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10
Unit commitment

(i) Temporal issues,
(ii) Formulation,
(iii) Mixed-integer programming,
(iv) Make-whole payments,
(v) Lagrangian relaxation,

(vi) Duality gaps,
(vii) Role of prices and implications for investment decisions,
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(viii) Transmission constraints,
(ix) Robust and stochastic unit commitment,
(x) Homework exercises.
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10.1 Temporal issues
• So far we have considered particular dispatch intervals.
• Demand has been represented by its assumed known average value over

the dispatch interval, or its value at the end of the interval, ignoring
whether this demand was occurring:
– “now” (that is, in the next few minutes or next dispatch interval), or
– in the future (such as during an hour of tomorrow).

• Supply has been represented by assuming that unit commitment decisions
had already been taken:
– each generator’s commitment status is fixed.

• In this section we will generalize this in several ways, by considering:
(i) variation of demand over time,

(ii) ramp rates,
(iii) unit commitment, and
(iv) day-ahead and real-time markets.

• We will discuss the relationship between day-ahead and real-time markets
in Section11.
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10.1.1 Variation of demand over time
• Suppose that we are considering the average demand in each dispatch

interval or period, say each hour, for tomorrow:
– (as in Section8.3.2, in some formulations we might prefer to consider

the demand power level at theendof each interval instead of
representing the average level, with ramping of the demand assumed to
be linear between boundaries of intervals.)

• We are planningday-ahead.
• For now, we will continue to ignore unit commitment decisions.
• For each hourt = 1, . . . ,nT , we have a specification or a forecast of the

average power demand,Dt in dispatch intervalt.
• We need to satisfy average power balance each hour (and, of course,

continuously, but this will be achieved by thereal-time market).
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10.1.2 Ramp-constrained economic dispatch
10.1.2.1 Decision variables

• We generalize our previous formulation so thatPkt represents the average
power generated by generatork= 1, . . . ,nP in hourt = 1, . . . ,nT :
– (if we are considering a formulation where we are targettingthe demand

at the end of each interval, then we would similarly considerthe
generation level at the end of each interval instead of representing the
average level of generation, with ramping of generation assumed to be
linear between boundaries of intervals.)

• We collect the entriesPkt together into a vectorPk ∈ R
nT .

• As previously, we can also consider the spinning reserve andlet Skt be the
amount of spinning reserve provided by generatork in hourt.

• We collect the entriesSkt together into a vectorSk ∈ R
nT .

• We collectPk andSk together into a vectorxk ∈ R
2nT .

• We collect the vectorsxk together into a vectorx∈ R
2nPnT .

• In some examples, we will only consider energy and not reserve, in which
case, we re-definex= P∈ R

nPnT and re-define any associated functions,
matrices, and vectors appropriately.
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10.1.2.2 System constraints
• Typical system equality constraints would include averagepower balance

in each hour of tomorrow, which we will represent in the formAx= b.
• For example:

– for simplicity, if we ignore reserve, thenx= P=





P1
...

PnP



 ∈ R
nPnT , with

Pk =





Pk1
...

PknT



 ∈ R
nT ,

– let D ∈ R
nT be a vector of forecasts of average demand in each hour,

– let A= [−I · · · −I ] andb=−D,
– thenAx= b represents average power balance in each hour.

• Typical system inequality constraints would include reserve requirements
and transmission constraints in each hour, which we will represent in the
form Cx≤ d.
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System constraints, continued
• We will continue to useλ⋆ andµ⋆ for the Lagrange multipliers on the

system equality and inequality constraints, respectively.
• However, we have changed the definition of the system constraints:

– in Section9, the vectorλ⋆, for example, represented the Lagrange
multipliers on the system constraints of power balance at each location,
but was implicitly applying for just one given time or interval, so its
subscriptk related to location, whereas

– for most of the development of temporal issues, the vectorλ⋆ will
represent the Lagrange multipliers on the system constraints of power
balance for each time, so it will have subscriptt relating to time, but not
location,

– in Section10.8, we will consider both location and temporal issues, so
λ⋆ will have subscripts for both location and time.
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10.1.2.3 Generator constraints including ramp-rate constraints

• Each generatork has a feasible operating setSk.
• In addition to minimum and maximum generation and spinning reserve

constraints, there can beinter-temporal constraints in the specification
of Sk that limit the change in average production from hour to hour.

• For example, if the ramp-rate limit is 1 MW per minute then thegenerator
constraints for generatork could be:

∀t = 1, . . . ,nT , Pk ≤ Pkt ≤ Pk,

∀t = 1, . . . ,nT , 0≤ Skt ≤ 10,
∀t = 1, . . . ,nT , Pk ≤ Pkt+Skt ≤ Pk,

∀t = 1, . . . ,nT , Pk,(t−1)−60≤ Pkt ≤ Pk,(t−1)+60−Skt,

• wherePk0 andSk0 are the power and reserve for the last hour of today, and
• where we have required that procured spinning reserve be available for

deployment within any one 10 minute period throughout the hour.
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Generator constraints including ramp-rate constraints, continued
• As previously, we can specify the feasible operating set forgeneratork in

the form:

Sk = {xk ∈ R
2nT |δk ≤ Γkxk ≤ δk},

• whereΓk ∈ R
rk×2nT , δk ∈ R

rk, andδk ∈ R
rk.

• Other formulations of generator constraints besides our example also fit
into this form.

Title Page ◭◭ ◮◮ ◭ ◮ 10 of 160 Go Back Full Screen Close Quit



10.1.2.4 Generator costs
• Generatork has a cost functionfk for its generation over the hours

t = 1, . . . ,nT .
• Typically, if a unit is committed then the production in one hour does not

(directly) affect the costs in another hour so that the costsare additively
separable across time:

∀xk, fk(xk) =
nT

∑
t=1

fkt(xkt),

• wherexkt =

[

Pkt
Skt

]

.

• Typically, we would expect thatfkt does not vary significantly from hour
to hour, except for:
– temperature and pressure related changes, and
– significant change in fuel availability or cost.

• This formulation ignores start-up and min-load costs:
– will be included later when we explicitly consider unit commitment.

Title Page ◭◭ ◮◮ ◭ ◮ 11 of 160 Go Back Full Screen Close Quit



10.1.2.5 Problem formulation
• The resulting ramp-constrained economic dispatch problemis in the form

of our generalized economic dispatch problem:

min
∀k,xk∈Sk

{ f (x)|Ax= b,Cx≤ d}

= min
x∈R2nPnT

{ f (x)|Ax= b,Cx≤ d,∀k,δk ≤ Γkxk ≤ δk}.

• If f is convex then the problem is convex and can be solved with standard
algorithms for minimizing convex problems.

• For example, iff is linear then the problem is a linear program:

min
x∈R2nPnT

{

c†x
∣

∣

∣
Ax= b,Cx≤ d,∀k,δk ≤ Γkxk ≤ δk

}

. (10.1)

• Note that this formulation does not exactly match any specific market
design, but will illustrate temporal coupling:
– is similar to some European day-ahead markets, including the

EUPHEMIA market coupling algorithm, but those markets alsoinclude
other features such as “minimum income condition constraints.”
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10.1.2.6 Ramp-constrained example
• Suppose that we have two generators,nP = 2, with costs:

∀t, f1t(P1t) = 2P1t,100≤ P1t ≤ 300,
∀t, f2t(P2t) = 5P2t,100≤ P2t ≤ 300.

• The generators have ramp-rate limits of∆1 = 200 MW/h and∆2 = 100
MW/h, respectively.

• We consider day-ahead dispatch across two hours,nT = 2, with demands:

t 0 1 2

Dt 200 400 600

• Thet = 0 entry in the table is the demand for the last hour of today.
• Thet = 1,2 entries are the demands for the first two hours of tomorrow.
• Also, P10= 100 MW andP20= 100 MW are the generations in the last

hour of today.
• We ignore reserve requirements so that the only system constraint is

supply-demand balance for power.
• We solve the ramp-constrained economic dispatch problem.
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Ramp-constrained example, continued
• The generator constraints for generatork= 1,2 are:

∀t = 1,2, 100= Pk ≤ Pkt ≤ Pk = 300,
∀t = 1,2, Pk,(t−1)−∆k ≤ Pkt ≤ Pk,(t−1)+∆k,

• which we can represent in the formSk = {xk ∈ R
2|δk ≤ Γkxk ≤ δk},

• by definingδk ∈ R
4, Γk ∈ R

4×2, andδk ∈ R
4 as:

δk =







Pk
Pk,0−∆k

Pk
−∆k






,Γk =







1 0
1 0
0 1

−1 1






,δk =









Pk
Pk,0+∆k

Pk
∆k









.

• We label the Lagrange multipliers on these generator inequality

constraints as, respectively,µ
k
=











µ⋆
k1capacity

µ⋆
k1ramp

µ⋆
k2capacity

µ⋆
k2ramp











,µk =









µ⋆k1capacity
µ⋆k1ramp
µ⋆k2capacity
µ⋆k2ramp









.
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Ramp-constrained example, continued
• Since generator 1 has lower costs, we would prefer to use it instead of

generator 2.
• Since the ramp-rate limit for generator 1 is∆1 = 200, for hourt = 1, we

consider setting:

P11 = P10+∆1,

= 100+200,
= 300,
= P1.

• With P11= 300= P1, to meet demand we would have:

P21 = D1−P11,

= 400−300,
= 100.
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Ramp-constrained example, continued
• However, we now have a problem in hourt = 2, since:

– generator 1 would be at its maximumP1,
– generator 2 can only increase by∆2 = 100 from hour 1 to hour 2, so that

P22≤ P21+∆1 = 100+100= 200 MW, and
– supply would then be 100 MW less than demand in hour 2.

• SettingP11= 300 does not work!
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Ramp-constrained example, continued
• Instead, we need both generatorsk= 1,2 each producing at their capacity

of Pk = 300 MW in hour 2 to meet the demand, so thatP12= P22= 300
MW.
– Working backwards in time, generator 2 must be producing at least 200

MW in hour 1 because of its ramp rate constraint, soP21≥ 200 MW.
– Since generator 2 has higher costs, we do not want it to produce more

than necessary, and so we will try to see if we can setP21= 200 MW.
– In this case, generator 1 must produceP11= 200 MW in hour 1 to meet

demand ofD1 = 400.
– This solution satisfies the ramp-rate constraints and is optimal.

• The ramp-constrained economic dispatch solution is:

t 0 1 2

Dt 200 400 600
P⋆

1t 100 200 300
P⋆

2t 100 200 300
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Ramp-constrained example, continued
• What are the values of the Lagrange multipliers?
• Standard linear programming software would provide the values.
• However, to answer this question without linear programming software,

we will consider several of the first-order necessary conditions.
• Generatork= 1:

– neither at its maximum nor minimum in hour 1, is at its maximumin
hour 2, and no ramp constraints binding across any hours,

• Generatork= 2:
– neither at its maximum nor minimum in hour 1, is at its maximumin

hour 2, and the increasing ramp constraints are binding across two
successive pairs of dispatch intervals, fromt = 0 to t = 1 and fromt = 1
to t = 2.
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Ramp-constrained example, continued
• Generator 1:

is at its maximum in hour 2, and
no other binding constraints.

• That is the binding generator constraint for generator 1 is:

P12≤ 300, (Lagrange multiplierµ⋆12capacity),

• By complementary slackness, all Lagrange multipliers on generator
constraints for generator 1 are zero, except for the Lagrange multiplier on
this one binding constraints, so that
µ⋆

1
= 0,µ⋆11capacity= 0,µ⋆11ramp= 0,µ⋆12ramp= 0.
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Ramp-constrained example, continued
• By the first-order necessary conditions for generator 1 in hour 1

associated withP11:

0 = ∇f11(P
⋆
11)−λ⋆

1− [Γ11]
†µ⋆

1
+[Γ11]

†µ⋆1,

= ∇f11(P
⋆
11)−λ⋆

1,

= 2−λ⋆
1,

• where:
Γ1 is the generator constraint matrix for generator 1,

Γ11=







1
1
0

−1






is the column ofΓ1 associated withP11, and

µ⋆
1
= 0, while the only non-zero entry ofµ⋆1 is µ⋆12capacity.

• That is,λ⋆
1 = 2.
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Ramp-constrained example, continued
• Generator 2:

is at its maximum in hour 2,
has its ramp rate constraint binding from hour 0 to hour 1, and
has its ramp rate constraint binding from hour 1 to hour 2.

• That is the binding generator constraints for generator 2 are:

P22 ≤ 300, (Lagrange multiplierµ⋆22capacity),

P21 ≤ P20+∆2, (Lagrange multiplierµ⋆21ramp),

P22 ≤ P21+∆2, (Lagrange multiplierµ⋆22ramp).

