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Economic dispatch

(i) Formulation,
(ii) Problem characteristics,

(iii) Optimality conditions,
(iv) Examples,
(v) Merit order,

(vi) Linear programming approximation,
(vii) Homework exercises.
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5.1 Formulation

5.1.1 Variables

• Suppose there are nP generators all assumed on-line:

– for now we will omit the integer variables that represent on–off
commitment decisions,

– will include this issue in Section 10.

• We consider their electric energy production over a period of time, or
interval.

• For initial discussion, we will assume that the length T of this period of
time is short enough so that we can usefully consider the average power
level of each generator over the period of time.

• We will discuss this assumption further in Section 8.
• We will deal separately with variations of power production and demand

that occur over shorter time scales through either or both of:

– economic dispatch defined over shorter time scales, and
– ancillary services.
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Variables, continued

• Define Pk ∈ R to be the (average) power level of generator k during the
time interval:

– in some variations on this formulation, we might prefer to define Pk to
be the target power level at the end of the interval,

– then think of generation ramping linearly between boundaries of
intervals,

– see in Section 8.3.2.

• We collect the production decisions of generators k = 1, . . . ,nP, into a

vector P ∈R
nP, so that P =





P1
...

PnP



 is the decision vector.
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5.1.2 Generator constraints

• We assume that generator k has:

a maximum production capacity, say Pk, and
a minimum production capacity, Pk ≥ 0.

• That is, Pk must satisfy:

Pk ≤ Pk ≤ Pk. (5.1)

• Equivalently, the feasible operating set for generator k is:

Sk = [Pk,Pk].

• Some generators have a maximum amount of energy that they can deliver
over a time horizon:

– hydro generators with seasonal inflow to a reservoir,

• Maximum capacity may vary over time:

– wind generation is limited by wind conditions,
– equipment failures can affect capacity.

• We will not treat energy-limited resources, intermittent resources, nor
failures in detail, except in Sections 8.12.8.5 and 8.12.9.5.

Title Page ◭◭ ◮◮ ◭ ◮ 5 of 53 Go Back Full Screen Close Quit



5.1.3 Production costs

• We suppose that for k = 1, . . . ,nP there are functions fk : Sk →R such that
fk(Pk) is the cost for generator k to produce at power level Pk for the time
period T :

– for a thermal generator, we can typically think of this as being the
product of a fuel cost and a fuel use function, with fuel costs typically
varying more widely than the fuel use function:

◦ we ignore limits on fuel availability, but note that gas supply system
limitations are becoming more significant in some regions.

– for renewable generators such as hydro, wind, and solar, the cost
function is zero (or negative if there are subsidies per unit energy
produced).

– As mentioned above,

◦ for hydro, there is also a maximum amount of energy over a time
horizon,

◦ for wind and solar the maximum capacity varies over time.

• We will consider the properties of fk for thermal generators by first
considering the average cost per unit of production fk(Pk)/Pk.
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Average production costs
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Fig. 5.1. The aver-
age production cost
fk(Pk)/Pk versus pro-
duction Pk for a typical
thermal generator for
Pk ≤ Pk ≤ Pk.
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Average production costs, continued

• At low levels of production, we would expect the average production cost
to be relatively high.

• This is because there are usually “auxiliary” costs that must be incurred
whenever the plant is in-service and producing non-zero levels of output.

• As Pk increases from low levels, the average production costs typically
decrease because the costs of operating the auxiliary equipment are
averaged over a greater amount of production.

• For some Pk, the average costs fk(Pk)/Pk reach a minimum and then may
begin to increase again for larger values of Pk.

• The point where fk(Pk)/Pk is at a minimum is the point of maximum
efficiency of the generator.
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Production costs

• If we multiply the values of fk(Pk)/Pk in Figure 5.1 by Pk, we obtain the
production costs fk(Pk) as illustrated in Figure 5.2.
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Fig. 5.2. Production
cost fk(Pk) versus pro-
duction Pk for a typical
generator.
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Production costs, continued

• Extrapolating the shape of fk from Pk to values Pk < Pk we find that at
Pk = 0 the extrapolated value of the production cost function would be
greater than zero due to the auxiliary operating costs.
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Convexity

• Figure 5.2 suggests that fk is convex on Sk.
• It is often reasonable to assume that fk : Sk → R is quadratic:

∀Pk ∈ Sk, fk(Pk) =
1

2
Qkk(Pk)

2+ ckPk +dk. (5.2)

• We will assume that the cost function of each generator has been
extrapolated to a function that is convex on the whole of R.

