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Locational marginal pricing

(i) Optimal power flow,
(ii) DC optimal power flow,
(iii) Offer-based optimal power flow,
(iv) Examples,
(v) Properties of locational marginal prices,

(vi) Congestion rent (merchandising surplus) and congestion cost,
(vii) Contingency constraints,
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(viii) Reactive power,
(ix) Losses,
(x) Decomposition and linearization,

(xi) Homework exercises.
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9.1 Optimal power flow
9.1.1 Generalization of economic dispatch

9.1.1.1 Constraints on operation
• Besides generator constraints, capacities of transmission lines between

generation and demand can also limit the feasible choices ofgeneration:
– constraints are typically due to maximum temperature limits from

thermal heating of elements due to electrical losses.
– we will think of these limits as being fixed and given, however,
– rating depends on how long the flow of power is to be sustained and on

ambient conditions.
• There is inherent uncertainty in definitions of line capacity.
• Other issues such as voltage constraints and constraints due to the need to

maintain stability of the dynamics of the generation–transmission system
can also constrain operation:
– we will tacitly assume that these can be translated into thermal proxy

constraints.
• There is likely to be even greater uncertainty in the values of these limits

than for thermal constraints.
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9.1.1.2 Power flow equations
• To check whether or not the line flow and voltage constraints are satisfied,

we must expand the detail of representation of the network byexplicitly
incorporating Kirchhoff’s laws, as described in the formulation of the
power flow equations in Section3.2.8.

9.1.1.3 Losses
• As mentioned, flow of power on transmission lines will incur losses.
• Power flowing from remote generators to load may incur greater losses

than from generation nearby to load:
– effectively changes the relative cost of generation depending on

location.

9.1.1.4 Other controllable elements
• Besides real power generations, we can also consider adjusting any

controllable elements in the system so as to minimize costs and meet
constraints.
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9.1.2 Formulation
9.1.2.1 Variables

• In the decision vector, we represent:
– real and reactive power generations at the generators, which are

represented in the vectorsP∈ RnP andQ∈ RnP (any buses without
generators can be represented by a generator with capacity zero),

– (in the case of demand bids) real and (potentially) reactivepower
demands at the loads, which are represented in the vectorsD andE:
◦ in economic dispatch,D was the total demand, but now we must

specify demand locationaly, and soD is now a vector.
– any other controllable quantities in the system, such as thesettings of

phase-shifting transformersand capacitors,
– the voltage magnitudes at every bus in the system, which are

represented in the vectorv, and
– the voltage angles at every bus in the system except for the reference

bus, which are represented in the vectorθ−ρ, with ρ the reference bus:
◦ the voltage angle at the reference bus is constant since, as previously,

it represents an arbitrary time reference.
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Variables, continued

• We collect all the variables into the decision vectorx=







P
Q
θ−ρ
v






∈ Rn, or

x=















D
E
P
Q
θ−ρ
v















∈ Rn in the case of demand bids.

• Recall from Section8.12.3.1that we considered the voltage angles and
magnitudes to be collected together in a vector

x(nP+1) =

[

θ−ρ
v

]

∈ R
N(nP+1).

• Since we assume that there are generators at all buses, we have that
θ,v∈ RnP, so thatN(nP+1) = (2nP)−1.
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9.1.2.2 Objective
• As previously, letf : Rn → R represent the total cost of generation.
• Typically:

f depends only on the entries ofx corresponding to real power
generations (and, in the case of bid demand, on the demand level);
however, in some formulationsf also depends somewhat on the
entries ofx corresponding to reactive power generations (and
reactive demands), and

f is separable since the decisions at one generator do not usually affect
the costs at any other generators.

• In this case, we can write the objective as:

∀x∈ R
n, f (x) =

nP

∑
k=1

fk(Pk).

