start-up and min-load costs:

— energy and reserve offers will be increased above margosas ¢o
cover the start-up and min-load costs,

— ideally, dispatch decisions by ISO using marked-up eneffgysalone
will result in commitment and dispatch by market particitsatmat
roughly approximates optimal commitment and dispatch,

— in practice, it is difficult for a market participant to esaie the “right”
mark-up that would be consistent with optimal commitmert an
dispatch, unless it owns a large fraction of total genenatepacity.



Non-existence of dispatch-supporting prices, continued

e We will continue to assume that the ISO performs centralieat
commitment:

— ERCOT and other US ISOs optimize the commitment and dispatch
the day-ahead market, reflecting the complexity of the wesrio
constraints, particularly transmission constraints.

¢ In the next section, we will consider the convex hull priagsonjunction
with a make-wholepayment to align the incentives of profit-maximizing
generators with the centralized ISO commitment and dispdgcision, as
in Section10.4.5

e Using convex hull prices will result in a smaller make-whplyment
than with LMPs.



10.6.3 Make-whole payment with convex hull prices

e As discussed above, the non-zero duality gap means thasgitthe
system constrainilonecannot encourage profit-maximizing generators
to all commit and dispatch in a way that is exactly consistent wttnoal
unit commitment.

e A make-whole payment is necessary.

e For convex hull prices, the simplified make-whole paymé@t 10 as
defined in Sectiol0.4.6is:

max{o, fic < [)Z(%D _ [T[)%Hﬁ’fxﬁ},

where the convex hull prices were defined10.(12):

e P = —[Ad A — oW,
with A* and* maximizing the Lagrangian dual proble0(17).



10.6.4 Make-whole payment with convex hull prices in exampl

e In the example in Sectioh0.5.4havingD = 303, all but one of the
generators would be committed and dispatched correctheiptice were

set equal to the maximizer of the dugttP = 2.76:

— generator& =1,...,75 would produce 4 MW, while
— generator& = 77,...,100 will produce nothing.

e Generatork=1,...,75and 77...,100 would collectively produce a
total of 300 MW:

— the CHP included sufficient compensation to cover both timén-load
and incremental energy costs.



Make-whole payment with convex hull prices in example, comted

e To meet the total demand Bf = 303 MW, generatok = 76 should
produce 3 MW.:

— the cost for generatde= 76 to produce 3 MW is:

7
1:76 ( [)(16] ) - 42;6"" B76X§67
76
— 4x1+(1+76/100) x 3,
= 0.28

— with an energy price ofCHP = $2.76/MWh, generatok = 76 would
receive revenues afcHP x X5e=2.76x 3= 8.28 if it produced
X;6 — 3.

— generatok = 76 would need an additional payment of
9.28—8.28 = $1/h in order to have non-negative profit, based on an

energy price of ©HP = $2.76/MWh,
— this difference is equal to the duality gap.



Make-whole payment with convex hull prices in example, comted
e To achieve optimal unit commitment in the example:
— price energy based on the dual maximiz&,HP: $2.76/MWh,
— profit-maximizing behavior of generators.1.,75, and 77...,100 in
response to this price is to behave consistently with ckrdchoptimal

unit commitment and dispatch, but
— an additionalmake-whole paymentis paid to generator 76 of:

(%, (2]
o0 <CHPX76 f76<[§;§]>>,
— max{o, f76 < [)Z(;ED _ [T[CHP]TX%},

= 4Z5+ P75 — CHPX?&

= 9.28-8.28=1.



Make-whole payment with convex hull prices in example, comted

e To summarize, generator 76 requires an additional $1/hdiece it to
generate consistent with optimal commitment and dispatch.
e Demand pays for:

— energy based orCHP <« D — 2.76 x 303 = $83628/h, plus
— the make-whole payment to generator 76 of $1/h.

e The make-whole payment is charged as an uplift to demand.
e Note that the payment to generator 76 is qualitatively ceife: to the
payment to other generators since it involves a make-whajengnt.