• For convex costs, Qkk ≥ 0.
• With non-zero auxiliary costs, dk > 0.
• We also usually expect that ck > 0.
• Note that the marginal costs, ∇fk(Pk) = QkkPk + ck, increase with Pk.
• In some cases, we model costs as linear, so that Qkk = 0, with constant

marginal costs.
• Another typical cost model is piece-wise linear and convex (see

Section 5.6).
• Actual cost functions may have more complicated structure, but we will

assume that a convex function is a reasonable approximation to the
overall shape of typical cost functions.
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5.1.4 Objective

• We must consider the production costs of all generators combined.
• We want to minimize the objective f : RnP → R defined by:

∀P ∈ R
nP, f (P) =

nP

∑
k=1

fk(Pk). (5.3)

• Adding together quadratic cost functions for all generators, we obtain:

∀P ∈ R
nP, f (P) =

1

2
P†QP+ c†P+d,

• where Q ∈ R
nP×nP is a diagonal matrix with k-th diagonal entry equal to

Qkk,
• c ∈ R

nP has k-th entry equal to ck, and
• d = ∑nP

k=1 dk ∈ R.

∀P ∈ R
nP,∇f (P) =





∇f1(P1)
...

∇fnP
(PnP

)



 ,

= QP+ c.
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5.1.5 Supply–demand power balance constraint

• Let us assume that during the time period of interest we face (an average)
power demand of D.

• To meet demand, we must satisfy the constraint:

D =
nP

∑
k=1

Pk. (5.4)
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Fig. 5.3. Production
from three generators.
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5.1.6 Supply–demand power balance constraint, continued

• We can write the power balance constraint in the form AP = b with either
of the following two choices for A ∈ R

1×nP and b ∈ R:

A = 1†,b =
[

D
]

, or

A =−1†,b =
[

−D
]

.

• Note that A here is different to the admittance matrix introduced in
Section 3.2.4.

• For reasons that will be made clear when we discuss the economic
interpretation of the problem, we prefer to use the second choice for A

and b:

– we already used the second choice in the development of linearized
power flow in Section 3.6.8.
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5.1.7 Generator and power balance constraints combined

• The feasible operating set for all the generators is: (∏nP
k=1Sk)⊂ R

nP,
where the symbol ∏ means the Cartesian product, so that the feasible
set for the problem is:

S =

(

nP

∏
k=1

Sk

)

∩{P ∈ R
nP|AP = b} ,

= {P ∈ R
nP|AP = b,P ≤ P ≤ P},

• where P ∈ R
nP and P ∈ R

nP are constant vectors with k-th entries Pk and
Pk, respectively.

5.1.8 Problem

• The economic dispatch problem is:

min
P∈RnP

{ f (P)|AP = b,P ≤ P ≤ P}= min
∀k,Pk∈Sk

{ f (P)|AP = b}. (5.5)
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5.2 Problem characteristics

5.2.1 Objective

• For typical cost functions, fk is convex on [Pk,Pk].
• Therefore, f is convex.

5.2.2 Equality constraints

• The equality constraint D = ∑nP
k=1 Pk is linear.

5.2.3 Inequality constraints and the feasible region

• The intersection of the box with the equality constraint restricts the
feasible region to being a planar slice through the box.

• This is illustrated in Figure 5.4 for nP = 3, D = 10, and:

P =

[

1
2
3

]

,P =

[

4
5
6

]

.
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Inequality constraints and the feasible region, continued
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Fig. 5.4. Feasible set
for economic dispatch
example.
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5.2.4 Solvability

• Problem (5.5) is convex.
• It is possible for there to be no feasible points for economic dispatch

Problem (5.5).
• Give an example with nP = 3 and D = 10 of a specification of the

economic dispatch problem that is not feasible.