• In the case of bid demand, this becomes:

∀x∈ R
n, f (x) =−benefit(D)+

nP

∑
k=1

fk(Pk).
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9.1.2.3 Equality constraints
• Since we are now including the voltage magnitude at the reference bus as

a decision variable, we must slightly redefine the power flow equality
constraints compared to Section3.2.8to be equations in the form:

∀ℓ, pℓ
([

θ−ρ
v

])

−Pℓ+Dℓ = 0,

∀ℓ,qℓ
([

θ−ρ
v

])

−Qℓ+Eℓ = 0,

• wherepℓ : R2nP−1 → R andqℓ : R2nP−1 → R are defined similarly
to (3.8)–(3.9):

∀
[

θ−ρ
v

]

∈ R
2nP−1, pℓ

([

θ−ρ
v

])

= ∑
k∈J(ℓ)∪{ℓ}

vℓvk[Gℓkcos(θℓ−θk)+Bℓk sin(θℓ−θk)],

∀
[

θ−ρ
v

]

∈ R
2nP−1,qℓ

([

θ−ρ
v

])

= ∑
k∈J(ℓ)∪{ℓ}

vℓvk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)].
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Equality constraints, continued
• Note thatvρ is now a decision variable, generalizing the case in

Section3.2.7.2and the subsequent development.
• Recall thatJ(ℓ) is the set of buses joined by a line to busℓ.
• We collect the equations together into a vector equation similar to the

form of (3.10):

g(x) = 0,

• where a typical entry ofg is of the form:

pℓ

([

θ−ρ
v

])

−Pℓ+Dℓ,

• or:

qℓ

([

θ−ρ
v

])

−Qℓ+Eℓ,

• and the decision vectorx includes the real and reactive generations (and
possibly the demands) as well as the voltage magnitudes and angles.
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9.1.2.4 Inequality constraints
• Limits on the entries inx:

x≤ x≤ x.

• A voltage magnitude limit at busℓ could be 0.95= vℓ ≤ vℓ ≤ vℓ = 1.05.
• A generator real power limit could be 0.15= Pℓ ≤ Pℓ ≤ Pℓ = 0.7.
• There are also constraints involving functions ofx.
• For example, there are typically angle difference constraints of the form:

∀ℓ,∀k∈ J(ℓ),−π/4≤ θℓ−θk ≤ π/4, (9.1)

• and there might be limits on angle differences between busesthat are not
joined directly by a line.

• What happens if the angle difference between the two ends of aline
exceedsπ/2?

• In addition, transmission line flow constraints can be expressed as
functional constraints via the power flow equations in termsof x.

• That is, we will also have functional constraints of the form:

h(x)≤ h.
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Inequality constraints, continued
• A typical functional inequality constraint might limit thereal power flow

on a line that joins busℓ to busk.
• Neglecting shunt elements in the line models, the line flow real power

flow function pℓk : R2nP−1 → R is defined by:

∀
[

θ−ρ
v

]

∈R
2nP−1

pℓk

([

θ−ρ
v

])

= vℓvk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]− (vℓ)
2Gℓk,

(9.2)

• If there is a real power flow limit ofpℓk on the line joining busℓ andk
then we represent this limit as an inequality constraint of the form

pℓk

([

θ−ρ
v

])

≤ pℓk in the inequality constraintsh(x)≤ h.

• Recall that in Section3.7.1we derived linearized versions of real power
line flow constraints where we linearized voltage angles about a flat start.
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Inequality constraints, continued
• Other constraints, such as on complex power flow, and due to stability

and voltage issues, can also be represented.