10.6.5 Make-whole payment with locational marginal pricesexample
e If locational marginal prices were used, the price would be:

tMP _ 1 76

e since this is the marginal cost of the marginal generator.

e Note that at this price, the profit-maximizing response bfjaherators
would be tonot commit, since their min-load and incremental energy
costs are not covered.

e To induce generatdt = 76 to commit and to generate 3 MW, a
make-whole payment of:

4x1+(1.76) x3—1.76x 3 =4,

e would be required.
e To induce generatots=1,...,75 to commit and to generate 4 MW, a
make-whole payment of:

4% 14 (1+k/100) x 4—1.76 x 4 = (24+k) /25,

e would be required.
e The total make-whole payment is $80.48/h.



10.6.6 Comparison of convex hull and locational marginalipes

e The total make-whole payment is much higher under LMP in Kaargle
than under CHP.

e The energy price is lower under LMP in the example than undé?.C

e Total payment for energy and make-whole by demand is lowdeun
LMP than under CHP.

e Although this example is extreme, make-whole paymentsuGHd> are
provably lower than make-whole payments under LMP, wherekaet
make-whole expressiod .9 is used:

— the make-whole payments und@&0(9 are equal to the difference
between the minimum of the unit commitment problem and tieevaf
the dual,

— this difference is minimized by the dual maximizer,

— so the convex hull prices minimize the make-whole paymeniefised
by (10.9.

e Convex hull prices may not minimize the make-whole paymantter
the simplified make-whole paymeritd.10.



10.6.7 Demand response

e Demand response can reduce the duality gap (and therethreer¢he
make-whole payment required to achieve optimality).
e Suppose that instead of fixed demand of 303 MW, the demandh&as t
sum of:
a fixed demand ob = 290 MW, plus
price-responsive demamdD with willingness-to-pay of

(2.755+10) $/MWh—1 $/hx AD, 0 < AD < 20 MW.

e Consider again convex hull prices for this unit commitmenatopem.

e At a price ofiCHP = $2.755/MWh, the price-responsive demand would
beAD = 10 MW, so that total demand would be 2900 = 300 MW.

e At a price ofriCHP = $2.755/MWh, the supply equals 300 MW.

e S0, supply equals demand and there is no duality gap and wofoea
make-whole payment.

e In general, price-responsive demand can reduce the dgalityand
reduce the make-whole payments.



Demand response, continued

e This demand response example is somewhat unrealistictidénaand is
generally not willing to voluntarily curtail at prices thate close to
typical generation marginal costs:

— we will assume fixed demand in subsequent examples.

e Such price responsiveness does, however, have an impeffacttin the
presence of scarcity and/or market power where offer pnught
otherwise rise to far above generation marginal costs.

e See market power course,
www.ece.utexas.edu/ ~ baldick/classes/394V_market_power/E

e Moreover, as in Sectio@.12.9.7 there may be representation of
responsive demand for adequacy reserve.


www.ece.utexas.edu/~baldick/classes/394V_market_power/EE394V_market_power.html

10.6.8 Unit commitment example with two generators

e Consider again the previous example in Sectibh$.3 10.4.3
and10.4.8with two generators available to meet a deman® oW in
the single intervaht = 1.

e Figure10.3shows the resulting convex hull prices:

— non-decreasing in increasing supply, in contrast to thational
marginal prices as shown in Figuté.1, and
— reflect the no-load costs into the energy price.

e Figurel0.4shows the resulting simplified make-whole payment versus
demandD:

— convex hull prices typically result in smaller make-whobyyments than
under locational marginal pricing,

— make-whole payments are smaller with convex hull pricen thigh
locational marginal prices as shown in Figli@&2



Unit commitment example with two generators, continued
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Unit commitment example with two generators, continued