• Give an example with nP = 3, P =

[

1
2
3

]

, and P =

[

4
5
6

]

of a specification

of the economic dispatch problem that is not feasible.
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5.3 Optimality conditions

5.3.1 First-order necessary conditions

• Assuming that there is a minimizer P⋆ ∈ R
nP, then by Theorem 4.12, the

first-order necessary conditions are that (see homework):

∃λ⋆ ∈ R,∃µ⋆,µ⋆ ∈ R
nP such that: ∇f (P⋆)−1λ⋆−µ⋆+µ⋆ = 0;

M⋆(P−P⋆) = 0;

M
⋆
(P⋆−P) = 0;

−1†P⋆ =
[

−D
]

;

P⋆ ≥ P;

P⋆ ≤ P;

µ⋆ ≥ 0; and

µ⋆ ≥ 0,

• where M⋆ = diag{µ⋆} ∈ R
nP×nP and M

⋆
= diag{µ⋆} ∈ R

nP×nP are
diagonal matrices with entries specified by the entries of µ⋆ and µ⋆,

respectively, which correspond to the constraints P ≥ P and P ≤ P.
• These first-order necessary conditions involve the marginal costs ∇fk.
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First-order necessary conditions, continued

• The Lagrange multiplier on the power balance constraint −1†P = [−D] is
λ⋆:

– This Lagrange multiplier will have a special role in setting prices for
energy and also represents the sensitivity of total production costs to
demand (see Section 5.3.2).

• The Lagrange multipliers on the minimum and maximum production
capacity constraints P ≤ P and P ≤ P are µ⋆ and µ⋆, respectively:

– These Lagrange multipliers represent the sensitivity of total production
costs to changes in generator capacities (see Section 5.3.2).
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First-order necessary conditions, continued

• If the generator capacity constraints are not binding then:

µ⋆ = µ⋆ = 0 and the first and fourth lines of the first-order necessary
conditions become:

∃λ⋆ ∈ R, such that: ∇f (P⋆)−1λ⋆ = 0;

−1†P⋆ =
[

−D
]

.

That is, under economic dispatch, the marginal costs for each generator
are equalized (and all equal to λ⋆) and total generation equals
demand.

To interpret, note that if ∇fk(Pk) 6= ∇fℓ(Pℓ), we could improve dispatch
by “backing off” the generator with higher marginal cost and
increasing generation at the generator with lower marginal cost.

• If a generator maximum production capacity constraint is binding then its
marginal cost is less than or equal to λ⋆: ∇fk(P

⋆
k ) = ∇fk(Pk) = λ⋆−µ⋆k,

• If a generator minimum production capacity constraint is binding then its
marginal cost is greater than or equal to λ⋆: ∇fk(P

⋆
k ) = ∇fk(Pk) = λ⋆+µ⋆

k
.
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5.3.2 Sensitivity

• By the sensitivity Theorem 4.14, the Lagrange multiplier λ⋆ equals the
sensitivity of the total costs to changes in demand:

– increasing demand would involve increasing production at the
generators,

– sensitivity of costs to demand is λ⋆.

• Each Lagrange multiplier µ⋆
k

equals the sensitivity of the total costs to

changes in the corresponding minimum capacity of generator k.
• Each Lagrange multiplier µ⋆k equals the sensitivity of the total costs to

changes in the corresponding maximum capacity of generator k.
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5.3.3 Solving the optimality conditions

5.3.3.1 Capacity constraints not binding

• Assuming that the upper and lower bound constraints are not binding, the
first-order necessary conditions are:

∀k = 1, . . . ,nP,∇fk(P
⋆
k )−λ⋆ = 0,

D−
nP

∑
k=1

P⋆
k = 0.

• If fk is quadratic then the marginal costs are linear and these equations are
linear.

• If the marginal costs are non-linear then these equations are non-linear
and can be solved using the Newton–Raphson update.

• If each fk is strictly convex then there will be a unique minimizer.
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5.3.3.2 Dual maximization

• First ignoring the capacity constraints, we can use the analysis from
Section 4.4.5.3 for separable objectives.