9.1.2.5 Problem
• TheAC optimal power flow problem is:

min
x∈Rn

{ f (x)|g(x) = 0,x≤ x≤ x,h(x)≤ h}. (9.3)

• This problem is, in general, non-linear and non-convex:
– recent work has made progress on solving such general formulations

directly,
– however, current electricity markets typically use approximations based

on linearization, including DC OPF.
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9.2 DC optimal power flow
9.2.1 Motivation

• Optimal power flow presents several difficulties:
– solving a non-linear, non-convex optimization problem, both in context

of day-ahead and in real-time, and
– specifying the data, particularly the reactive power and voltage

magnitude requirements.
• One simplification involves:

– replacing the representation of the power flow equations with the DC
power flow model, and

– replacing the functional inequality constraints with a linearized version.
• This simplification neglects losses and reactive power issues and creates a

linearly constrained problem:
– we will consider how to include losses in Section9.11.
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9.2.2 Formulation
• We will assume that the objective depends only on the real power

injections and is additively separable.
• Initially assume specified valuesD andE of real and reactive demand:

– demand bids will be included in particular contexts.
• For simplicity, will assume that the only limits on the entries inx are

generator constraints of the formP≤ P≤ P.
More general generator constraints can also be accommodated,
For example, we could consider reserves and other ancillaryservices,
We could also consider limits on voltage magnitudes.

• We will assume that the functional inequality constraintsh(x)≤ h
represent real power line flow limits only.

• In this case, the the optimal power flow problem is:

min
x∈Rn

{

nP

∑
k=1

fk(Pk)

∣

∣

∣

∣

∣

g(x) = 0,P≤ P≤ P,h(x)≤ h,

}

,

• The system constraints areg(x) = 0,h(x)≤ h.
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Formulation, continued
• Making real and reactive power explicit and separating net generation

into generation and demand, we obtain:

min
x∈Rn























nP

∑
k=1

fk(Pk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

([

θ−ρ
v

])

−P=−D,q

([

θ−ρ
v

])

−Q=−E,

P≤ P≤ P,∀(ℓk) ∈K, pℓk

([

θ−ρ
v

])

≤ pℓk























,

• whereK is the set of lines with real power line flow limits and we have
assumed that there are specified vectors of real and reactivepower
demandD andE, respectively:
– recall that previously in economic dispatch,D was the total demand, but

now we must specify demand at each location in the system.
• If demand response is considered, thenD and, in principleE, should also

be part of the decision vector and the equality constraints become:

p

([

θ−ρ
v

])

−P+D = 0,q
([

θ−ρ
v

])

−Q+E = 0.
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9.2.3 Further simplifications
• We will further simplify the optimal power flow formulation by:

– omitting the reactive power flow equations, effectively assuming that we
can satisfy them independently of other decisions,

– deleting the reactive power and voltage magnitude variables from the
decision vector,

– fixing the voltage magnitude schedule atv(0) = 1, so that generators
have been redefined asPV buses,

– linearizing the real power flow equations, and
– linearizing the real power line flow limit equations.

• That is, our decision vector will be re-defined to bex=

[

P
θ−ρ

]

, with

θ−ρ = x(nP+1) ∈ R(nP−1), and we will use the DC power flow
approximation to the AC power flow.

• This formulation will include an explicit representation of angles:
– paralleling the development in the discussion of power flow,we will

also consider a formulation where the angles are eliminated.
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9.2.3.1 Omitting reactive power and voltage magnitude
• Omitting the reactive power flow equations and fixing the voltage

schedule leaves us with the real power flow equations:

p

([

θ−ρ
v(0)

])

−P=−D.

9.2.3.2 Linearization of power flow

• We linearize the real power flow equations aboutθ(0) = 0 to obtain the
DC power flow approximation:

∂p
∂θ−ρ

([

0
1

])

θ−ρ −P=−D,

• where we assume thatθ(0) = 0 andv(0) = 1 satisfy the real power flow
equations for injectionsP(0) = 0.

• As in Section3.6, we defineJ =
∂p
∂θ−ρ

([

0
1

])

, so that the power flow

equations become:

Jθ−ρ−P=−D.
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9.2.3.3 Linearization of real power line flow limit constraints
• The real power line flow limit constraints are:

∀(ℓk) ∈K, pℓk

([

θ−ρ
v

])

≤ pℓk.

• Linearizing these aboutθ(0) = 0 and maintainingv(0) = 1 we obtain:

∀(ℓk) ∈K,
∂pℓk
∂θ−ρ

([

0
1

])

θ−ρ ≤ pℓk− pℓk

([

0
1

])

= pℓk,

• sincepℓk

([

0
1

])

= 0.