• By complementary slackness, all Lagrange multipliers on generator
constraints for generator 2 are zero, except for the Lagrange multipliers
on these three binding constraints, so thatµ⋆

2
= 0,µ⋆21capacity= 0.
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Ramp-constrained example, continued
• By the first-order necessary conditions for generator 2 associated with

P21:

0 = ∇f21(P
⋆
21)−λ⋆

1− [Γ21]
†µ⋆

2
+[Γ21]

†µ⋆2,

= ∇f21(P
⋆
21)−λ⋆

1−







1
1
0

−1







†










µ⋆
21capacity

µ⋆
21ramp

µ⋆
22capacity

µ⋆
22ramp











+







1
1
0

−1







†








µ⋆21capacity
µ⋆21ramp
µ⋆22capacity
µ⋆22ramp









,

= ∇f21(P
⋆
21)−λ⋆

1−µ⋆
21capacity

−µ⋆
21ramp

+µ⋆
22ramp

+µ⋆21capacity+µ⋆21ramp−µ⋆22ramp,

= ∇f21(P
⋆
21)−λ⋆

1+µ⋆21ramp−µ⋆22ramp,

by complementary slackness, sinceµ⋆
2
= 0,µ⋆21capacity= 0,

= 5−2+µ⋆21ramp−µ⋆22ramp,
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Ramp-constrained example, continued
• where:

Γ2 is the generator constraint matrix for generator 2,

Γ21=







1
1
0

−1






is the column ofΓ2 associated withP21, and

µ⋆
2
=











µ⋆
21capacity

µ⋆
21ramp

µ⋆
22capacity

µ⋆
22ramp











andµ⋆2 =









µ⋆21capacity
µ⋆21ramp
µ⋆22capacity
µ⋆22ramp









are the Lagrange multipliers

on the generator constraints for generator 2, and we know that:

µ⋆
2
= 0, µ⋆21capacity= 0.

• Therefore,µ⋆22ramp= µ⋆21ramp+3.
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Ramp-constrained example, continued
• By the first-order necessary conditions for generator 2 associated with

P22:

0 = ∇f22(P
⋆
22)−λ⋆

2− [Γ22]
†µ⋆

2
+[Γ22]

†µ⋆2,

= ∇f22(P
⋆
22)−λ⋆

2+µ⋆22capacity+µ⋆22ramp,

by complementary slackness,
= 5−λ⋆

2+µ⋆22capacity+µ⋆22ramp,

• where:
Γ2 is the generator constraint matrix for generator 2,

Γ22=







0
0
1
1






is the column ofΓ2 associated withP22, and

µ⋆
2

andµ⋆2 are the Lagrange multipliers on the generator constraints for
generator 2.

• Therefore,λ⋆
2 = 5+µ⋆22capacity+µ⋆22ramp.
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Ramp-constrained example, continued
• Summarizing:

µ⋆22ramp = µ⋆21ramp+3,

λ⋆
2 = 5+µ⋆22capacity+µ⋆22ramp.

• These are two equations in four variables.
• Let’s try to find a non-negative solution for these two equations in the

four variablesµ⋆22ramp,µ
⋆
21ramp,µ

⋆
22capacity, andλ⋆:

We setµ⋆21ramp = 0, hypothesizing that constraint is “just” binding,

Therefore:µ⋆22ramp = µ⋆21ramp+3,
= 3,

We setµ⋆22capacity = 0, hypothesizing that constraint is “just” binding,

Therefore:λ⋆
2 = 5+µ⋆22capacity+µ⋆22ramp,

= 5+0+3,
= 8.
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Ramp-constrained example, continued
• The solution is:

µ⋆21ramp = 0,

µ⋆22ramp = 3,

µ⋆22capacity = 0,

λ⋆
2 = 8.

• These particular values constitute one of multiple solutions for the
Lagrange multipliers.

• Any other solution of the two equations having non-negativevalues for
the Lagrange multipliers on the inequality constraints also provides
Lagrange multipliers for this problem.
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10.1.3 Ramp-constrained offer-based economic dispatch
10.1.3.1 Generator offers

• Generatork makes an offer for its generation.
• The offer is usually required to be separable across hours.
• Sometimes market rules require the offer for each hourt to be fixed

independent oft (as in PJM) and sometimes the offer can vary from hour
to hour (as in ISO-NE, NYISO, and ERCOT):
– market rules on fixed versus varying offers can affect the exercise of

market power,
– discussed in market power course,

www.ece.utexas.edu/ ˜ baldick/classes/394V_market_power/EE394V_

• Assuming that offers reflect marginal costs, the offer for generatork is:

∇fkt, t = 1, . . . ,nT ,

• wherexkt = [Pkt ] for simplicity, ignoring reserve and where we will
typically assume that the marginal costs do not vary with time, even
though the notation allows for such variation.
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10.1.3.2 Offer-based economic dispatch and prices
• Using the offers, we can solve the first-order necessary and sufficient

conditions for offer-based ramp-constrained economic dispatch:

min
x∈R2nPnT

{ f (x)|Ax= b,Cx≤ d,∀k,δk ≤ Γkxk ≤ δk}.

• The solution involves dispatchx⋆k for each generatork and Lagrange
multipliers:
λ⋆ andµ⋆ on system constraints, and
µ⋆

k
andµ⋆k on generator constraints for each generatork.

• By Theorem8.1 in Section8.12.4.4, dispatch-supporting prices can be
constructed as previously:πLMP

xk
=−[Ak]

†λ⋆− [Ck]
†µ⋆.

• To summarize: the generalization of the problem to include more
complicated generator constraints and more complicated system
constraints does not fundamentally complicate the pricingrule, so long as
the generalized economic dispatch problem is convex:
– we will qualify this statement in the context ofanticipatingprices.
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10.1.3.3 Ramp-constrained example
• Continuing with the previous example from Section10.1.2.6, assume that

the generators offer at their marginal costs in each hour:

∇f1t(P1t) = 2,100≤ P1t ≤ 300, t = 1,2,
∇f2t(P2t) = 5,100≤ P2t ≤ 300, t = 1,2.

• From the previous analysis, we have thatπLMP
Pk

= λ⋆ and:

t 1 2

Dt 400 600
P⋆

1t 200 300
P⋆

2t 200 300

πLMP
Pkt

2 8
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Ramp-constrained example, continued

• The price for energy in hourt = 1 is πLMP
Pk1

= λ⋆
1 = $2/MWh:

– generator 1 with offer price∇f11(P⋆
11) = $2/MWh is marginal, but

– the price islower than the offer price of∇f21(P⋆
21) = $5/MWh for

generator 2, even though this generator is dispatched aboveits
minimum.
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Ramp-constrained example, continued
• Generator 2 is operatingaboveits minimum in hourt = 1, so it is

operating at a loss in hourt = 1 and could reduce its operating losses if it
operated at its minimum in hourt = 1.

• Why would generator operate above its minimum in hourt = 1 when the
price is only $2/MWh?

• The price for energy in hourt = 2 is πLMP
Pk2

= λ⋆
2 = $8/MWh, which is

higher than the higher offer price of both generators!
• The price in hourt = 2 is necessary to induce generator 2 to produce at a

loss in hourt = 1:
– The infra-marginal rent in hourt = 2 equals the loss in hourt = 1 for

generator 2.
– Generator 2 is indifferent to any levels of production that involve

P22−P21= ∆1.
– The prices support the dispatch but do not strictly support dispatch.
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Ramp-constrained example, continued
• Generator 2 is marginal in hourt = 2 in that changes to its offer price

∇f22(P⋆
22) in hourt = 2 would affect the priceλ⋆

2 in hourt = 2:
– the price in hourt = 2 is λ⋆

2 = ∇f22(P⋆
22)+(∇f21(P⋆

21)−∇f11(P⋆
11)).

• But note that offers of generators 1 and 2 in hourt = 1 also affect the
price in hourt = 2:
– we might say that generators 1 and 2 are also “marginal” in hour 1, but

this sense is somewhat different to the earlier use of “marginal” since
offer prices∇f11(P⋆

11) and∇f21(P⋆
21) of generators 1 and 2 in hourt = 1

are both involved in setting the price for hourt = 2.
• Prices are above the highest marginal cost because there arebinding

ramp-rate constraints.
– We also saw in Homework Exercise9.2that prices can also rise above

the highest offer price in the presence of binding transmission
constraints.
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10.1.3.4 Discussion
• This example is somewhat unrealistic for several reasons:

– Ramp-rate constraints are typically not binding across multiple hours in
markets such as ERCOT (but increased wind generation may change
this in the morning ramp-up of demand and the evening ramp-down of
demand, and evening ramp up of net load in California alreadyinvolves
large ramps across multiple hours).

– The more expensive generator has the tighter ramp-rate constraint.
– Some day-ahead markets, such as the ERCOT market, do not represent

ramp-rate constraints (several other US ISOs do represent ramp rates in
day-ahead).

• This particular example requiresanticipationacross multiple intervals (in
this case hours) to find the optimal solution:
– Anticipation across multiple intervals is not always necessary for

finding the ramp-constrained optimum.
– See homework exercise10.5.
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Discussion, continued
• As will be discussed in Section10.2, day-aheadmarkets provide all

prices to market participants for a full day at once and can therefore
support anticipation:
– but, as mentioned, the ERCOT day-ahead market, for example,does not

(currently) represent ramp-rate constraints,
– several other markets do represent ramp-rate constraints in day-ahead.

• Somereal-time markets do represent ramp-rate constraints across several
(five minute) dispatch intervals in so-calledlookaheaddispatch:
– California market, PJM, and MISO,
– The typical arrangement with lookahead dispatch in the real-time

market is to solve multi-interval dispatch (and in some cases unit
commitment) for several intervals but to only commit to prices and
dispatch for the next interval.
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Discussion, continued
• If market participants do not anticipate prices in subsequent intervals (or

if these prices are not implemented) then the market cannot incentivize
sequences of dispatch through time that involve anticipation:
– Real-time markets can represent ramp-rate constraints on change in

generation between most recent interval and the next interval (see
Homework Exercise10.2), but

– Anticipation is required to incentivize actions when, for example, there
are binding ramp rate constraints betweentwo or moresuccessivepairs
of dispatch intervals (as was necessary in the ramp-constrained example
in Section10.1.3.3).

• Despite the implications of anticipation, the example illustrates that
inter-temporal constraints do notper sepresent fundamental difficulties
for pricing so long as future prices are anticipated:
– ramp-constrained economic dispatch is convex.
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Discussion, continued
• In the next section, we will see that non-convexities introduced by our

formulation of unit commitment decisions do pose difficulties for pricing.
• Analogously, “minimum income condition constraints” in some European

market designs such as EUPHEMIA also pose difficulties for pricing.
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10.2 Formulation of unit commitment
• Now we consider the commitment of generators.
• In US day-ahead markets, the ISO makes decisions today about

commitment, dispatch, and prices for tomorrow, solving theday-ahead
unit commitment problem, resulting in:
– a commitment decision for each participating generator foreach hour of

tomorrow,
– an energy dispatch decision and ancillary services decisions for each

generator for each hour of tomorrow, and
– prices for energy and ancillary services for each hour of tomorrow.

• That is, day-ahead prices are announced for all hours of tomorrow,
allowing for anticipation.
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Formulation of unit commitment, continued
• In contrast, in several European markets and the Australianmarket,

“decentralized” commitment decisions are typically made by generation
owners:
– the optimization formulation we will develop would typically be solved

by individual owners for their own portfolio, even if there is also a
day-ahead economic dispatch market, while the day-ahead EUmarket
itself is similar to, but not exactly the same as, the formulation of the
ramp-constrained economic dispatch formulation in the last section,

– in US markets it is also generally possible for individual generation
owners to make such decentralized commitment decisions.

• Our motivation for developing centralized unit commitmentis that the
cost of incorrect decentralized commitment decisions could be large,
particularly when transmission constraints are binding.
– However, the cost of incorrect decentralized commitment decisions is

an empirical question that has not been studied in a systematic way,
except for particular case studies such as in the ERCOT “backcast”
study, which estimated hundreds of millions of dollars in savings.
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Formulation of unit commitment, continued
• Unlike the economic dispatch problems and the generalizations we have

considered so far, unit commitment requiresinteger variables to represent
the decisions.

• The integer variables present difficulties in two related ways:
(i) solving the problem, and

(ii) non-existence of dispatch- (and commitment-) supporting prices.
• In Section10.3, we will briefly describe mixed-integer linear

programming software for solving these problems, as now used by all
ISOs in the US.

• In Section10.4, we will introduce make-whole payments as an approach
to provide incentives to generators to commit and dispatch consistent with
the commitment and dispatch solution obtained by the ISO.
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Formulation of unit commitment, continued
• In Section10.5, we will then applyLagrangian relaxation (introduced

in Section4.7.4), by dualizing the supply–demand constraints and
seeking the dual maximizer, as an approach to approximatelysolving the
unit commitment problem.