• We seek the value of Lagrange multiplier λ⋆ that maximizes the dual.
• For a given λ, the dual function can be evaluated as the minimum of the

Lagrangian, which separates into nP problems that are equivalent to profit
maximization for each firm:

∀k = 1, . . . ,nP,P
(λ)
k ∈ argmin

Pk∈R
{ fk(Pk)−λPk}, (5.6)

• This can be generalized to the case of upper and lower bound constraints:

∀k = 1, . . . ,nP,P
(λ)
k ∈ argmin

Pk∈R
{ fk(Pk)−λPk|Pk ≤ Pk ≤ Pk}. (5.7)

• Note that we have “dualized” the equality constraint but not the inequality
constraints.
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5.3.4 Discussion

• Recall the economic interpretation from Sections 4.2.6, 4.4.3, and 4.4.5.3,
involving dual maximization and prices.

• We consider the price π paid for producing the energy.
• The Independent System Operator (ISO) solves the economic dispatch

problem:

– the ISO also chooses prices π for production of energy by the
generators.

– the goal of the ISO is to pick prices such that the resulting supply
matches demand and total production costs are minimized,

– as previously, we will assume that the generators choose generation
levels that maximize their operating profits given the prices.

• Each generator sells a quantity of production Pk to maximize its operating
profit Πk, which is equivalent to minimizing the difference between:

the production costs fk(Pk) for the quantity Pk, minus
the revenue π×Pk.

• We will first consider the case without capacity constraints, which repeats
previous analysis, and then generalize to the case of capacity constraints.
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Discussion, continued

• Ignoring capacity constraints, Problem (5.6) is equivalent to generator
profit maximization, given a price π = λ specified by the ISO and given
that the price cannot be influenced by the generator.

• If we solve (5.6) for various possible values of λ, we can construct a

function that specifies the profit-maximizing quantity produced, P
(λ)
k ,

versus given values of λ:

– By Theorem 4.7, ∇fk(P
(λ)
k ) = λ for profit maximization.

– Conversely, note that if a generator is choosing production to maximize
profits, and it is producing at a level Pk, then the price required by the
generator would be π = ∇fk(Pk).

– The function specifying the price required by a generator for a given
level of generation is called the offer function.

• To summarize, if the price will be specified by the ISO and cannot be
directly influenced by the generator, then a generator maximizes its
profits for each possible price by choosing its offer function equal to its
marginal costs.
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Discussion, continued

• In the case of capacity constraints, the solution of Problem (5.7)
maximizes the generator’s profit over its feasible production range given
the price π = λ.

• If we solve (5.7) for various values of λ, we can again construct a

function that specifies the quantity produced, P
(λ)
k , versus values of λ:

– By Theorem 4.12, and similarly to the discussion in Section 5.3.1,

∇fk(P
(λ)
k ) = λ+µ⋆⋆

k
−µ⋆⋆k ,

where µ⋆⋆
k

≥ 0 and µ⋆⋆k ≥ 0 are the Lagrange multipliers from

Problem (5.7) and are non-zero only if the corresponding production
constraints Pk ≥ Pk or Pk ≤ Pk are binding.

– That is, if a generator is on-line, cannot affect prices, and is choosing
production to maximize profits, and it is producing at a level:

Pk = Pk, then the price required by the generator would be π ≤ ∇fk(Pk),
Pk < Pk < Pk, then the price required by the generator would be

π = ∇fk(Pk),
Pk = Pk, then the price required by the generator would be π ≥ ∇fk(Pk).
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Discussion, continued

• To summarize, within the range of its production constraints, an on-line
generator that cannot unilaterally affect prices maximizes its operating
profits by choosing its offer function equal to marginal costs.

• Setting the price π equal to the Lagrange multiplier λ⋆ in the economic
dispatch problem results in profit-maximizing generators collectively
meeting demand at the lowest overall production cost.

• In principle, we could imagine that the ISO seeks this price by
announcing a sequence of tentative prices:

– at each iteration, price is raised or lowered to encourage or discourage
production depending on whether the total generation is less or more
than the demand.