Simplified make-whole payment
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10.6.9 Summary of make-whole payments

e The goal of make-whole payments is to ensure that each genespaid
enough to cover its offer costs and so that it commits anchtitéies
consistently with the optimal commitment and dispatch dsrdened by
the 1SO:

— all centralized unit commitment formulations require afiftufrom
demand.
%3
e The simplified make-whole payment m%@, fi ( [i‘,ﬁ]) — nTxﬁ} can be
k
applied to any pricing rule on energy and reserves in orderdioce a
particular behavior:
— make-whole payments are paid to a generator that commitsding to
(or close enough ta) = z,
— as previously mentioned, the simplified payment is usedactpre even
though it does not provide the exactly correct incentives.



Make-whole payments, continued
e In ISOs except MISO:

— commitmentz® and dispatchkx* from solution of offer-based unit
commitment Problem10.4),

— energy and reserves prices using LMPs based on Lagrangeliecst
A* andy* obtained from the solution of the convex problem,
Problem (0.7), obtained by fixing the integer variables at their optimal
valuesz',

— make-whole payment based on a daily calculation of makelevho
payment using LMPs:

max{O, fi ( [)Z(k;]) — [TIJKT(MP]TXE}y

— where pricesrr!;kMP are based oA* andp* from Problem 10.7).



Make-whole payments, continued

e For its day-ahead and real-time market, MISO uses prices tha
approximate the convex hull prices:

— commitmentz® and dispatchkx* from solution of unit commitment
Problem (0.4,

— energy and reserves payments based on the the maximiaad - of
the dual problem, Probleni@.11), or an approximation to this problem,
resulting in non-decreasing prices with increasing demand

— make-whole payment based on a daily calculation of makelevho
payment using CHPs:

v [5]) €.

— where pricesrrEiHPare based oA* andu* from Problem 10.11).



10.7 Role of prices and implications for investment
e Two important roles for prices:

— inform dispatch and consumption decisions, and
— inform potential new entrants to the market about whether exary
would be profitable.

e Pricesty, on system equality and inequality constraints are paid for
production of energy and provision of reserves indepenakthe
producer, but possibly varying by location, and are saidetarbform .

e However, make-whole payments are not uniform since diffenearket
participants receive different payments, even if locatati@same bus.

e Non-uniformity makes it harder for a potential entrant teedmine if new
entry would be profitable, particularly if the make-whole/peents are
not disclosed publicly.

— It is difficult for a new entrant to understand if it would beofitable to
enter at the current prices if the total remuneration froenrttarket is
nottransparento market participants.

e Moreover, larger make-whole payment implies that less aegation
costs are reflected into energy prices.



Role of prices and implications for investment, continued

e Even if the make-whole payments are disclosed, make-whatmpnts
can distort investment decisions.

e Make-whole payments contribute to the infra-marginal serftsome
generators.

e These rents are not also available to everyone else.

e The incentives for building new capacity may be depresseatpaned to
the remuneration to existing generation owners.

e Convex hull prices minimize the exact make-whole expresgio.9
over choices of uniform prices:

— the prices are as “transparent” as possible and reflectinguab of the
operational costs as possible for uniform prices,

— minimize the distortion of investment decisions, and

— since make-whole is charged to demand, arguably also nagimi
distortions of demand-side decisions.



10.8 Transmission constraints

¢ In the examples so far we have not explicitly consideredstrassion
constraints.

e However, transmission constraints can limit the dispasatigions.

e In practice, transmission-constrained unit commitmentlo@aan
extremely difficult problem to solve.

e See Exercis&0.6



10.8.1 Transmission-constrained example

e \We consider day-ahead unit commitment and dispatch acrmskdurs,
nt = 2, with demands:

t) O 1| 2
D; | 90| 110|125

e Thet = 0 entry in the table is the demand for the last hour of today.

e Thet = 1,2 entries are the demands for the first two hours of tomorrow.

e Also, P;p =90 MW andP,o = 0 MW are the generations in the last hour
of today, with generator 2 out-of-service at the end of today

e \We ignore reserves, min-load costs, and ramp-rate contsrai

e The offers are specified by:

vt =1,2,s; = 100Q Py € [0,200, Ofy (Py) = $25/MWh,
vt = 1,2,5x = 100QVPx € [0,50], Ofx(Px) = $35/MWh




Transmission-constrained example, continued

e The generators are located in the following one-line twe-$ystem.

e We use the DC power flow approximation and the transmissimnHas
transmission capacity of 100 MW.