• Lagrangian relaxation will help us to understand:
– the difficulty in solving unit commitment problems, and
– why the previous approach to finding dispatch-supporting prices for

convex problems using Theorem8.1from Section8.12.4.4works for
intertemporal issues such as ramping constraints, but doesnot (quite)
work in the context of unit commitment.

– the discussion generalizes the case considered in Section4.8.3.
• In the exercises, we will also explore alternative formulations of unit

commitment and more computationally efficient approaches to finding the
dual maximizer:
– see Exercises10.3, 10.4, and10.6.
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10.2.1 Decision variables
• We will consider a typical unit commitment formulation where decisions

are made for each hour over a time horizon:
– day-ahead unit commitment involves 24 hours for tomorrow.

• As in the ramp-constrained economic dispatch formulation in
Section10.1.2, assume that generators can provide energy and one type of
reserve, so the continuous decision variables for generator k in hour

t = 1, . . . ,nT , arexkt =

[

Pkt
Skt

]

, typically with nT = 24.

• We collect the entriesxkt together into a vectorxk ∈ Z
2nT and collect the

vectorsxk together into a vectorx∈ Z
2nPnT .

• In addition to these continuous decision variables, we mustconsider
representation of the decision of a generator to be on or off.

• We will represent this withbinary variables:

zkt =

{

0, if generatork is off in hourt,
1, if generatork is on in hourt.

• We collect the entrieszkt together into a vectorzk ∈ Z
nT and collect the

vectorszk together into a vectorz∈ Z
nPnT .
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Decision variables, continued
• Other more general representations may be necessary in somecases:

– combined-cyclegenerators typically have multiple operating modes,
requiringinteger or several binary variables to represent the
commitment decision for each hour,

– additional continuous generator variables may be defined toallow for
convenient representation of the objective or constraints.

• Other market designs, such as EUPHEMIA also use binary variables to
represent some issues.

• Various “tricks” are typically used in the specification of problems with
integer and binary variables in order to facilitate solution:
– some of these tricks are proprietary or not widely known, and
– we will simply consider a straightforward formulation in the main

discussion,
– we will explore some of the tricks in Exercises10.3, 10.4, and10.6:
◦ will involve expanding the decision vector to include additional

continuous generator variablesu.
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10.2.2 Generator constraints
• We can consider the requirement forzkt to be binary as consisting of two

requirements:

zkt ∈ {zkt ∈ R|0≤ zkt ≤ 1},
zkt ∈ Z.

• The first requirement thatzkt be between 0 and 1 is an example of a
generator constraint that can be represented with linear inequalities.
– This fits our previous formulation for economic dispatch.
– As previously, suitableδk,δk, andΓk can be found to express such

generator constraints in the form:

δk ≤ Γk

[

zk
xk

]

≤ δk.

– For example, the constraint 0≤ zkt ≤ 1,∀t could be expressed as:

0≤ [ I 0 ]

[

zk
xk

]

≤ 1.
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Generator constraints, continued
• The requirement that generatork is either off (and not producing) or on

(and producing between minimum and maximum capacity limits) can
also be expressed with linear inequalities:
– ignoring reserves, the requirements are:

Pkzkt ≤ Pkt ≤ Pkzkt,∀t,

wherePk andPk are the minimum and maximum production capacities;
– including one type of reserve specified bySkt, the requirements are:

Pkzkt ≤ Pkt ≤ Pkzkt,∀t,
Skzkt ≤ Skt ≤ Skzkt,∀t

Pkzkt ≤ Pkt+Skt ≤ Pkzkt,∀t,

whereSk andSk are the lower and upper limits on reserve; and
– both of these requirements can be expressed in the form:

δk ≤ Γk

[

zk
xk

]

≤ δk.
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Generator constraints, continued
• For example, consider a simplified single interval model including energy

and reserve, withPk = [Pk1 ], Sk = [Sk1 ], andxk =

[

Pk1
Sk1

]

.

• We can express the generator constraints in the formδk ≤ Γk

[

zk
xk

]

≤ δk

by definingΓk ∈ R
rk×3, δk ∈ R

rk, andδk ∈ R
rk, with rk = 6, as follows:

Γk =



















−Pk 1 0
−Pk 1 0
−Sk 0 1
−Sk 0 1
−Pk 1 1
−Pk 1 1



















,δk =















0
−M

0
−M

0
−M















,δk =















M
0

M
0

M
0















,

• whereM is a sufficiently large number (and the constraints corresponding
to these entries are effectively ignored).

• With nT periods,rk = 6nT .
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Generator constraints, continued
• Summarizing, the requirement thatzkt be integer-valued and the

requirements onxk yields a non-convex feasible operating set for each
generator:

Sk =

{[

zk
xk

]

∈ Z
nT ×R

2nT

∣

∣

∣

∣

δk ≤ Γk

[

zk
xk

]

≤ δk

}

.

• Although the constraintsδk ≤ Γk

[

zk
xk

]

≤ δk are convex, the integrality of

zk makes the feasible setSk non-convex, as in the example in
Section4.8.3.

• This means that the unit commitment problem is a non-convex problem.
• The non-convexity makes solution difficult and complicatesthe pricing

rule as discussed in Section4.8.
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10.2.3 Generator costs
• We now assume that the cost function for generatork depends on bothzk

andxk, so thatfk : ZnT ×R
2nT → R.

• For convenience, we will sometimes assume thatfk has been extrapolated
to a functionfk : RnT ×R

2nT → R.
• The cost function for generatork represents:

the cost of producing energy and of providing reserve (already
considered in the dispatch problem),

start-up costs, and
no-load or min-load costs(typically associated with auxiliary costs as

illustrated in Figure5.2).
• Because start-up costs can depend onchangesin commitment status, the

cost function is no longer (completely) additively separable.
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Generator costs, continued
• However, costs can usually be considered to be the sum of costs

associated with:
start-up costs, expressible in terms of the integer variableszk, (but not

additively separable across time in the most straightforward
formulation),

no-load or min-load costs, additively separable across time, and
expressible in terms of the integer variableszkt, t = 1, . . . ,nT , and

incremental energy and reserves costs, additively separable across time,
and expressible in terms of the continuous production variablesxkt
in each intervalt = 1, . . . ,nT for which the unit is running.
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10.2.3.1 Start-up costs
• For a generator with a steam boiler, start-up costs include the cost of the

energy needed to warm up the boiler:
– this cost will vary with the time since last shut-down, but
– we will ignore the variation of start-up costs with the time since last

shut-down.
• Start-up costs could also vary witht because of variation in fuel costs:

– the formulation developed here will allow for start-up costs that vary
with t, but

– all examples will have start-up costs that are independent of t.
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Start-up costs, continued
• Start-up costs can be expressed in terms ofzk:

nT

∑
t=1

sktzkt(1−zk,(t−1)), (10.2)

where:
skt are the start-up costs for starting up in intervalt, ignoring variation of

start-up cost with time since last shutdown, and
zk0 is the commitment status at the end of today.

• That is, start-up costs are only incurred when a generator was off in hour
t −1 (so that(1−zk,(t−1)) = 1) and on in hourt (so thatzkt = 1).

• This formulation is non-linear and non-separable across time:
– by defining additional variablesuk ∈ R

nT and constraints, a linear
re-formulation is possible that is more suitable for use with standard
software (see in Exercise10.4);

– for now, we will continue with the non-linear formulation since it
emphasizes the coupling of decisions between hours, but we will use the
linear re-formulation in Section10.3.
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10.2.3.2 Minimum-load costs
• Minimum-load (Min-load) costs are the costs to operate at the minimum

capacity,Pk = Pk,Sk = 0 during an interval when the unit is committed.
• Min-load costs depend onzk and are additively separable across time and

can be expressed in the form:
nT

∑
t=1

f
kt
×zkt,

where f
kt

is the min-load costs per interval for operating atPk.
• In some markets, including ERCOT, the min-load costsf

kt
are expressed

as the product of:
a min-load average energy cost per unit energy, multiplied by
the minimum capacityPk.

• In some markets, such as MISO,no-load costsare specified, in which
case energy offers are interpreted as specifying costs for production above
zero:
– actual values of production are still required to be at or above minimum

capacityPk.
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10.2.3.3 Incremental energy and reserves costs
• Incremental energy and reserves costs for operating above minimum

production depend on the value ofxkt in each interval for which the unit is
running, and are additively separable across time.

• We will again assume that energy and reserves costs are themselves
additively separable as the sum of terms due to producing energy and
providing reserves, as in Section8.12.1.3.

• Consider the marginal costs∇fktP for generatork to produce energy and
the marginal costs∇fktS to provide reserve in intervalt, assuming that the
generator is in-service.

• The operating cost during an intervalt when generatork is in-service is
equal to the sum of the min-load costs and the incremental energy and
reserve costs for operation above minimum capacityPk.
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Incremental energy and reserves costs, continued
• The incremental energy and reserve costs for operation above minimum

capacityPk in intervalt can be evaluated from the sum of the two
integrals:

∫ P′
kt=Pkt

P′
kt=Pk

∇fktP(P
′
kt)dP′

kt+
∫ S′kt=Skt

S′kt=0
∇fktS(S

′
kt)dS′kt,

• wherePkt is the generation level andSkt the reserve contribution.
• Min-load costs (and start-up costs) must be added to the incremental

energy and reserves costs to evaluate the cost function for generatork.
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10.2.4 Objective
• Adding together the start-up costs, the min-load costs, andthe incremental

energy and reserve costs, the cost function of generatork is therefore:

∀zk ∈ Z
nT ,∀x∈ R

nT , f

([

zk
xk

])

=
nT

∑
t=1

[

skt(1−zk,(t−1))+ f
kt

+
∫ P′

kt=Pkt

P′
kt=Pk

∇fktP(P
′
kt)dP′

kt+
∫ S′kt=Skt

S′kt=0
∇fktS(S

′
kt)dS′kt

]

zkt. (10.3)

• Typically, the incremental reserve costs
∫ S′kt=Skt

S′kt=0 ∇fktS(S′kt)dS′kt are zero.

• This function is non-linear in

[

zk
xk

]

.

• By considering the generator constraints, and by includingsome
additional variablesuk and constraints, the form of (10.3) can be

re-formulated so that it is linear in

[

zk
xk
uk

]

(see in Exercises10.3and10.4).
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Objective, continued
• As previously, we define the objective of the unit commitmentproblem to

be the sum of the cost functions of all of the generators:

∀z∈ Z
nPnT ,x∈ R

2nPnT , f

([

z
x

])

=
nP

∑
k=1

fk

([

zk
xk

])

.
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10.2.5 System constraints
• Typical system equality constraints would include averagepower balance

in each hour of tomorrow, which we will represent in the general form
Ax= b.

• For example, as in Section10.1.2.2:

– if we ignore reserve, thenx= P=





P1
...

PnP



 ∈ R
nPnT , with

Pk =





Pk1
...

PknT



 ∈ R
nT ,

– let D ∈ R
nT be a vector of forecasts of average demand in each hour,

– let A= [−I · · · −I ] andb=−D,
– thenAx= b represents average power balance in each hour.

• Typical system inequality constraints would include reserve requirements
and transmission constraints in each hour, which we will represent in the
general formCx≤ d.
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10.2.6 Problem
• The unit commitment problem is:

min
∀k,[zk

xk]∈Sk

{

f

([

z
x

])∣

∣

∣

∣

Ax= b,Cx≤ d

}

= min
z∈ZnPnT ,x∈R2nPnT

{

f

([

z
x

])∣

∣

∣

∣

Ax= b,Cx≤ d,∀k,δk ≤ Γk

[

zk
xk

]

≤ δk

}

.

(10.4)

• In principle, the ISO obtains offers from the market participants that
specify f , and then solves Problem (10.4) for optimal commitment and
dispatch, which we will denote byz⋆ andx⋆, respectively.

• In some examples and some of the development, we will only consider
energy and not reserve, in which case,x= P∈ R

nPnT , as in the example
in Section10.2.5.

Title Page ◭◭ ◮◮ ◭ ◮ 57 of 160 Go Back Full Screen Close Quit



10.2.7 Generator offers
• How to specify the offers from generators to the ISO?
• Building on offer-based economic dispatch, we will still assume that the

dependence of offers on power and reserves are specified as the gradient
of costs with respect to power and reserves.

• We will assume that the dependence of offers on power and reserves are
required to be separable across time, so that the offers are specified by:

∇fkt =

[

∇fktP
∇fktS

]

, t = 1, . . . ,nT ,

• with the understanding that the offer function dependence on power and
reserves is only meaningful in intervalt if zkt = 1, and where we are
considering only one type of reserve for simplicity.

• We will call this collection of functions∇fkt, t = 1, . . . ,nT , the
incrementalenergy and reserve offers, to emphasize that there are other
components of the cost, namely start-up costs and min-load costs.

• Although the notation allows for different incremental energy and reserve
costs for each interval, market rules may restrict this choice.
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Generator offers, continued
• To specify the start-up costs, the values ofskt, t = 1, . . . ,nT are required.
• To specify the min-load costs, the values off

kt
, t = 1, . . . ,nT are required.