• In practice, there is a more explicit transfer of information from
generators to the ISO:

– the generators provide offer functions to the ISO,
– we will return to the issue of the correspondence between the offer

function and marginal costs in Section 8.11.3.
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Discussion, continued

• Recall that the derivative of the the cost function, ∇fk(Pk), is called “the
marginal cost of production.”

• At the optimum, generators not at maximum or minimum capacity limits
all have marginal cost of production equal to the Lagrange multiplier.

• The value of the Lagrange multiplier is sometimes called the shadow
price or system lambda.

• This value is also the market clearing price, meaning that if energy is
sold at this price then total generation equals demand.
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5.4 Examples

5.4.1 Capacity constraints not binding

• Suppose that n = 3, with quadratic costs:

∀P1 ∈ [0,10], f1(P1) = (P1)
2×0.5 $/(MW)2h,

∀P2 ∈ [0,10], f2(P2) = (P2)
2×1 $/(MW)2h,

∀P3 ∈ [0,10], f3(P3) = (P3)
2×1.5 $/(MW)2h.

• That is, the marginal costs are assumed to be linear:

∀P1 ∈ [0,10],∇f1(P1) = P1 ×1 $/(MW)2h,

∀P2 ∈ [0,10],∇f2(P2) = P2 ×2 $/(MW)2h,

∀P3 ∈ [0,10],∇f3(P3) = P3 ×3 $/(MW)2h.

• Let D = 11 MW.
• We claim that the minimizer of this economic dispatch problem is P⋆

1 = 6,
P⋆

2 = 3, and P⋆
3 = 2.
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Capacity constraints not binding, continued

• The optimality conditions are:

∃λ⋆ ∈ R,∃µ⋆,µ⋆ ∈ R
nP such that: ∇f (P⋆)−1λ⋆−µ⋆+µ⋆ = 0;

M⋆(P−P⋆) = 0;

M
⋆
(P⋆−P) = 0;

−1†P⋆ =
[

−D
]

;

P⋆ ≥ P;

P⋆ ≤ P;

µ⋆ ≥ 0; and

µ⋆ ≥ 0,

• We can find the Lagrange multipliers by observing that none of the
generators are at their minimum or maximum capacity limits at the
claimed solution.
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Capacity constraints not binding, continued

• We claim that:

λ⋆ = 6$/MWh,

• and all other Lagrange multipliers have value zero.
• Substituting into the first line of the first-order necessary conditions:

∇f1(P
⋆
1 )−λ⋆ = 6×1−6,

= 0,

∇f2(P
⋆
2 )−λ⋆ = 3×2−6,

= 0,

∇f3(P
⋆
3 )−λ⋆ = 2×3−6,

= 0.

• The other lines of the first-order necessary conditions are also satisfied.
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Capacity constraints not binding, continued

• The sensitivity of total costs to changes in demand is λ⋆ = 6$/MWh:

– this is the common value of marginal cost of production for all agents.

• The sensitivity of total costs to changes in the capacities is zero.
• Estimate how much the total production costs would change if the

demand changed by 1 MW.
• Estimate how much the total production costs would change if the

capacity of any generator increased by 1 MW.
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5.4.2 Capacity constraints binding

• A more typical case is where some generators have binding capacity
constraints.

• Suppose that n = 3, with:

∀P1 ∈ [0,1500], f1(P1) = P1 ×40$/MWh,

∀P2 ∈ [0,1000], f2(P2) = P2 ×20$/MWh,

∀P3 ∈ [0,1500], f3(P3) = P3 ×50$/MWh.

• That is, the marginal costs are assumed constant for each machine over
their feasible production sets:

∀P1 ∈ [0,1500],∇f1(P1) = 40$/MWh,

∀P2 ∈ [0,1000],∇f2(P2) = 20$/MWh,

∀P3 ∈ [0,1500],∇f3(P3) = 50$/MWh.