¢ \We solve the transmission constrained, offer-based unihaitment for
this system.

e We will calculate and consider LMPs based on Problét7).

e Make-whole payments will be based on

max O fk T['X-MP xk

‘ | 100 MW I:{ D
demand Fig. 10.5. One-line

two-bus network.




Transmission-constrained example, continued

e Because of the transmission constraint, it will be necggsacommit
generator 2 and run it during intervals 1 and 2.
e The optimal offer-based commitment and dispatch is:

tfj o 1] 2
D; | 90| 110| 125
zZy| 1| 1, 1
Pj [ 90| 100| 100
Z.| 0| 1| 1
P O| 10| 25




Transmission-constrained example, continued
e We calculate the locational marginal prices using comnritrvariables
fixed at their optimal values, noting thﬂkk'tvIP = A\, WhereA, is the

Lagrange multiplier on supply-demand balance at the bugoé@tok
in intervalt:

tl 0] 1] 2
D; | 90| 110|125
MP o5 25| 25

1t
nsMP | 25| 35| 35

e Since generator 1 is already committed at the start of theashaysince
the revenue (just) covers its incremental energy costss teeno
make-whole payment for generator 1.

e Generator 2 must be started, but the revenue only just casgers
incremental energy costs.

e Therefore, the make-whole payment to generator 2 is equi start-up
cost ofsy; = $1000.




10.9 Robust, stochastic, and reliability unit commitment
10.9.1 Role of reserves
e Reserves provide capacity faacourseto cope with uncertain outcomes:

— spinning reserve provides capacity to replace producfiargenerator
trips out of service, while

— regulation reserve provides capacity to compensate foati@m of
supply—demand balance and forecast error during a realdiapatch
interval.

e Quantities of procured reserves can be based on consmesatiich as:

— assessment of largest credible loss of generation (fonsmreserve),
and

— historical and forecast variability of net load and foreaasor (for
regulation reserve).

— reserves serve to make the commitment and dispatch robfashues
and forecast error, as discussed in SecBd?.1.4

¢ In simplest implementations, the choice of quantity of pirec reserves
Is not directly incorporated into commitment and dispatadei:

— procured quantity is exogenous decision.



10.9.2 Stochastic unit commitment

e Recall the discussion in Secti@il2.9.50f operating reserve demand
curve.

e Level of adequacy reserve was trade-off between expectad va
unserved energy and the cost of procuring the reserve:

— simple formulation involved off-line determination of aneters in
operating reserve demand curve.

e In principle, consideration of random failures could be@yehous to
unit commitment problem:

— Minimize expected cost over probabilities of outage scesar

¢ In addition to random outages, could also consider randadyation of
renewables:

— Minimize expected cost of probabilities of production bypeeables.

e Stochastic unit commitmentformulations consider these issues,
possibly including consideration ok :

— avoid downside of unfavorable outcomes.



10.9.3 Robust unit commitment

e If distributions of random variables are not available, i@ @ncertain, an
alternative is to ensure feasibility even despite uncetyawvithin an
uncertainty set

e Solution isrobust to uncertainty:

— standard robust formulations optimize worst-case valusbgctive
over uncertainties.



10.9.4 Interaction with market

e A concern with stochastic and robust solutions is that itiass that the
ISO can compile information about the various uncertasniiehe
market.

e A philosophical concern is that one of the functions of thekatis to
solicit this information implicitly in offer prices.