• We will assume that the generator specifies:
astart-up offer equal to its start-up costs,
amin-load offer equal to its min-load costs, and
an incremental energy and reserve offerequal to its incremental

energy and reserve costs.
• Theoffer cost function can then be reconstructed from the start-up offer,

the min-load offer, and and the incremental energy and reserve offers
using (10.3), given that the minimum production levelPk is known.

• Assuming that the incremental reserve offer costs are zero,the offer cost
function is:

∀zk ∈ Z
nT ,∀x∈ R

nT , f

([

zk
xk

])

=
nT

∑
t=1

[

skt(1−zk,(t−1))+ f
kt
+

∫ P′
kt=Pkt

P′
kt=Pk

∇fktP(P
′
kt)dP′

kt

]

zkt.
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Generator offers, continued
• In contrast to the economic dispatch problem, it is necessary to explicitly

represent the cost function (and not just its derivative) inthe unit
commitment problem in order to:
– compare alternative costs of committing and dispatching different

combinations of generators in Problem (10.4), and
– (as we will see in Section10.4) to calculatemake-wholecosts.

• The assumption that costs are truthfully revealed by the offers is not
innocuous:
– the analysis of energy offers in Section8.11.2does not apply to start-up

and minimum-load offers, even if each generator cannot affect the
energyprices.

– markets such as ERCOT have additional procedures to verify that
start-up and minimum-load offers reflect costs.
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10.3 Mixed-integer programming
• Commercial software for solving mixed-integer programming problems

has become much more capable in the last two decades.
• The highest performance algorithms are for mixed-integer linear

programming (MILP).
• Exercises10.3and10.4show how to re-formulate the unit commitment

Problem (10.4) so that it has a linear objective by incorporating additional
continuous variables and linear constraints into the problem.

• This allows the unit commitment problem to be re-formulatedinto a
mixed-integer linear program of the form of problem (4.44).
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10.3.1 Mixed-integer programming formulation of unit commitment
• That is, unit commitment can be formulated as:

min
z∈ Z

nPnT ,
x∈ R

2nPnT ,
u∈ R

nPnT

{

c†

[

z
x
u

]∣

∣

∣

∣

∣

Ax= b,Cx≤ d,∀k,δk ≤ Γk

[

zk
xk
uk

]

≤ δk

}

, (10.5)

where:
– the decision variables can now include additional continuous variablesu

besides the energy generation and reserve contribution in order to
represent start-up issues (see Exercises10.3and10.4),

– the generator constraintsδk ≤ Γk

[

zk
xk
uk

]

≤ δk now include additional

constraints to represent start-up issues (and also to represent minimum
up- and down-times; see Exercise10.4), and

– the integer variableszand the additional continuous variablesu to
represent start-up issues do not appear in the system constraints
Ax= b,Cx≤ d.
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Mixed-integer programming formulation of unit commitment, continued
• All US ISOs now use mixed-integer programming algorithms for solving

unit commitment.
• In principle, MILP algorithms can exactly solve the unit commitment

problem.
• In practice requirements on the time-to-solve may require that a feasible

but sub-optimal solution be accepted.
• We will nevertheless suppose that the ISO can solve Problem (10.4) (or

its linear re-formulation, Problem (10.5)), and that the minimizer isz⋆ and
x⋆ (together withu⋆ in the case of the linear re-formulation).
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10.3.2 Unit commitment example
• Consider the previous example in Section4.8.3where a single generator

was available to meet a demand ofD = 3 MW in the single interval
nT = 1.

• The generator had two variables associated with its operation:
– the “unit commitment” variablez∈ Z, and
– the “production” variablex= P∈ R.

• The cost functionf : Z×R→ R for the generator and its generator
constraints are:

f

([

z
x

])

= 4z+x,z∈ {0,1},2z≤ x≤ 4z,

• with min-load costs of 6, and marginal cost of incremental energy of 1.
• This unit commitment problem is in the form of a mixed-integer linear

program, which we repeat from (4.45):

min
z∈Z,x∈R

{4z+x|−x=−3,0≤ z≤ 1,2z≤ x≤ 4z}, (10.6)

• The solution isz⋆ = 1 andx⋆ = 3, with generator cost 4z⋆+x⋆ = 7.
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10.3.3 Unit commitment example with two generators
• Now suppose that there are two generators available to meet ademand of

D MW in the single intervalnT = 1.
• Generatork= 1,2 each has two variables associated with its operation:

– the “unit commitment” variablezk ∈ Z, and
– the “production” variablexk = Pk ∈ R.

• The cost functionsfk : Z×R→ R,k= 1,2 for the generators and their
generator constraints are:

f1

([

z1
x1

])

= 4z1+x1,z1 ∈ {0,1},2z1 ≤ x1 ≤ 4z1,

f2

([

z2
x2

])

= z2+2x2,z2 ∈ {0,1},0.5z2 ≤ x2 ≤ 4z2.

• This unit commitment problem is also in the form of a mixed-integer
linear program:

min
z∈Z2,x2∈R

{

4z1+z2+x1+2x2

∣

∣

∣

∣

−x1−x2 =−D,0≤ z≤ 1,
2z1 ≤ x1 ≤ 4z1,0.5z2 ≤ x2 ≤ 4z2

}

.
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Unit commitment example with two generators, continued
• Minimum capacity of generator 1 is 2, while minimum capacityof

generator 2 is 0.5:
– ForD < 0.5 there is no feasible solution,
– For 0.5≤ D < 2, the only feasible (and therefore optimal) solution is

z⋆1 = x⋆1 = 0,z⋆2 = 1,x⋆2 = D.
• Maximum capacity of generator 1 and of generator 2 is 4:

– ForD > 8 there is no feasible solution.
– For 4< D ≤ 8, both generators must be on, generator 1 has the lower

marginal cost, soz⋆1 = z⋆2 = 1,x⋆1 = 4,x⋆2 = D−4.

• For 2≤ D < 3, generator 2 is cheapest to meet demand.
• For 3≤ D < 4, generator 1 is cheapest to meet demand.
• ForD = 3, generator 1 and 2 have the same cost of 7 to meet demand.
• If there was more than one interval, if the generators had start-up costs,

and if demand varied across intervals, then the problem would be more
difficult to solve because of the interaction between start up costs and the
min-load and incremental energy costs. (See Exercise10.5.)
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10.4 Make-whole costs
10.4.1 Implementing the results of unit commitment

• We now consider payments to the generators.
• Based on the discussion in Sections8.10and8.11and based on

Theorem8.1 in Section8.12.4.4, we might consider setting prices for
energy based on the Lagrange multipliers on the supply–demand balance
constraint and other system constraints from a continuous optimization
problem.

• In most US ISOs, the practice is to define the continuous problem by
settingz andu in Problem (10.5) to be equal to the optimal valuesz⋆ and
u⋆ and then solve the resulting continuous problem:

min
x∈R2nPnT

{

c†

[

z⋆

x
u⋆

]∣

∣

∣

∣

∣

Ax= b,Cx≤ d,∀k,δk ≤ Γk

[

z⋆k
xk
u⋆k

]

≤ δk

}

, (10.7)

• which is in the same form as the ramp-constrained economic dispatch
Problem (10.1), is convex, and has similar properties to Problem (10.1).
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Implementing the results of unit commitment, continued
• Typically MILP implementations solve a continuous problemof the form

of Problem (10.7) during the solution process, so that the Lagrange
multipliers on the system constraintsAx= b,Cx≤ d in Problem (10.7)
are available as aby-productof the MILP algorithm.

• Note that the minimizer of Problem (10.7) is the same as the minimizerx⋆

of Problem (10.5):
– key difference is that there are well-defined Lagrange multipliers on the

system constraintsAx= b,Cx≤ d in Problem (10.7), whereas
Problem (10.5) does not have well-defined Lagrange multipliers
because of the integer variables.
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Implementing the results of unit commitment, continued
• Let λ⋆ andµ⋆, respectively, be the Lagrange multipliers on the system

constraintsAx= b,Cx≤ d in Problem (10.7).
• As in discussion of offer-based economic dispatch and locational

marginal pricing, we can define prices using the pricing rule:

πLMP
xk

=−[Ak]
†λ⋆− [Ck]

†µ⋆. (10.8)

• We have labeled these prices with superscript LMP to emphasize that the
prices are from the solution of essentially the same problemas the
problem solved for LMPs and in ramp-constrained economic dispatch:
– formulation so far has not represented transmission constraints, but

these will be considered in Section10.8,
– as in the discussion of ramp constraints in Section10.1.3.2, a sequence

of LMPs for the intervals in the day are being calculated,
– if ramp rates were included in the unit commitment formulation, they

would also be represented in Problem (10.7).
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Implementing the results of unit commitment, continued
• If the generators happen to be committed consistently withz⋆ then, by

Theorem8.1 in Section8.12.4.4, the pricesπLMP
xk

provide incentives for
profit-maximizing generators to dispatch consistently with the solutionx⋆.

• However, these pricesπLMP
xk

will not always provide incentives for
profit-maximizing generators tocommitand dispatch consistently with
the solutionz⋆ andx⋆ (andu⋆):
– revenue from energy payment may not cover the start-up, min-load, and

incremental energy costs,
– this issue was explored in Section4.7.4and specifically in

Sections4.8.3and4.8.4in the context of a very simple unit
commitment problem for which there was no choice of prices onenergy
that could provide incentives for a profit-maximizing generator to
commitand dispatch consistently with the ISO solution, and

– the same issue can occur in general in unit commitment problems
because of the non-convexity.
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10.4.2 Unit commitment example
• Consider the previous example in Sections4.8.3and10.3.2where a

single generator was available to meet a demand ofD = 3 MW in the
single intervalnT = 1.

• The unit commitment problem (10.6) is:

min
z∈Z,x∈R

{4z+x|−x=−3,0≤ z≤ 1,2z≤ x≤ 4},

• The corresponding problem (10.7) (with simplifications since there are no
start-up variables nor constraints and no system inequality constraints) is:

min
x∈R

{4z⋆+x|−x=−3,0≤ z⋆ ≤ 1,2z⋆ ≤ x≤ 4z⋆},

• which has solutionx⋆ = 3.
• The Lagrange multiplier on the supply-demand constraint isλ⋆ = 1.
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Unit commitment example, continued
• Recall that if the generator were paidπ for its production then its profit

maximizing behavior would be:

x=

{

0, if π < 2,
0 or 4, if π = 2,

4, if π > 2.

• This meant that no price would equate supply to demand of 3 MW.
• In particular, if we set the price using (10.8), we have:

πLMP
x =−[−1]λ⋆ = 1.

• The revenue for generatingx⋆ = 3 at this price isπLMP
x ×x⋆ = 3, but the

cost of generating at this level is 7.
• A profit-maximizing generator will not choose to commit and generate at

the levelx⋆ = 3 if the compensation is only based on its energy
production remunerated at the price ofπLMP

x .
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10.4.3 Unit commitment example with two generators
• Consider the previous example in Section10.3.3, with two generators

available to meet a demand ofD MW in the single intervalnT = 1.
• The unit commitment problem (10.6) is:

min
z∈Z2,x2∈R

{

4z1+z2+x1+2x2

∣

∣

∣

∣

−x1−x2 =−D,0≤ z≤ 1,
2z1 ≤ x1 ≤ 4z1,0.5z2 ≤ x2 ≤ 4z2

}

.

• The corresponding problem (10.7) (with simplifications since there are no
start-up variables nor constraints and no system inequality constraints) is:

min
x2∈R

{

4z⋆1+z⋆2+x1+2x2

∣

∣

∣

∣

−x1−x2 =−D,0≤ z⋆ ≤ 1,
2z⋆1 ≤ x1 ≤ 4z⋆1,0.5z⋆2 ≤ x2 ≤ 4z⋆2

}

,

• which has solutionx⋆ and Lagrange multiplierλ⋆ on the supply-demand
balance constraint of:
x⋆1 = 0,x⋆2 = D,λ⋆ = 2, for 0.5≤ D < 3,
x⋆1 = D,x⋆2 = 0,λ⋆ = 1, for 3≤ D < 4,
x⋆1 = 4,x⋆2 = D−4,λ⋆ = 2, for 4≤ D ≤ 8.

Title Page ◭◭ ◮◮ ◭ ◮ 73 of 160 Go Back Full Screen Close Quit



Unit commitment example with two generators, continued

• Using (10.8), we again set the priceπLMP
xk

equal to the Lagrange
multiplier λ⋆ on the supply-demand balance constraint−x1−x2 =−D.

• Figure10.1shows the resulting priceπLMP
xk

versus demandD:
– we could also interpret this curve as showing the supply curve as in

Section6.5.
• We again find that profit-maximizing generators will not typically choose

to commit and generate at the levelx⋆ if the compensation is only based
on its energy production remunerated at the price ofπLMP

xk
.