• Let D = 3000 MW.
• We claim that the minimizer of this economic dispatch problem is

P⋆
1 = 1500, P⋆

2 = 1000, and P⋆
3 = 500.
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Capacity constraints binding, continued

• The optimality conditions are:

∃λ⋆ ∈ R,∃µ⋆,µ⋆ ∈ R
nP such that: ∇f (P⋆)−1λ⋆−µ⋆+µ⋆ = 0;

M⋆(P−P⋆) = 0;

M
⋆
(P⋆−P) = 0;

−1†P⋆ =
[

−D
]

;

P⋆ ≥ P;

P⋆ ≤ P;

µ⋆ ≥ 0; and

µ⋆ ≥ 0,

• We can find the Lagrange multipliers by observing that only generator 3
is not at its minimum or maximum capacity limits at the claimed solution.
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Capacity constraints binding, continued

• We claim that:

λ⋆ = 50$/MWh,

µ⋆1 = 50−40 = 10$/MWh,

µ⋆2 = 50−20 = 30$/MWh,

• and all other Lagrange multipliers have value zero.
• Substituting into the first line of the first-order necessary conditions:

∇f1(P
⋆
1 )−λ⋆−µ⋆

1
+µ⋆1 = 40−50−0+10,

= 0,

∇f2(P
⋆
2 )−λ⋆−µ⋆

2
+µ⋆2 = 20−50−0+30,

= 0,

∇f3(P
⋆
3 )−λ⋆−µ⋆

3
+µ⋆3 = 50−50−0+0,

= 0.

• The other lines of the first-order necessary conditions are also satisfied.
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Capacity constraints binding, continued

• The sensitivity of total costs to changes in demand is λ⋆ = 50$/MWh:

– this is the marginal cost of production for generator 3, which is not at its
maximum nor minimum capacity limits.

• The sensitivity of total costs to changes in the maximum capacity of
generator 1 is µ⋆1 = 10($/h)/MW.

• The sensitivity of total costs to changes in the maximum capacity of
generator 2 is µ⋆2 = 30($/h)/MW.

• The sensitivity of total costs to changes in other capacities is zero.
• Estimate how much the total production costs would change if the

demand changed by 1 MW.
• Estimate how much the total production costs would change if the

capacity of any generator increased by 1 MW.
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5.5 Merit order

• Note that for levels of demand other than D = 3000 MW, optimal
dispatch in the example would correspond to:

– for 0 ≤ D ≤ 1000 MW, lowest marginal cost generator 2 would be
dispatched to meet all the demand,

– for 1000 < D ≤ 2500 MW, lowest marginal cost generator 2 would
generate at maximum capacity and generator 1 would be dispatched to
meet the rest of the demand, and

– for 2500 < D ≤ 4000 MW, lowest marginal cost generator 2 would
generate at maximum capacity, generator 1 would generate at maximum
capacity, and generator 3 would be dispatched to meet the rest of the
demand.

• That is, to minimize costs we select generators in order of their marginal
costs, from lowest to highest.

• This is called merit order and can be visualized by “stacking up”
generation in order of marginal costs as shown in Figure 5.5. (See
Exercise 5.6.)
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Merit order, continued

✲

✻

Marginal costs, $/MWh

Demand D, MW

20

40

50

1000 2500 4000

Fig. 5.5. Generator marginal costs in merit order. For any level of demand, gen-
eration to the left of that demand level is dispatched.
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Merit order, continued

• For any level of demand in Figure 5.5, to minimize total production costs,
generation to the left of that demand level is dispatched to meet that
demand.

• More generally, economic dispatch means using generation with lower
marginal costs whenever possible in preference to using generation with
higher marginal costs:

– when we consider transmission constraints in Section 9, we will find
that this general principle holds, whereas the merit order analogy can be
misleading,

– we will choose generation to minimize the “area” under the chosen
generation in Figure 5.5,

– the “area” is the integral of the marginal costs; that is, the area
represents the production costs of all the generators combined,

– we choose generation to minimize the production costs of all generators
combined.

Title Page ◭◭ ◮◮ ◭ ◮ 40 of 53 Go Back Full Screen Close Quit



Merit order, continued

• If the demand level does not fall at a jump in marginal costs between
blocks then the value of λ⋆ is given by the highest marginal cost of the
dispatched generators.