• As in Section3.7.1, we define a matrixK to have rows

K(ℓk) =
∂pℓk
∂θ−ρ

([

0
1

])

and also define a vectord to have entries

d(ℓk) = pℓk, so that the line flow inequality constraints become:

Kθ−ρ ≤ d.
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9.2.3.4 Other constraints
• We can also add linearized versions of other constraints such as stability

and voltage constraints to the formulation.
• Suchproxy constraints may approximately abstract from a large number

of off-line studies.
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9.2.4 Explicit representation of angles
9.2.4.1 Formulation

• The DC optimal power flow problem is therefore:

min
P∈RnP,θ−ρ∈RnP−1

{

nP

∑
k=1

fk(Pk)

∣

∣

∣

∣

∣

Jθ−ρ−P=−D,Kθ−ρ ≤ d,P≤ P≤ P

}

.

• This problem is in the form of our generalized economic dispatch
problem:

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d,∀k= 1, . . . ,n,δk ≤ Γkxk ≤ δk},

• where:

x =

[

P
θ−ρ

]

∈ R
n,

A = [−I J ] ,

b = −D,

C = [0 K ] ,
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Formulation, continued
• and where:

xk = [Pk],k= 1, . . . ,nP,

x(nP+1) = θ−ρ,

∀x∈ R
n, f (x) =

nP

∑
k=1

fk(Pk),

δk = [Pk],

δk = [Pk],

Γk = [1].
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9.3 Offer-based optimal power flow, angles represented explicitly
• We consider the solution of the optimal power flow problem andwrite

down the pricing rule for offer-based optimal power flow where each
generatork= 1, . . . ,nP offers∇fk and specifies its limitsPk andPk.

• Let x⋆ =

[

P⋆

θ⋆−ρ

]

be the minimizer of the offer-based optimal power flow

problem.
• Let λ⋆ andµ⋆ be the Lagrange multipliers associated with the system

constraintsAx= b andCx≤ d, respectively.
• Let Ak andCk be the columns ofA andC, respectively, associated with the

decision variablesxk representing generatork.
• That is:

Ak = −I k,

Ck = 0,

• whereI k is a vector with all zeros except for a one in thek-th place.
• Note that the corresponding columns for the variablesx(nP+1) = θ−ρ are

the matricesJ andK, respectively, soA(nP+1) = J,C(nP+1) = K.
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9.3.1 First-order necessary conditions

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

r ,∀k= 1, . . . ,nP+1,∃µ⋆
k
,µ⋆k ∈ R

rk such that:

∀k= 1, . . . ,nP+1,∇fk(x
⋆
k)+ [Ak]

†λ⋆+[Ck]
†µ⋆− [Γk]

†µ⋆
k
+[Γk]

†µ⋆k = 0;

[J]†λ⋆+K†µ⋆ = 0;
M⋆(Cx⋆−d) = 0;

∀k= 1, . . . ,n,M⋆
k(δk−Γkx

⋆) = 0;

∀k= 1, . . . ,n,M⋆
k(Γkx

⋆−δk) = 0;
Ax⋆ = b;
Cx⋆ ≤ d;

∀k= 1, . . . ,n,Γkx
⋆
k ≥ δk;

∀k= 1, . . . ,n,Γkx
⋆ ≤ δk;

µ⋆ ≥ 0;
µ⋆

k
≥ 0; and

µ⋆k ≥ 0.
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9.3.2 Pricing rule

• From Theorem8.1, we can write down the priceπLMP
Pk

that induces
profit-maximizing generatork to dispatch according toP⋆

k :

πLMP
Pk

= −[Ak]
†λ⋆− [Ck]

†µ⋆,

= λ⋆
k,

• whereλ⋆
k is the Lagrange multiplier associated with the system constraint

∂pk
∂θ−ρ

([

0
1

])

θ−ρ −Pk =−Dk and where
∂pk
∂θ−ρ

([

0
1

])

is thek-th row of

J.
• The priceπLMP

Pk
is called thelocational marginal price or LMP at busk.