• Moreover, note that the prices are not non-decreasing with demand:
– in contrast, in Figure6.6the supply curve was non-decreasing.
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Unit commitment example with two generators, continued
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xk

Fig. 10.1. Locational
marginal price πLMP

xk

versus demandD for
two generator system.
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10.4.4 Aligning generator profit-maximization with ISO decisions
• The essential problem in both examples is that compensationbased on

prices for energy (and reserves in the more general case) do not
compensate the generator for all of the costs of committing and
dispatching at the levelsz⋆ andx⋆ determined in the ISO unit commitment
problem:
– note that the ISO solicited the start-up, min-load, and incremental

energy offers from the generators, and used this information to decide
on the commitment and dispatch,

– the ISO is asking the generators to incur operating costs based on the
ISO’s decisions,

– from basic notions of property rights, the ISO must expect toat least
compensate the generator for the generator offer costs incurred in
committing and dispatching consistently with the ISO decisions.
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Aligning generator profit-maximization with ISO decisions, continued
• We consider an approach to aligning generator profit-maximization with

ISO unit commitment by compensating the generator for its offer costs at
the ISO-determined commitment and dispatch levels.

• It involves an additional payment that is conditional on thegenerator
committing according to the ISO solution.

• Suppose the ISO determines energy and reserve pricesπx:
– for example, using (10.8), with resulting price for generatork:

πLMP
xk

=−[Ak]
†λ⋆− [Ck]

†µ⋆.

• We consider the profit maximizing response to these prices.
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Aligning generator profit-maximization with ISO decisions, continued
• For some generators, their profit maximizing generation based on these

energy and reserves prices will be consistent with the ISO decision:
– these generators are paid based on these energy and reservesprices,
– no further payment besides remuneration based on energy andreserves.

• For the rest of the generators, additional revenue is necessary to pay based
on:
– the energy and reserves prices, plus
– an additionalmake-wholepayment that is contingent on the generators

committing consistently with the ISO decision.
• What would the make-whole payment be for the generator to induce it to

produce 3 MW, given an energy price of $1/MWh?
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Aligning generator profit-maximization with ISO decisions, continued
• We seek a general expression for the make-whole payment thatwould

induce behavior consistent with optimal commitment and dispatch.
• Suppose the ISO specifies a vector of energy and reserve prices

πxk ∈ R
2nT for each generatork:

– for example, LMPs as defined in (10.8),
– will consider another choice of prices in Section10.5.

• We consider two cases:
(i) generatork can choose its commitmentz⋆⋆k and dispatch and

reservesx⋆⋆k to maximize its operating profit givenπxk, and
(ii) generatork commits and dispatches consistent with the solution of

the ISO optimal commitmentz⋆k and dispatch and reservesx⋆k.
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10.4.4.1 Generator profit maximization
• Generatork operating profit maximum, given pricesπxk, is:

Π⋆⋆
k (πxk) = max

[zk
xk]∈Sk

{

[πxk]
†xk− fk

([

zk
xk

])}

,

• where, as previously, the double star refers to generator operating profit
maximization.
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10.4.4.2 Profit under optimal commitment and dispatch from ISO problem
• Given pricesπxk and given that generatork operated according to the

optimal commitmentz⋆k and dispatchx⋆k determined by the ISO, the profit
for generatork would be:

[πxk]
†x⋆k− fk

([

z⋆k
x⋆k

])

.
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10.4.4.3 Comparison of profits
• Note that, by definition:

Π⋆⋆
k (πxk)≥ [πxk]

†x⋆k− fk

([

z⋆k
x⋆k

])

.

• Moreover, if:

Π⋆⋆
k (πxk) = [πxk]

†x⋆k− fk

([

z⋆k
x⋆k

])

.

• then the profit maximizing decision of generatork is consistent with the
ISO optimal commitment and dispatch:
– the vector of pricesπxk supports the ISO optimal commitment and

dispatch.
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10.4.5 Make-whole payment
• We consider the two possible cases:

• If Π⋆⋆
k (πxk) = [πxk]

†x⋆k− fk

([

z⋆k
x⋆k

])

:

– then the profit maximizing behavior of generatork in response toπxk
alone is consistent with optimal commitment and dispatch,

– no make-whole payment is needed.

• If Π⋆⋆
k (πxk)> [πxk]

†x⋆k− fk

([

z⋆k
x⋆k

])

:

– then the profit maximizing behavior of generatork in response toπxk
alone is inconsistent with optimal commitment and dispatch,

– an additional make-whole payment of:

Π⋆⋆
k (πxk)−

(

[πxk]
†x⋆k− fk

([

z⋆k
x⋆k

]))

,

is necessary to induce behavior that is consistent with optimal
commitment and dispatch.
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Make-whole payment, continued
• We can combine both cases by observing that the payment is equal to

Π⋆⋆
k (πxk)−

(

[πxk]
†x⋆k− fk

([

z⋆k
x⋆k

]))

, (10.9)

in both cases.
• Note that make-whole payment is only made to generatork if generatork

commits according toz⋆k.
• By design, the make-whole payment adjusts the profit for generatork so

that

[

z⋆k
x⋆k

]

is generatork’s profit maximizing commitment and dispatch.

• In principle, no additional inducement is necessary for generatork to
behave consistently with centralized optimal unit commitment and
dispatch.
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10.4.6 Simplified make-whole payment
• To develop a simplified make-whole payment, observe that there are three

possibilities for profit-maximizing behaviorz⋆⋆k andx⋆⋆k by generatork in
response to the priceπxk:

(i) the generator would prefer not to commit, so thatz⋆⋆k = 0 and

x⋆⋆k = 0 and 0= Π⋆⋆
k (πxk)≥ [πxk]

†x⋆k− fk

([

z⋆k
x⋆k

])

,

(ii) the generator prefers to commit and dispatch consistently with
ISO optimal commitment and dispatch, so thatz⋆⋆k = z⋆k and

x⋆⋆k = x⋆k, andΠ⋆⋆
k (πxk) = [πxk]

†x⋆k− fk

([

z⋆k
x⋆k

])

> 0, or

(iii) the generator prefers to commit and dispatch, but inconsistently
with ISO optimal commitment and dispatch, so thatz⋆⋆k 6= z⋆k

and/orx⋆⋆k 6= x⋆k, andΠ⋆⋆
k (πxk)> [πxk]

†x⋆k− fk

([

z⋆k
x⋆k

])

.
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Simplified make-whole payment, continued
• Note that for the first alternative, a make-whole payment of

fk

([

z⋆k
x⋆k

])

− [πxk]
†x⋆k would be required to make generatork indifferent

between:
– not committing, and
– commitment and dispatching consistently with ISO optimal

commitment and dispatch.
• In the second alternative, no make-whole payment is required since

profit-maximization is consistent with ISO optimal commitment and
dispatch.

• So, if we ignore the third alternative (or can otherwise prohibit the
generator from committing and dispatching inconsistent with the ISO
solution), then the make-whole payment can be simplified to:

max

{

0, fk

([

z⋆k
x⋆k

])

− [πxk]
†x⋆k

}

. (10.10)
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Simplified make-whole payment, continued

• The simplified make-whole payment of max

{

0, fk

([

z⋆k
x⋆k

])

− [πxk]
†x⋆k

}

is used in ERCOT and other markets, even though it does not have the
correct incentives in the case that both:

Π⋆⋆
k (πxk) 6= 0, andΠ⋆⋆

k (πxk)> fk

([

z⋆k
x⋆k

])

− [πxk]
†x⋆k.

• The make-whole is paid only if the generatork actually commits “close
enough” toz⋆k during the operating day.

• (There is also generally a requirement that the generator dispatches “close
enough” to the dispatch signals in the real-time market. See
Section11.3.2.)
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10.4.7 Simplified make-whole payment in unit commitment example
• For the previous example in Sections4.8.3, 10.3.2, and10.4.2we have

that the simplified make-whole payment is equal to:

max

{

0, f

([

z⋆

x⋆

])

− [πx]
†x⋆
}

= max{0,7−3},

= 4,

consistent with compensating the generator for the difference between its
costs and the remuneration from energy.
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10.4.8 Simplified make-whole payment in unit commitment example with
two generators

• Consider the previous example in Sections10.3.3and10.4.3, with two
generators available to meet a demand ofD MW in the single interval
nT = 1.

• Figure10.2shows the resulting simplified make-whole payment versus
demandD.
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Unit commitment example with two generators, continued
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Fig. 10.2. Simplified
make-whole payment
with locational marginal
prices versus demand
D for two generator
system.
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10.4.9 Discussion of locational marginal prices and make-whole
• The combination of locational marginal prices and make-whole provides

a straightforward approach to aligning profit maximizationwith the ISO
commitment and dispatch:
– the locational marginal prices are available as a by-product of the unit

commitment optimization, and
– the simplified make-whole can be conveniently calculated ona daily

basis to ensure that the operating profits are non-negative day-by-day.
• Most ISOs in the US currently use a pricing rule based on locational

marginal pricing for energy and reserves as specified in (10.8) and a
simplified make-whole rule based on (10.10).

Title Page ◭◭ ◮◮ ◭ ◮ 91 of 160 Go Back Full Screen Close Quit



Discussion of locational marginal prices and make-whole, continued
• However, there are several drawbacks of locational marginal prices and

make-whole payments:
– the make-whole payments could potentially be large and, as will be

discussed in more detail in Section10.7, it is not as “visible” to the
market as energy prices, which makes investment decisions about
profitable new entry more difficult;

– energy prices are not monotonically non-decreasing with increasing
total production, so that an increase in demand can result ina decrease
in price as in the two generator example when demand increases above
3, which can be misleading to market participants if supply is tight; and

– the offers of generators that are at their maximum or minimum
production do no play a role in setting price, although theircosts are
economically significant in determining unit commitment.

• In the next sections, we will consider an alternative pricing approach that
reduces the severity of these issues.
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10.5 Lagrangian relaxation
10.5.1 Alternative approaches to pricing

• The discussion of make-whole in the last section was not specific to
locational marginal prices:
– the make-whole payment could even be used witharbitrary prices.

• In this section, we will consider an alternative pricing rule based on
Lagrangian relaxation of the unit commitment problem, instead of the
rule in (10.8) that is based on setting the integer variables at their optimal
values.

• Will consider possible advantages of such a rule.
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10.5.2 Description
• As in Sections4.8.3and4.8.4, we will apply Lagrangian relaxation to the

unit commitment problem:
– previously used by ISOs to approximately solve unit commitment

before it was supplanted by MIP software.
• Recall from Section4.7.4that Lagrangian relaxation involves maximizing

a dual problem.
• We dualize the system constraints to obtain the maximization problem:

max
λ,µ≥0

{

min
∀k,[zk

xk]∈Sk

{

f

([

z
x

])

+λ†(Ax−b)+µ†(Cx−d)

}

}

. (10.11)

• This problem is called theLagrangian dual problem.
• Solving this problem is analogous to solving the economic dispatch

problem by dualizing the system constraints:
– in contrast to economic dispatch and the analysis in the lastsection,

here we maintain the commitment decisions as discrete decision
variables in the inner problem.
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Description, continued
• Dualizing separates the unit commitment problem into:

– a sub-problem for each generator equivalent to profit maximization for
the generator given the value of dual variables, and

– the problem of finding the values of the dual variables that maximize the
dual.

• We will consider a pricing rule based on either the current value of the
dual variables at a particular iteration or based on the maximizer of the
dual.

• Since convenient calculation of the dual involves the convex hull as
introduced in Section4.8.3, we refer to these prices asconvex hull prices
(CHP).

• In particular, we define theconvex hull pricesto be:

πCHP
xk

=−[Ak]
†λ⋆− [Ck]

†µ⋆, (10.12)

• whereλ⋆ andµ⋆ maximize the dual problem, Problem (10.11).
• Each generator (conceptually) maximizes its operating profit for the given

vector of prices, as specified by the current values of the dual variables.
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Description, continued
• The dual variables are updated until a maximum of the dual function is

obtained:
– As suggested in Exercise4.9, there are more efficient approaches to

finding or approximating the dual maximizer (see Exercise10.6).
• There may be a duality gap.
• Since the duality gap is typically non-zero, anad hocpost-processing

heuristics are required in order to produce a solution that satisfies the
system constraints:
– the heuristics to find a feasible solution from the results ofLagrangian

relaxation are very detailed and “brittle,” particularly with transmission
constraints.

– the heuristics are problematic in a market setting, where a particular
heuristic may have significant implications for profitability or be
vulnerable to “strategic” offers, allowing market participants to
influence outcomes through changes to offers that do not represent
economic fundamentals.
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Description, continued
• As mentioned in Section10.3, all North American ISOs now use

mixed-integer programming software to solve a linear formulation of the
unit commitment problem, since it has several advantages over
Lagrangian relaxation including that there is generally less
post-processing required, even if the MIP is not solved to optimality.