• What is λ⋆ for 0 < D < 1000 MW?
• What is λ⋆ for 1000 < D < 2500 MW?
• What is λ⋆ for 2500 < D < 4000 MW?
• What prices would provide the right compensation so that

profit-maximizing firms generate consistently with economic dispatch?
• What happens for D > 4000 MW?
• If the demand level is at a jump in marginal costs between blocks then

there is a range of possible Lagrange multipliers λ⋆.
• What is the range of λ⋆ for D = 1000 MW?
• What is the range of λ⋆ for D = 2500 MW?
• What is the range of λ⋆ for D = 4000 MW?
• In practice, optimization software will return one particular value of λ⋆,

typically an end-point of the range.
• The value of additional generation is specified by the lower end-point of

the range and is called the marginal surplus.
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5.6 Linear programming approximation

• Typical generator cost functions are non-linear, for example, quadratic.
• To use linear programming software to solve economic dispatch having a

non-linear objective, we need to approximate the generator costs function.
• A typical approximation for a convex non-linear objective is to

piece-wise linearize the function.
• This approximates the marginal costs as being piece-wise constant.
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5.6.1 Piece-wise linearization

• For a convex function f : [0,1]→ R we might:

– define subsidiary variables ξ1, . . . ,ξ5,
– include constraints:

P =
5

∑
j=1

ξ j,

0 ≤ ξ j ≤ 0.2,

– define parameters:

d = f (0),

c j =
1

0.2
[ f (0.2× j)− f (0.2× ( j−1))] , j = 1, . . . ,5,

and
– replace the objective f by the piece-wise linearized objective

φ : R5 → R defined by:

∀ξ ∈ R
5,φ(ξ) = c†ξ+d.
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5.6.2 Quadratic example function

∀P ∈ [0,1], f (P) = (P)2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

f (P),φ(ξ)

Fig. 5.6. Piece-wise
linearization (shown
dashed) of a function
(shown solid).
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Quadratic example function, continued

• For the function f illustrated in Figure 5.6:

d = f (0),

= 0,

c j =
1

0.2
( f (0.2× j)− f (0.2× ( j−1))) ,

= (0.4× j)−0.2, j = 1, . . . ,5.

• To piece-wise linearize f in an optimization problem, we use φ as the
objective instead of f , augment the decision vector to include ξ, and
include the constraints that link ξ and P.

• Similarly, non-linear constraints can also be piece-wise linearized.
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5.7 Summary

(i) Formulation,
(ii) Problem characteristics,

(iii) Optimality conditions,
(iv) Examples,
(v) Linear programming approximation.

This chapter is based on:

• Sections 12.1, 13.5, and 15.1 of Applied Optimization: Formulation and

Algorithms for Engineering Systems, Cambridge University Press 2006,
• Daniel S. Kirschen and Goran Strbac, Power System Economics, Wiley,

2004.
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Homework exercises

5.1 In this exercise, we consider the optimality conditions for the economic
dispatch Problem (5.5) and for the individual generator profit maximization
Problem (5.7) for each generator k = 1, . . . ,nP.

(i) Use Theorem 4.12 to verify the first-order necessary conditions
presented in Section 5.3.1 for the economic dispatch problem. (Hint: In

Theorem 4.12, let A =−1†, b =
[

−D
]

, C =

[

−I
I

]

, and d =

[

−P

P

]

.

Define µ⋆ and µ⋆ to be suitable sub-vectors of the Lagrange multiplier µ⋆

in Theorem 4.12.)
(ii) Given a value of λ, write down the first-order necessary conditions for

the individual generator profit maximization Problem (5.7) for generator
k. Use the symbols µ⋆⋆

k
and µ⋆⋆k for the Lagrange multipliers on the lower

and upper bound constraints.
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5.2 Consider the economic dispatch Problem (5.5) in the particular case that

nP = 3, D = 5, P = 0, P =

[

10
10
10

]

, and the fk are of the form:

∀P1 ∈ [P1,P1], f1(P1) =
1

2
(P1)

2 +P1,

∀P2 ∈ [P2,P2], f2(P2) =
1

2
×1.1(P2)

2 +0.9P2,

∀P3 ∈ [P3,P3], f3(P3) =
1

2
×1.2(P3)

2 +0.8P3.