10.9.5 Comparison to reserve formulations

e Spinning reserve provides “robust” solution in that fedisyowill be
maintained for outages of size up to the amount of procurgerve:

— historically chosen to be the largest “credible” contingeranalogous
to uncertainty set in robust optimization,

— makes decisions “robust” to credible contingencies, but

— with objective given by base-case system.

e Spinning reserve formulation does not consider worst-oagective, so
not literally consistent with standard robust optimizatformulation.



10.9.6 Reliability unit commitment

¢ In addition to procurement of reserves, all ISOs performdditaonal
reliability unit commitment to ensure that there is enough committed
generation capacity available to meet ISO forecast of deman

— uses ISO forecast of demand, instead of day-ahead bids afispgons
of demand by load-serving entities,

— uses information about physical commitments of generaimstead of
financial commitments from day-ahead market,

— represents transmission system more fully,

— typically performed in day-ahead and hour-ahead timefseame

— additional costs of commitment are charged as an uplift toade,
targeted in ERCOT towards demand that occurs in real-tirhgvbs not
bid or specified into the day-ahead market.

e Since commitment of additional capacity in such out-offkeaprocesses
will tend to increase supply and decrease prices, thereaaieus
mechanisms to offset or price this effect:

— reliability adder in ERCOT.



10.10 Summary

e In this section we have considered temporal issues.

e We formulated the unit commitment problem.

e \We considered make-whole rules.

e We investigated the duality gap in the problem and the inagibns for
commitment-supporting prices.

e Transmission constraints and robust and stochastic umbgtonent were
briefly discussed.
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Homework exercises

10.1Use GAMS or MATLAB to solve the ramp-constrained dispatch problem
from Sectionl0.1.2.6 Verify that your solution is consistent with the values in
Section10.1.2.6



10.2Suppose that we have two generatogs= 2, with offers:
v, Of(Pr) = 2,100< Py <400,
v, Ofx(Px) = 5,100< Py < 300,

The generators have ramp-rate limitsdgf= 50 MW/h andA, = 100 MW/h,

respectively. We consider day-ahead dispatch across fivesjmg = 5, with
demands:

t oL 1, 2| 3| 4|, 5

D | 250| 350| 400| 425|450 475

Thet = 0 entry in the table is the demand for the last hour of todagoAl
Po= 150 MW andP,o = 100 MW. We ignore reserves.

(i) Solve the ramp-constrained economic dispatch problem.
(i) What price is paid for energy in each hour?
(iif) What do you notice about the relationship between dednand prices?




10.3In this exercise, we explore a formulation of unit commitiniat avoids
the non-linear objective terms df@.3) to represent min-load and incremental
energy costs. Suppose that the minimum and maximum prastuctipacities of
generatok areP, = 2 andPy = 4, respectively, and that the marginal cost of a
committed generator (in monetary units per MW per interigaf)iven by:

VP € [Ek)ﬁk] — [27 4]7 katP(H(t) =1

(i) For Py € [Py, Py], evaluate:

P[it:Hd /
/ Ofiip(Pe) dR-

Plit:Ek

(i) Show that for alllé:] satisfying the generator constraint
P,z < P« < Pyz and such thaty € {0,1}, we can express the

incremental energy costs as a linear functior[éf] . In particular,
t



show that for all suc){ékk:] we have that:

Plit:Pkt ’
[/ Ofwp(Py) AR | Zke = Pa — 2z«

Plit =Py

(i) Now suppose that there are min-load costs of 6 monataris per
interval. Show that the min-load and incremental energysocan be

expressed as a linear function F&‘] .
t



10.41n this exercise, we explore a formulation of unit commitinbiat avoids
the non-linear objective terms df@.2) to represent start-up costs by defining
additional variables to represent the coupling betweeammats. Together with
the linear expression for the incremental energy costs/aedlin Exercise0.3
this formulation results in a mixed-integer linear progrand also allows for
convenient representation of minimum up- and down-timestramts.
Consider a unit commitment formulation for tomorrow withdrvals
t=1,...,nt, We continue to assume that represents the commitment status of
generatok in intervalt, with generatok on in intervalt if z; = 1 and off in
intervalt if z¢ = 0. As previously, we also assume that the commitment status
Zo for the intervalt = 0 at the end of today is known and specified. We define
additional “start-up” variablesy,t = 1,...,nt that will enable a linear
representation of start-up costs, at the expense of cgeafiormulation with
more variables. Collect the entrigg, u,t = 1,...,ny together into vectorz
anduy.

() Consider the following (linear) “start-up” inequalitonstraints:

Vt=1,....nr, Uk > Ze— Z(t—1),
Vti=1,...,nt,u¢ > O,

and the following (linear) “start-up” expression to evdkithe start-up



Costs:

nr
Zﬁaukt-
t:

Assume thag; > 0,Vt = 1,...,nr. Show that, for every binary vecta,
the minimum of this start-up expression over continugysubject to
the start-up inequality constraints, is equal16.¢). Moreover, show
that if s¢ > O,Vt = 1,...,ny then the minimizets is unique and is a
binary vector. That is, show that:

nr
vz € [0,1]"™, leﬂzkt(l— Z(t-1))
t=

nr
= min Skt Ukt
UxeRT =

and show that, for any binaw, if s¢ > 0,vt = 1,...,ny then the
minimizeruy is unique and binary. That is, the non-linear formulation of
the objective 10.2 can be replaced by a formulation that has a linear
objective and constraints and is therefore solvable as edrixteger

linear program.

Ut >0, Yt=1,....,nt

Uyt > Zk'[_zk7(t—1)7 vt = 17'-'7nT; }



(i) Many generators haveinimum up- and down-time requirements. A
minimum up-time requirement specifies that, once commitjederator
k stays on for at least, salyy intervals, and once it is switched off, it
must stay off for at least, sa¥j intervals. Without loss of generality, we
need only consider &£ Ly, /x < nr. Suppose that generatiors either:

e on inintervalt = 0 and has been on for at least its minimum up time, or
e Off in intervalt = 0 and has been off for at least its minimum down
time,
so that we can ignore minimum up- and down-time requiremesing
to earlier commitment status. Then the minimum up- and dome-
requirements can be expressed as follows:
o Vt'=1,....,ny,if z v_1) = 0 andzy = 1 thenz; = 1 for
I=t'+1,.... mn{t'+L¢—1ns}, and
o Vt'=1,....,ny,if z v_1) = 1 andzy = 0 thenz; = O for
i=t'+1,.... mn{t'+4—1,n}.
(The representation of minimum up- and down-time requiresne
relating to earlier commitment status is similar.)



Now consider the following minimum up- and down-time inelijya
constraints:
t

Z Ui < Zg,Vt=Lg,...,NT,
i=t—Lx+1

t
2 Ui < l_zk,(t—fk)7Vt:£k7°'°7nT-
i=t—f+1

Suppose that is binary. Show that, satisfies the minimum up- and
down-time requirements if and only if there existsauch thatz anduy
satisfy the start-up inequality constraints from the last pnd the
minimum up- and down-time inequality constraints.



10.5Suppose that we have two generatogs= 2, with offers:

v, Of(Pr) = 2,200< Py <400,
v, Ofx(Px) = 3,50< Py <150
There are no ramp-rate limits nor min-load costs, but the-sfacosts are:
sy = 100Qt=1,...,nr,
Sy = 200t=1,...,ny.
We consider day-ahead commitment and dispatch across tes, hp = 10,
with demands:
tf O, 1| 2| 3| 4| 5| 6| 7| 8| 9| 10
D; | 200| 350| 500| 400| 300| 200| 300| 400| 500| 350| 200

Thet = 0 entry in the table is the demand for the last hour of todagoAl
Po = 200 MW, andP,o = 0 MW with generator 2 out-of-service at the end of
today. We ignore both ramp-rates and reserves.