• PJM estimates $60 million per year or more of savings (out of
approximately $10 billion) with MILP formulation comparedto previous
Lagrangian relaxation and linear programming based algorithms.

• Other US ISOs report similar savings.
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Description, continued
• Lagrangian relaxation solution is here only being used to define the

convex hull prices, not to find the commitment and dispatch.
• The maximizer of the dual can provide important insights into prices even

if it does not yield the optimal unit commitment.
• In Exercise10.6, we will also consider a more efficient way to calculate

the dual maximizer that builds on Exercise4.9.
• In MISO, prices based on (an approximation of) the dual maximizer are

used in conjunction with values of commitment and dispatch obtained by
the ISO in a MILP solution.
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10.5.3 Unit commitment example
• Consider again the previous one generator example in Sections4.8.3

and10.4.2in the context of duality gaps where a single generator was
available to meet a demand ofD = 3 MW in the single intervalnT = 1.

• Now consider the case of a generator with a parametrized costfunction:

f

([

z
x

])

= 4z+βx,z∈ {0,1},2z≤ x≤ 4z,

• whereβ ≥ 0 is a parameter.
• Suppose that the generator is paidπ for its power productionx and that it

finds the value of production that maximizes profit specified by:

πx− f

([

z
x

])

.

• We perform similar analysis to previously to find the profit maximizing x
(andz).
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Unit commitment example, continued

• To maximize profitπx− f

([

z
x

])

= (π−β)x−4z, we must compare:

the profit forz= 0 andx= 0, (namely, a profit of 0), to
the maximum profit over 2≤ x≤ 4 for z= 1.

• We consider various cases forπ.

π ≤ β

0 > −4,
≥ (π−β)x−4, for 2≤ x≤ 4.

• So, the profit is maximized forz⋆⋆ = 0,x⋆⋆ = 0.
β < π < 1+β

• Then(π−β)x< 4 for 2≤ x≤ 4.

0> (π−β)x−4, for 2≤ x≤ 4.

• So, the profit is again maximized forz⋆⋆ = 0,x⋆⋆ = 0.
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Unit commitment example, continued
π = 1+β

• Then 0> (π−β)x−4 for 2≤ x< 4.
• Also, 0= (π−β)x−4 for x= 4.
• So, the profit has two maximizers:

z⋆⋆ = 0,x⋆⋆ = 0, and
z⋆⋆ = 1,x⋆⋆ = 4.

π > 1+β
0< (π−β)x−4, for x= 4.

• Moreover, the right-hand side increases with increasingx, so it is
maximized over 2≤ x≤ 4 by x= 4.

• So, the profit is maximized forz⋆⋆ = 1,x⋆⋆ = 4.
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Unit commitment example, continued
• Therefore, if the generator were paidπ for its production then its profit

maximizing behavior would be:

x=

{

0, if π < 1+β,
0 or 4, if π = 1+β,

4, if π > 1+β.

• If we have just one generator having marginal costβ then there will still
typically be no price that equates supply to demand, unless demand were
changed toD = 0 or 4.

• The price,π = 1+β, at which the generator starts to produce depends on
β.

• We still typically have a duality gap since the minimum of Problem (10.4)
is strictly greater than the maximum of Problem (10.11).
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10.5.4 Larger example
• Suppose that we generalize the example problem from the lastsection to

the case where there are multiple generators with differentcost
characteristicsβ and a larger demand.

• Suppose that demand wasD = 303 MW.
• Assume that there are no reserve requirements, soxk = Pk for generatork.
• Suppose that there are 100 generators, with generatork= 1, . . . ,100

having cost function:

fk

([

zk
xk

])

= 4zk+βkxk,zk ∈ {0,1},2zk ≤ xk ≤ 4zk,

• where:

∀k= 1, . . . ,100,βk = 1+k/100.

• The feasible operating set for each generatork is:

Sk =

{[

zk
xk

]
∣

∣

∣

∣

zk ∈ {0,1},2zk ≤ xk ≤ 4zk

}

.
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10.5.4.1 Solution
• Each generator has a slightly different operating cost function, with

higher values ofk associated with more expensive generators.
• The optimal commitment is for:

– generators 1, . . . ,75 to be committed and producing at full capacity of 4,
– generator 76 to be committed and producing 3, and
– generators 77, . . . ,100 to be off.

• Minimum cost is therefore:
75

∑
k=1

[4×1+(1+k/100)×4]+ [4×1+(1+76/100)×3] = 723.28.

• This is the minimum of Problem (10.4), which we could find in this case
by inspection because of the simple structure of the problem.

• We will investigate the maximizer of the dual problem, Problem (10.11),
and see the insights it provides into the minimum and minimizer of
Problem (10.4).
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10.5.4.2 Maximizer of dual
• The dual problem, Problem (10.11), in this case is:

max
λ∈R

{

min
∀k=1,...,100,[zk

xk]∈Sk

{

f

([

z
x

])

+λ

(

D−
100

∑
k=1

xk

)}}

.

• Suppose we setλ so that 2+75/100< λ < 2+76/100.
– For example, suppose that we set the price to beλ = 2.755.
– We have that 1+βk < λ for k= 1, . . . ,75 and 1+βk > λ for

k= 76, . . . ,100.
– Generatorsk= 1, . . . ,75 will produce 4 MW.
– Generatorsk= 76, . . . ,100 will produce nothing.
– Total production will be 300 MW.
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Maximizer of dual, continued
• Summarizing, suppose we setλ so that 2+75/100< λ < 2+76/100.

– In particular, suppose that we set the price to beλ = 2.755,
– Then the dual function is:

D(2.755) =
75

∑
k=1

[4×1+(1+k/100)×4]+2.755×

(

D−
75

∑
k=1

4

)

,

= 722.265.

• For values ofλ ≤ 2+75/100, the value of the dual will be less than or
equal to 722.265.
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Maximizer of dual, continued
• Now suppose that we setλ so that 2+76/100< λ < 2+77/100.

– For example, suppose that we set the price to beλ = 2.765.
– We have that 1+βk < λ for k= 1, . . . ,76 and 1+βk > λ for

k= 77, . . . ,100.
– Generatorsk= 1, . . . ,76 will produce 4 MW.
– Generatorsk= 77, . . . ,100 will produce nothing.
– Total production will be 304 MW.
– The dual function is:

D(2.765) =
76

∑
k=1

[4×1+(1+k/100)×4]+2.765×

(

D−
76

∑
k=1

4

)

,

= 722.275.

• For values ofλ ≥ 2+77/100, the value of the dual will be less than or
equal to 722.275.

• The maximizer of the dual, Problem (10.11), is λ⋆ = 2.76.
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Maximizer of dual, continued
• Now suppose that we set the energy price to be:

πCHP= λ⋆ = 2.76.

• Profit-maximizing generators would choose to generate as follows:
– Generatorsk= 1, . . . ,75 will produce 4 MW.
– Generatork= 76 is indifferent to either not producing or producing 4

MW.
– Generatorsk= 77, . . . ,100 will produce nothing.
– Total production is either 300 or 304 MW.
– The dual function is:

D(2.76) =
75

∑
k=1

[4×1+(1+k/100)×4]+2.76×

(

D−
75

∑
k=1

4

)

,

=
76

∑
k=1

[4×1+(1+k/100)×4]+2.76×

(

D−
76

∑
k=1

4

)

,

= 722.28.
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Maximizer of dual, continued
• There is no price were supply equals demand of 303 MW.
• However, the supply-demand constraint is violated by arelativelysmaller

amount than in the smaller examples in Sections4.8.3and10.5.3.
• Moreover, the commitment and dispatch decisions for generators

k= 1, . . . ,75 and 77, . . . ,100 in the generator profit maximization
problems are correct given that the price isπCHP= 2.76.

• The duality gap is 723.28−722.28= 1.
• The duality gap is relatively smaller as a fraction of the minimum of the

unit commitment problem.
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10.6 Duality gaps
10.6.1 Discussion

• Typically there is a duality gap between the minimum of the unit
commitment problem and the maximum of its dual:
The maximum of the dual obtained by dualizing the system constraints is

strictly less than the minimum of the primal problem.
The commitment variablesz⋆⋆ and the dispatch variablesx⋆⋆ resulting

from the generator profit maximization sub-problems do not satisfy
the system constraints.

• However, the duality gap isrelativelysmaller in the larger example in
Section10.5.4than in the single generator example in Section10.5.3and
the system constraints are violated by a relatively smalleramount, so the
commitment and dispatch values corresponding to the dual maximizer
can provide a useful approximate guide to the optimum of the unit
commitment Problem (10.4).
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Discussion, continued
• If the generator cost characteristics are heterogeneous then the duality gap

(and the violation of the system constraints) becomes relatively smaller as
the number of generators grows large.

• This is the key to application of Lagrangian relaxation to large-scale
systems since the post-processing step to create a feasiblesolution
involves a smaller adjustment for larger systems.

• What are reasons for heterogeneity and homogeneity in the cost functions
of generators?
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10.6.2 Non-existence of dispatch-supporting prices
• Unfortunately, the non-zero duality gap means that prices on the system

constraints alone cannot encourage profit-maximizing generators to
commit and dispatch in a way that is (exactly) consistent with optimal
commitment and dispatch.

• For each value of the price vector, some system constraint will fail to be
satisfied by the resulting profit-maximizing decisions of the generators.
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Non-existence of dispatch-supporting prices, continued
• As Stoft argues, by modifying demand slightly we can typically obtain

dispatch supporting prices:
– if the generation stock is heterogeneous then modification will be small,
– in the larger example, the modification would be at most 2 MW,
– since there are other uncertainties and errors in dispatch,it may be

reasonable to ignore the duality gap in this case.
• This is the basis of a principled argument against centralized unit

commitment:
– might still utilize a centralized day-ahead economic dispatch process,

but unit commitment decisions would be taken by individual market
participants.
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Non-existence of dispatch-supporting prices, continued
• In a centralized day-ahead economic dispatch market without centralized

unit commitment and without start-up or min-load offers, market
participants are faced with making “marked-up” energy and reserve offers
that cover their start-up and min-load costs:
– energy and reserve offers will be increased above marginal costs to

cover the start-up and min-load costs,
– ideally, dispatch decisions by ISO using marked-up energy offers alone

will result in commitment and dispatch by market participants that
roughly approximates optimal commitment and dispatch,

– in practice, it is difficult for a market participant to estimate the “right”
mark-up that would be consistent with optimal commitment and
dispatch, unless it owns a large fraction of total generation capacity.
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Non-existence of dispatch-supporting prices, continued
• We will continue to assume that the ISO performs centralizedunit

commitment:
– ERCOT and other US ISOs optimize the commitment and dispatchin

the day-ahead market, reflecting the complexity of the various
constraints, particularly transmission constraints.

• In the next section, we will consider the convex hull prices in conjunction
with amake-wholepayment to align the incentives of profit-maximizing
generators with the centralized ISO commitment and dispatch decision, as
in Section10.4.5.

• Using convex hull prices will result in a smaller make-wholepayment
than with LMPs.
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10.6.3 Make-whole payment with convex hull prices
• As discussed above, the non-zero duality gap means that prices on the

system constraintsalonecannot encourage profit-maximizing generators
to all commit and dispatch in a way that is exactly consistent with optimal
unit commitment.

• A make-whole payment is necessary.
• For convex hull prices, the simplified make-whole payment (10.10) as

defined in Section10.4.6is:

max

{

0, fk

([

z⋆k
x⋆k

])

− [πCHP
xk

]
†
x⋆k

}

,

where the convex hull prices were defined in (10.12):

πCHP
xk

=−[Ak]
†λ⋆− [Ck]

†µ⋆,

with λ⋆ andµ⋆ maximizing the Lagrangian dual problem (10.11).
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10.6.4 Make-whole payment with convex hull prices in example
• In the example in Section10.5.4havingD = 303, all but one of the

generators would be committed and dispatched correctly if the price were
set equal to the maximizer of the dualπCHP= 2.76:
– generatorsk= 1, . . . ,75 would produce 4 MW, while
– generatorsk= 77, . . . ,100 will produce nothing.

• Generatorsk= 1, . . . ,75 and 77, . . . ,100 would collectively produce a
total of 300 MW:
– the CHP included sufficient compensation to cover both theirmin-load

and incremental energy costs.
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Make-whole payment with convex hull prices in example, continued
• To meet the total demand ofD = 303 MW, generatork= 76 should

produce 3 MW:
– the cost for generatork= 76 to produce 3 MW is:

f76

([

z⋆76
x⋆76

])

= 4z⋆76+β76x
⋆
76,

= 4×1+(1+76/100)×3,
= 9.28.

– with an energy price ofπCHP= $2.76/MWh, generatork= 76 would
receive revenues ofπCHP×x⋆76= 2.76×3= 8.28 if it produced
x⋆76= 3.