Solve the economic dispatch problem by solving the first-order necessary
conditions in terms of the minimizer P⋆ and the Lagrange multipliers λ⋆, µ⋆, and
µ⋆. (Hint: Because the minimum capacities are low enough and because the
maximum capacities are large enough, none of the minimum and maximum
capacity constraints will be binding. By complementary slackness, what can you
say about µ⋆ and µ⋆?)
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5.3 Use GAMS or use the MATLAB function quadprog to solve the
economic dispatch problem in Exercise 5.2. Report the minimizer and Lagrange
multipliers. Note that it is quadratic program of the form:

min
P∈RnP

{
1

2
P†QP+ c†P|AP = b,P ≤ P ≤ P},

where:

Q =

[

1.0 0 0
0 1.1 0
0 0 1.2

]

,c =

[

1.0
0.9
0.8

]

,P = 0,P =

[

10
10
10

]

,A =−1†,b = [−5 ] .
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5.4 Consider the economic dispatch Problem (5.5) in the particular case that

nP = 3, P = 0, P =

[

150
1000
1000

]

, and the ∇fk are of the form:

∀P1 ∈ [P1,P1],∇f1(P1) = 20,

∀P2 ∈ [P2,P2],∇f2(P2) = 50,

∀P3 ∈ [P3,P3],∇f3(P3) = 100.

Solve the economic dispatch problem by analyzing the optimality conditions and
find the minimizer P⋆ and the Lagrange multipliers λ⋆, µ⋆, and µ⋆ for demand:

(i) D = 500, and
(ii) D = 1500.

(Hint: What is the lowest marginal cost generation? How much of that can be
used?)
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5.5 Use GAMS or use the MATLAB function linprog to solve the economic
dispatch problem in Exercise 5.4 for each of the two values of D specified.
Report the minimizer and Lagrange multipliers in each case. Note that it is
linear program of the form:

min
P∈RnP

{c†P|AP = b,P ≤ P ≤ P},

where:

c =

[

20
50

100

]

,P = 0,P =

[

150
1000
1000

]

,A =−1†,b =
[

−D
]

.
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5.6 In this exercise, we use the merit order calculator at the web page
www.energy101.com/calculators to consider the effect of various
parameters on merit order. Demand, fuel costs of thermal generators, and
availability of renewables can be adjusted, starting with default values. The
calculator shows marginal costs on the vertical axis with segments of generation
arranged in “merit order” along the horizontal axis. For each choice of settings,
the dispatch of the generators and the value of the Lagrange multiplier, λ⋆, on
power balance is shown. In particular, the shaded area to the left of the total
demand line shows the dispatched generation, while the value of λ⋆ is labeled as
the “marginal clearing price.” Each part of the exercise will consider the effect
of particular parameter changes compared to the default settings. To restore the
default values for each successive part, reload the web page.

(i) Wind and solar have a marginal production cost of zero. Suppose that the
availability of wind increases compared to its default value.

(a) What is the effect on λ⋆?
(b) Which technology experiences the largest change in the fraction

of capacity that is dispatched?
(c) Given that energy is priced at π = λ⋆, how is the profit of thermal

generation affected by increasing wind?
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(ii) Natural gas prices fluctuate significantly. Suppose that the cost of natural
gas decreases compared to its default value.

(a) What is the effect on λ⋆?
(b) What happens to the dispatch of coal if the cost of natural gas

falls significantly?
(c) Given that energy is priced at π = λ⋆, how is the profitability of

coal generation affected by decreasing natural gas prices?

(iii) In some jurisdictions, nuclear plants have been closing for various
reasons. To simulate closure of nuclear power, increase the uranium cost
to a very high value.

(a) What is the effect on λ⋆?
(b) What happens to the dispatch of the other thermal generation if

nuclear generation is closed?
(c) Given that energy is priced at π = λ⋆, how is the profitability of

other thermal generation affected by closing nuclear generation?
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