(i) Solve the unit commitment problem and evaluate the tat of
commitment and dispatch.

(i) What are the energy pricenlﬁkMP obtained from the solution of the
convex ProblemX0.7) obtained by fixing the integer variables at their
optimal values from the solution of unit commitment and oypzing Py
andPy?

(i) What is the make-whole payment for each generator thaseprices
from Part(ii) ?

(iv) Find the maximizer of the dual Problerh.1]) obtained by dualizing
the demand constraint in each hour. (Hint: What price widlice
generator 2 to be indifferent between being off and beingtdulla
capacity in intervals 2 and 8. What is the price in the othtarials?)

(v) What is the make-whole payment for each generator whieeare set

equal to the convex hull price%HP?



10.6Consider the example four-line four-bus system from Sa®ié and
illustrated in Figurel0.6 Assume that the only limiting transmission element is
the line from bus 2 to bus 3, with capacipy; = 300 MW.

1 2

0 3 Fig. 10.6. Four-line
four-bus network for

Do @ homework exercise.



Recall that if we set = O to be the slack/price reference bus andpes0 to be
the angle reference bus then we can express power balansteatonand the
flow constraint in each intervalas:

—P]_t — P2t — P3t = _D0t7
0.2P;; +0.4P; — 0.2Py < Pos,

wherePy is the (average) power production by gener&tor intervalt, andDg

is the (average) demand at bus O in intetval

We consider day-ahead dispatch across four haowrs; 4, with demands only at
bus O:

t 0 1 2 3| 4
D | 500| 1200| 3000| 1200| 500

e Thet = 0 entry in the table is the demand for the last hour of today.

e Thet =1,...,4 entries are the demands for the first four hours of
tomorrow.

e Also, P, =500 MW is the production of generator 2 in the last hour of
today, and the other generators our off during the last hbtoday.

e We ignore reserves, min-load costs and min-load limits,rangp-rate
constraints.




e The start-up and incremental energy offers are specified by:

Vt=1,...,4,5; = 10,000 ¥Py € [0,1500, Ofy(Py) = $40/MWh
Vt=1,...,4,5 = 10,000, ¥Py € [0,1000, Ofx(Px) = $20/MWh
Vt=1,...,4, 5 = 10,000 VPy € [0,1500, Ofx(Py) = $50/MWh

() Using the formulation for start-up variables and inélijyaonstraints
from the first part of Exercis&0.4 use GAMS or MATLAB to solve the
transmission constrained, offer-based unit commitmenthig system
for optimal valuesz", P*, andu~,.

(i) Calculate the LMPsn'F:kMP, for the offer-based optimal power flow
problems for each hourobtained by fixing the variablesandu at their
optimal valuesz* andu*. That is, solve Problentl(Q.7).

(iif) Calculate the make-whole payments based on the LMRat 1B, for

o T
eachk evaluate ma>{0, fi ( [PZI*(D — [T['@MP] Plj}, wherefy is the total
K
cost for generatdk in the four hours anaitjngP Is the vector of LMPs at
busk for the four hours.

(iv) Solve the continuous problem obtained by relaxing timaty variablexz

andu to being continuous. Calculate the resulting Lagrangeipligdts



Ay on supply—demand balance at each genekattoeach intervat. As
in Exercise4.9, these Lagrange multipliers equal the dual maximizer of

the Lagrangian relaxation problem obtained by dualizirggsystem
constraints.

(v) Calculate the make-whole payments based on the duakhnizseqi
obtained in the previous part and convex hull priugé'”:. That is, for

y T
eachk evaluate max 0, fk([PZE —[T[%HP] P o

(vi) Compare the total make-whole payments based on theezdmvl prices
to the total make-whole payments based on the LMPs.
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