– generatork= 76 would need an additional payment of
9.28−8.28= $1/h in order to have non-negative profit, based on an
energy price ofπCHP= $2.76/MWh,

– this difference is equal to the duality gap.
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Make-whole payment with convex hull prices in example, continued
• To achieve optimal unit commitment in the example:

– price energy based on the dual maximizer,πCHP= $2.76/MWh,
– profit-maximizing behavior of generators 1, . . . ,75, and 77, . . . ,100 in

response to this price is to behave consistently with centralized optimal
unit commitment and dispatch, but

– an additionalmake-whole paymentis paid to generator 76 of:

Π⋆⋆
76(π

CHP)−

(

πCHPx⋆76− f76

([

z⋆76
x⋆76

]))

= 0−

(

πCHPx⋆76− f76

([

z⋆76
x⋆76

]))

,

= max

{

0, f76

([

z⋆76
x⋆76

])

− [πCHP]
†
x⋆76

}

,

= 4z⋆76+β76x
⋆
76−πCHPx⋆76,

= 9.28−8.28= 1.
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Make-whole payment with convex hull prices in example, continued
• To summarize, generator 76 requires an additional $1/h to induce it to

generate consistent with optimal commitment and dispatch.
• Demand pays for:

– energy based onπCHP×D = 2.76×303= $836.28/h, plus
– the make-whole payment to generator 76 of $1/h.

• The make-whole payment is charged as an uplift to demand.
• Note that the payment to generator 76 is qualitatively different to the

payment to other generators since it involves a make-whole payment.
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10.6.5 Make-whole payment with locational marginal pricesin example
• If locational marginal prices were used, the price would be:

πLMP = 1.76,

• since this is the marginal cost of the marginal generator.
• Note that at this price, the profit-maximizing response of all generators

would be tonot commit, since their min-load and incremental energy
costs are not covered.

• To induce generatork= 76 to commit and to generate 3 MW, a
make-whole payment of:

4×1+(1.76)×3−1.76×3 = 4,

• would be required.
• To induce generatorsk= 1, . . . ,75 to commit and to generate 4 MW, a

make-whole payment of:

4×1+(1+k/100)×4−1.76×4 = (24+k)/25,

• would be required.
• The total make-whole payment is $80.48/h.
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10.6.6 Comparison of convex hull and locational marginal prices
• The total make-whole payment is much higher under LMP in the example

than under CHP.
• The energy price is lower under LMP in the example than under CHP.
• Total payment for energy and make-whole by demand is lower under

LMP than under CHP.
• Although this example is extreme, make-whole payments under CHP are

provably lower than make-whole payments under LMP, when theexact
make-whole expression (10.9) is used:
– the make-whole payments under (10.9) are equal to the difference

between the minimum of the unit commitment problem and the value of
the dual,

– this difference is minimized by the dual maximizer,
– so the convex hull prices minimize the make-whole payment asdefined

by (10.9).
• Convex hull prices may not minimize the make-whole paymentsunder

the simplified make-whole payment (10.10).
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10.6.7 Demand response
• Demand response can reduce the duality gap (and therefore reduce the

make-whole payment required to achieve optimality).
• Suppose that instead of fixed demand of 303 MW, the demand was the

sum of:
a fixed demand ofD = 290 MW, plus
price-responsive demand∆D with willingness-to-pay of

(2.755+10) $/MWh−1 $/h×∆D, 0≤ ∆D ≤ 20 MW.

• Consider again convex hull prices for this unit commitment problem.
• At a price ofπCHP= $2.755/MWh, the price-responsive demand would

be∆D = 10 MW, so that total demand would be 290+10= 300 MW.
• At a price ofπCHP= $2.755/MWh, the supply equals 300 MW.
• So, supply equals demand and there is no duality gap and no need for a

make-whole payment.
• In general, price-responsive demand can reduce the dualitygap and

reduce the make-whole payments.
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Demand response, continued
• This demand response example is somewhat unrealistic in that demand is

generally not willing to voluntarily curtail at prices thatare close to
typical generation marginal costs:
– we will assume fixed demand in subsequent examples.

• Such price responsiveness does, however, have an importanteffect in the
presence of scarcity and/or market power where offer pricesmight
otherwise rise to far above generation marginal costs.

• See market power course,
www.ece.utexas.edu/ ˜ baldick/classes/394V_market_power/E

• Moreover, as in Section8.12.9.7, there may be representation of
responsive demand for adequacy reserve.
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10.6.8 Unit commitment example with two generators
• Consider again the previous example in Sections10.3.3, 10.4.3,

and10.4.8with two generators available to meet a demand ofD MW in
the single intervalnT = 1.

• Figure10.3shows the resulting convex hull prices:
– non-decreasing in increasing supply, in contrast to the locational

marginal prices as shown in Figure10.1, and
– reflect the no-load costs into the energy price.

• Figure10.4shows the resulting simplified make-whole payment versus
demandD:
– convex hull prices typically result in smaller make-whole payments than

under locational marginal pricing,
– make-whole payments are smaller with convex hull prices than with

locational marginal prices as shown in Figure10.2.
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Unit commitment example with two generators, continued
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Fig. 10.3. Price πCHP
xk

versus demandD for
two generator system.
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Unit commitment example with two generators, continued
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Fig. 10.4. Simplified
make-whole payment
with convex hull prices
versus demandD for
two generator system.
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10.6.9 Summary of make-whole payments
• The goal of make-whole payments is to ensure that each generator is paid

enough to cover its offer costs and so that it commits and dispatches
consistently with the optimal commitment and dispatch as determined by
the ISO:
– all centralized unit commitment formulations require an uplift from

demand.

• The simplified make-whole payment max

{

0, fk

([

z⋆k
x⋆k

])

−π†x⋆k

}

can be

applied to any pricing rule on energy and reserves in order toinduce a
particular behavior:
– make-whole payments are paid to a generator that commits according to

(or close enough to)zk = z⋆k,
– as previously mentioned, the simplified payment is used in practice even

though it does not provide the exactly correct incentives.
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Make-whole payments, continued
• In ISOs except MISO:

– commitmentz⋆ and dispatchx⋆ from solution of offer-based unit
commitment Problem (10.4),

– energy and reserves prices using LMPs based on Lagrange multipliers
λ⋆ andµ⋆ obtained from the solution of the convex problem,
Problem (10.7), obtained by fixing the integer variables at their optimal
valuesz⋆,

– make-whole payment based on a daily calculation of make-whole
payment using LMPs:

max

{

0, fk

([

z⋆k
x⋆k

])

− [πLMP
xk

]
†
x⋆k

}

,

– where pricesπLMP
xk

are based onλ⋆ andµ⋆ from Problem (10.7).
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Make-whole payments, continued
• For its day-ahead and real-time market, MISO uses prices that

approximate the convex hull prices:
– commitmentz⋆ and dispatchx⋆ from solution of unit commitment

Problem (10.4),
– energy and reserves payments based on the the maximizerλ⋆ andµ⋆ of

the dual problem, Problem (10.11), or an approximation to this problem,
resulting in non-decreasing prices with increasing demand, and

– make-whole payment based on a daily calculation of make-whole
payment using CHPs:

max

{

0, fk

([

z⋆k
x⋆k

])

− [πCHP
xk

]
†
x⋆k

}

,

– where pricesπCHP
xk

are based onλ⋆ andµ⋆ from Problem (10.11).
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10.7 Role of prices and implications for investment
• Two important roles for prices:

– inform dispatch and consumption decisions, and
– inform potential new entrants to the market about whether new entry

would be profitable.
• Pricesπxk on system equality and inequality constraints are paid for

production of energy and provision of reserves independentof the
producer, but possibly varying by location, and are said to beuniform .

• However, make-whole payments are not uniform since different market
participants receive different payments, even if located at the same bus.

• Non-uniformity makes it harder for a potential entrant to determine if new
entry would be profitable, particularly if the make-whole payments are
not disclosed publicly.
– It is difficult for a new entrant to understand if it would be profitable to

enter at the current prices if the total remuneration from the market is
not transparentto market participants.

• Moreover, larger make-whole payment implies that less of generation
costs are reflected into energy prices.
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Role of prices and implications for investment, continued
• Even if the make-whole payments are disclosed, make-whole payments

can distort investment decisions.
• Make-whole payments contribute to the infra-marginal rents of some

generators.
• These rents are not also available to everyone else.
• The incentives for building new capacity may be depressed compared to

the remuneration to existing generation owners.
• Convex hull prices minimize the exact make-whole expression (10.9)

over choices of uniform prices:
– the prices are as “transparent” as possible and reflecting asmuch of the

operational costs as possible for uniform prices,
– minimize the distortion of investment decisions, and
– since make-whole is charged to demand, arguably also minimize

distortions of demand-side decisions.
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10.8 Transmission constraints
• In the examples so far we have not explicitly considered transmission

constraints.
• However, transmission constraints can limit the dispatch decisions.
• In practice, transmission-constrained unit commitment can be an

extremely difficult problem to solve.
• See Exercise10.6.
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10.8.1 Transmission-constrained example
• We consider day-ahead unit commitment and dispatch across two hours,

nT = 2, with demands:

t 0 1 2

Dt 90 110 125

• Thet = 0 entry in the table is the demand for the last hour of today.
• Thet = 1,2 entries are the demands for the first two hours of tomorrow.
• Also, P10= 90 MW andP20= 0 MW are the generations in the last hour

of today, with generator 2 out-of-service at the end of today.
• We ignore reserves, min-load costs, and ramp-rate constraints.
• The offers are specified by:

∀t = 1,2,s1t = 1000,∀P1t ∈ [0,200],∇f1t(P1t) = $25/MWh,
∀t = 1,2,s2t = 1000,∀P2t ∈ [0,50],∇f2t(P2t) = $35/MWh.
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Transmission-constrained example, continued
• The generators are located in the following one-line two-bus system.
• We use the DC power flow approximation and the transmission line has

transmission capacity of 100 MW.
• We solve the transmission constrained, offer-based unit commitment for

this system.
• We will calculate and consider LMPs based on Problem (10.7).
• Make-whole payments will be based on

max

{

0, fk

([

z⋆k
x⋆k

])

− [πLMP
xk

]
†
x⋆k

}

.

P1t

P2t

1 2

Dt
demand

100 MW
✲

✛

✲✚✙
✛✘ ✚✙

✛✘
✲

Fig. 10.5. One-line
two-bus network.
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Transmission-constrained example, continued
• Because of the transmission constraint, it will be necessary to commit

generator 2 and run it during intervals 1 and 2.
• The optimal offer-based commitment and dispatch is:

t 0 1 2

Dt 90 110 125
z⋆1t 1 1 1
P⋆

1t 90 100 100
z⋆2t 0 1 1
P⋆

2t 0 10 25
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Transmission-constrained example, continued
• We calculate the locational marginal prices using commitment variables

fixed at their optimal values, noting thatπLMP
Pkt

= λ⋆
kt, whereλ⋆

kt is the
Lagrange multiplier on supply-demand balance at the bus of generatork
in intervalt:

t 0 1 2

Dt 90 110 125

πLMP
P1t

25 25 25

πLMP
P2t

25 35 35

• Since generator 1 is already committed at the start of the day, and since
the revenue (just) covers its incremental energy costs, there is no
make-whole payment for generator 1.

• Generator 2 must be started, but the revenue only just coversits
incremental energy costs.

• Therefore, the make-whole payment to generator 2 is equal toits start-up
cost ofs21= $1000.
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10.9 Robust, stochastic, and reliability unit commitment
10.9.1 Role of reserves

• Reserves provide capacity forrecourseto cope with uncertain outcomes:
– spinning reserve provides capacity to replace production if a generator

trips out of service, while
– regulation reserve provides capacity to compensate for variation of

supply–demand balance and forecast error during a real-time dispatch
interval.

• Quantities of procured reserves can be based on considerations such as:
– assessment of largest credible loss of generation (for spinning reserve),

and
– historical and forecast variability of net load and forecast error (for

regulation reserve).
– reserves serve to make the commitment and dispatch robust tofailures

and forecast error, as discussed in Section8.12.1.4.
• In simplest implementations, the choice of quantity of procured reserves

is not directly incorporated into commitment and dispatch model:
– procured quantity is exogenous decision.
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10.9.2 Stochastic unit commitment
• Recall the discussion in Section8.12.9.5of operating reserve demand

curve.
• Level of adequacy reserve was trade-off between expected value of

unserved energy and the cost of procuring the reserve:
– simple formulation involved off-line determination of parameters in

operating reserve demand curve.
• In principle, consideration of random failures could be endogenous to

unit commitment problem:
– Minimize expected cost over probabilities of outage scenarios.

• In addition to random outages, could also consider random production of
renewables:
– Minimize expected cost of probabilities of production by renewables.

• Stochastic unit commitmentformulations consider these issues,
possibly including consideration ofrisk :
– avoid downside of unfavorable outcomes.
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10.9.3 Robust unit commitment
• If distributions of random variables are not available, or are uncertain, an

alternative is to ensure feasibility even despite uncertainty within an
uncertainty set.

• Solution isrobust to uncertainty:
– standard robust formulations optimize worst-case value ofobjective

over uncertainties.
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10.9.4 Interaction with market
• A concern with stochastic and robust solutions is that it assumes that the

ISO can compile information about the various uncertainties in the
market.

• A philosophical concern is that one of the functions of the market is to
solicit this information implicitly in offer prices.
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10.9.5 Comparison to reserve formulations
• Spinning reserve provides “robust” solution in that feasibility will be

maintained for outages of size up to the amount of procured reserve:
– historically chosen to be the largest “credible” contingency, analogous

to uncertainty set in robust optimization,
– makes decisions “robust” to credible contingencies, but
– with objective given by base-case system.

• Spinning reserve formulation does not consider worst-caseobjective, so
not literally consistent with standard robust optimization formulation.
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10.9.6 Reliability unit commitment
• In addition to procurement of reserves, all ISOs perform an additional

reliability unit commitment to ensure that there is enough committed
generation capacity available to meet ISO forecast of demand:
– uses ISO forecast of demand, instead of day-ahead bids or specifications

of demand by load-serving entities,
– uses information about physical commitments of generation, instead of

financial commitments from day-ahead market,
– represents transmission system more fully,
– typically performed in day-ahead and hour-ahead timeframes,
– additional costs of commitment are charged as an uplift to demand,

targeted in ERCOT towards demand that occurs in real-time but was not
bid or specified into the day-ahead market.

• Since commitment of additional capacity in such out-of-market processes
will tend to increase supply and decrease prices, there are various
mechanisms to offset or price this effect:
– reliability adder in ERCOT.

Title Page ◭◭ ◮◮ ◭ ◮ 143 of 160 Go Back Full Screen Close Quit



10.10 Summary
• In this section we have considered temporal issues.
• We formulated the unit commitment problem.
• We considered make-whole rules.
• We investigated the duality gap in the problem and the implications for

commitment-supporting prices.
• Transmission constraints and robust and stochastic unit commitment were

briefly discussed.
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Homework exercises

10.1Use GAMS or MATLAB to solve the ramp-constrained dispatch problem
from Section10.1.2.6. Verify that your solution is consistent with the values in
Section10.1.2.6.
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10.2Suppose that we have two generators,nP = 2, with offers:

∀t,∇f1t(P1t) = 2,100≤ P1t ≤ 400,
∀t,∇f2t(P2t) = 5,100≤ P2t ≤ 300.

The generators have ramp-rate limits of∆1 = 50 MW/h and∆2 = 100 MW/h,
respectively. We consider day-ahead dispatch across five hours,nT = 5, with
demands:

t 0 1 2 3 4 5

Dt 250 350 400 425 450 475

Thet = 0 entry in the table is the demand for the last hour of today. Also,
P10= 150 MW andP20 = 100 MW. We ignore reserves.

(i) Solve the ramp-constrained economic dispatch problem.
(ii) What price is paid for energy in each hour?

(iii) What do you notice about the relationship between demand and prices?
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10.3In this exercise, we explore a formulation of unit commitment that avoids
the non-linear objective terms of (10.3) to represent min-load and incremental
energy costs. Suppose that the minimum and maximum production capacities of
generatork arePk = 2 andPk = 4, respectively, and that the marginal cost of a
committed generator (in monetary units per MW per interval)is given by:

∀Pkt ∈ [Pk,Pk] = [2,4],∇fktP(Pkt) = 1.

(i) For Pkt ∈ [Pk,Pk], evaluate:

∫ P′
kt=Pkt

P′
kt=Pk

∇fktP(P
′
kt)dP′

kt.

(ii) Show that for all

[

zkt
Pkt

]

satisfying the generator constraint

Pkzkt ≤ Pkt ≤ Pkzkt and such thatzkt ∈ {0,1}, we can express the

incremental energy costs as a linear function of

[

zkt
Pkt

]

. In particular,
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show that for all such

[

zkt
Pkt

]

we have that:

[∫ P′
kt=Pkt

P′
kt=Pk

∇fktP(P
′
kt)dP′

kt

]

zkt = Pkt −2zkt.

(iii) Now suppose that there are min-load costs of 6 monetaryunits per
interval. Show that the min-load and incremental energy costs can be

expressed as a linear function of

[

zkt
Pkt

]

.
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10.4In this exercise, we explore a formulation of unit commitment that avoids
the non-linear objective terms of (10.2) to represent start-up costs by defining
additional variables to represent the coupling between intervals. Together with
the linear expression for the incremental energy costs analyzed in Exercise10.3,
this formulation results in a mixed-integer linear programand also allows for
convenient representation of minimum up- and down-time constraints.
Consider a unit commitment formulation for tomorrow with intervals
t = 1, . . . ,nT, We continue to assume thatzkt represents the commitment status of
generatork in intervalt, with generatork on in intervalt if zkt = 1 and off in
intervalt if zkt = 0. As previously, we also assume that the commitment status
zk0 for the intervalt = 0 at the end of today is known and specified. We define
additional “start-up” variablesukt, t = 1, . . . ,nT that will enable a linear
representation of start-up costs, at the expense of creating a formulation with
more variables. Collect the entrieszkt,ukt, t = 1, . . . ,nT together into vectorszk

anduk.
(i) Consider the following (linear) “start-up” inequalityconstraints:

∀t = 1, . . . ,nT,ukt ≥ zkt −zk,(t−1),

∀t = 1, . . . ,nT,ukt ≥ 0,

and the following (linear) “start-up” expression to evaluate the start-up
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costs:
nT

∑
t=1

sktukt.

Assume thatskt ≥ 0,∀t = 1, . . . ,nT. Show that, for every binary vectorzk,
the minimum of this start-up expression over continuousuk, subject to
the start-up inequality constraints, is equal to (10.2). Moreover, show
that if skt > 0,∀t = 1, . . . ,nT then the minimizeru⋆k is unique and is a
binary vector. That is, show that:

∀zk ∈ [0,1]nT ,
nT

∑
t=1

sktzkt(1−zk,(t−1))

= min
uk∈RnT

{

nT

∑
t=1

sktukt

∣

∣

∣

∣

∣

ukt ≥ zkt −zk,(t−1), ∀t = 1, . . . ,nT ;
ukt ≥ 0, ∀t = 1, . . . ,nT

}

,

and show that, for any binaryzk, if skt > 0,∀t = 1, . . . ,nT then the
minimizeru⋆k is unique and binary. That is, the non-linear formulation of
the objective (10.2) can be replaced by a formulation that has a linear
objective and constraints and is therefore solvable as a mixed-integer
linear program.
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(ii) Many generators haveminimum up- and down-time requirements. A
minimum up-time requirement specifies that, once committed, generator
k stays on for at least, say,Lk intervals, and once it is switched off, it
must stay off for at least, say,ℓk intervals. Without loss of generality, we
need only consider 1≤ Lk, ℓk ≤ nT . Suppose that generatork is either:
• on in intervalt = 0 and has been on for at least its minimum up time, or
• off in interval t = 0 and has been off for at least its minimum down

time,
so that we can ignore minimum up- and down-time requirementsrelating
to earlier commitment status. Then the minimum up- and down-time
requirements can be expressed as follows:
• ∀t ′ = 1, . . . ,nT, if zk,(t ′−1) = 0 andzkt′ = 1 thenzki = 1 for

i = t ′+1, . . . ,min{t ′+Lk−1,nT}, and
• ∀t ′ = 1, . . . ,nT, if zk,(t ′−1) = 1 andzkt′ = 0 thenzki = 0 for

i = t ′+1, . . . ,min{t ′+ ℓk−1,nT}.
(The representation of minimum up- and down-time requirements
relating to earlier commitment status is similar.)
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Now consider the following minimum up- and down-time inequality
constraints:

t

∑
i=t−Lk+1

uki ≤ zkt,∀t = Lk, . . . ,nT ,

t

∑
i=t−ℓk+1

uki ≤ 1−zk,(t−ℓk),∀t = ℓk, . . . ,nT.

Suppose thatzk is binary. Show thatzk satisfies the minimum up- and
down-time requirements if and only if there exists auk such thatzk anduk

satisfy the start-up inequality constraints from the last part and the
minimum up- and down-time inequality constraints.
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10.5Suppose that we have two generators,nP = 2, with offers:

∀t,∇f1t(P1t) = 2,200≤ P1t ≤ 400,
∀t,∇f2t(P2t) = 3,50≤ P2t ≤ 150.

There are no ramp-rate limits nor min-load costs, but the start-up costs are:

s1t = 1000, t = 1, . . . ,nT ,

s2t = 200, t = 1, . . . ,nT.

We consider day-ahead commitment and dispatch across ten hours,nT = 10,
with demands:

t 0 1 2 3 4 5 6 7 8 9 10

Dt 200 350 500 400 300 200 300 400 500 350 200

Thet = 0 entry in the table is the demand for the last hour of today. Also,
P10= 200 MW, andP20= 0 MW with generator 2 out-of-service at the end of
today. We ignore both ramp-rates and reserves.
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(i) Solve the unit commitment problem and evaluate the totalcost of
commitment and dispatch.

(ii) What are the energy pricesπLMP
Pk

obtained from the solution of the
convex Problem (10.7) obtained by fixing the integer variables at their
optimal values from the solution of unit commitment and optimizingP1t

andP2t?
(iii) What is the make-whole payment for each generator based on prices

from Part(ii)?
(iv) Find the maximizer of the dual Problem (10.11) obtained by dualizing

the demand constraint in each hour. (Hint: What price will induce
generator 2 to be indifferent between being off and being on at full
capacity in intervals 2 and 8. What is the price in the other intervals?)

(v) What is the make-whole payment for each generator when prices are set
equal to the convex hull pricesπCHP

Pk
?
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10.6Consider the example four-line four-bus system from Section 9.6and
illustrated in Figure10.6. Assume that the only limiting transmission element is
the line from bus 2 to bus 3, with capacityp23 = 300 MW.
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Fig. 10.6. Four-line
four-bus network for
homework exercise.
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Recall that if we setσ = 0 to be the slack/price reference bus and busρ = 0 to be
the angle reference bus then we can express power balance constraint and the
flow constraint in each intervalt as:

−P1t −P2t −P3t = −D0t,

0.2P1t +0.4P2t −0.2P3t ≤ p23,

wherePkt is the (average) power production by generatork in intervalt, andD0t

is the (average) demand at bus 0 in intervalt.
We consider day-ahead dispatch across four hours,nT = 4, with demands only at
bus 0:

t 0 1 2 3 4

D0t 500 1200 3000 1200 500

• Thet = 0 entry in the table is the demand for the last hour of today.
• Thet = 1, . . . ,4 entries are the demands for the first four hours of

tomorrow.
• Also, P20= 500 MW is the production of generator 2 in the last hour of

today, and the other generators our off during the last hour of today.
• We ignore reserves, min-load costs and min-load limits, andramp-rate

constraints.
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• The start-up and incremental energy offers are specified by:

∀t = 1, . . . ,4,s1t = 10,000,∀P1t ∈ [0,1500],∇f1t(P1t) = $40/MWh,
∀t = 1, . . . ,4,s2t = 10,000,∀P2t ∈ [0,1000],∇f2t(P2t) = $20/MWh,
∀t = 1, . . . ,4,s3t = 10,000,∀P3t ∈ [0,1500],∇f3t(P3t) = $50/MWh.

(i) Using the formulation for start-up variables and inequality constraints
from the first part of Exercise10.4, use GAMS or MATLAB to solve the
transmission constrained, offer-based unit commitment for this system
for optimal valuesz⋆, P⋆, andu⋆,.

(ii) Calculate the LMPs,πLMP
Pk

, for the offer-based optimal power flow
problems for each hourt obtained by fixing the variablesz andu at their
optimal valuesz⋆ andu⋆. That is, solve Problem (10.7).

(iii) Calculate the make-whole payments based on the LMPs. That is, for

eachk evaluate max

{

0, fk

([

z⋆k
P⋆

k

])

− [πLMP
Pk

]
†
P⋆

k

}

, where fk is the total

cost for generatork in the four hours andπLMP
Pk

is the vector of LMPs at
busk for the four hours.

(iv) Solve the continuous problem obtained by relaxing the binary variablesz
andu to being continuous. Calculate the resulting Lagrange multipliers
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λ⋆
kt on supply–demand balance at each generatork in each intervalt. As

in Exercise4.9, these Lagrange multipliers equal the dual maximizer of
the Lagrangian relaxation problem obtained by dualizing the system
constraints.

(v) Calculate the make-whole payments based on the dual maximizer
obtained in the previous part and convex hull pricesπCHP

Pk
. That is, for

eachk evaluate max

{

0, fk

([

z⋆k
P⋆

k

])

− [πCHP
Pk

]
†
P⋆

k

}

.

(vi) Compare the total make-whole payments based on the convex hull prices
to the total make-whole payments based on the LMPs.
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