• That is, the payment to generatork for generationPk is:

[πLMP
Pk

]
†
Pk = λ⋆

k×Pk.

• Generatork is paid based on the Lagrange multiplier on the power
balance constraint associated with its bus.
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Pricing rule, continued
• Similarly, using an argument based on bid demand, we find thatdemand

pays based on the Lagrange multiplier associated with its bus:
– Several markets, including ERCOT, charge demand based on aload

weighted averageof LMPs in a zone.

• We can write the vector of LMPs for all buses asπLMP
P = λ⋆.

• If the formulation were expanded to include reserves and other ancillary
services then the LMPs would also include additional terms related to
these services as we derived for the case of reserves withouttransmission
constraints.

• However, current market formulations with ancillary services typically do
not represent locational issues in detail:
– for example, deliverability of spinning reserves may not beconsidered,

or only considered approximately in terms of deliverability to “zones,”
– this results in some inconsistences in such models.
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9.3.3 Sensitivity interpretation
• Typically, the LMP at a bus can be interpreted as the minimum cost per

unit energy of delivering an additional infinitesimal amount of power to
that bus or the value per unit energy of producing an additional
infinitesimal amount of power at that bus.
“Marginal” means a derivative or infinitesimal change in this context.

• In particular, if the conditions hold to apply Theorem4.14, then the
Lagrange multiplier on a constraint equals the sensitivityof the objective
to a change in the right-hand side of the constraint.

• The LMP for busk is the Lagrange multiplier on the power balance
constraint for busk.

• The LMP therefore represents the sensitivity of cost to changes in
production (or demand) at busk:
Minimizing the cost (minus benefits) is equivalent to maximizing the

benefits minus the cost, or thesurplus.
Recall from Section6.3that the sensitivity of surplus to changes in

production is called themarginal surplus.
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Sensitivity interpretation, continued
• We are again pricing at the marginal surplus, but it now varies from bus to

bus.
• The sensitivity interpretation is not always valid when constraints are

“just” binding:
– a typical example is where there is a range of possible valuesof

Lagrange multipliers,
– analogous to the transmission-unconstrained case when there is a jump

in marginal costs between blocks.
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9.4 Offer-based optimal power flow, angles eliminated
• To understand the relationship between the constraints andthe LMPs, we

will further re-formulate the optimal power flow problem to eliminate the
angles using theshift factors:
– for a given problem specification, the angle eliminated formulation

using shift factors and the angles included formulation that we have just
considered must have the same dispatch solution,

– this observation will allow us to interpret the LMPs in termsof the
Lagrange multiplier on power balance and on the line flow limits.

• The shift factors formulation will also lead to a decomposition approach
that can be utilized to represent the AC power flow equations.
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9.4.1 Formulation
• Recall the system constraints:

Jθ−ρ−P = −D,

Kθ−ρ ≤ d.

• In Section3.7.4, we discussed eliminatingθ−ρ by re-writing
Jθ−ρ−P=−D as:

−1†P = −1†D,

θ−ρ = [J−σ]
−1(P−σ −D−σ),

• whereσ is the slack bus andρ is the angle reference bus.
For reasons that will become clear, busσ will also be called the “price

reference bus,” as distinct from theanglereference bus, busρ.
However, typically, we will either chooseσ to be the same as the angle

reference busρ or (in small examples) chooseσ to be a bus with
demand.

Note that we continue to assume that there is a generator at the slack bus
having generation variablePσ.
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Formulation, continued
• Using theaugmented shift factor matrix Ĉ from Section3.7.5, the

system equality and inequality constraints (3.19)–(3.20) then become:

−1†P = −1†D,

ĈP ≤ ĈD+d,

• whereP−D is the vector of net injections at all buses, and the augmented
shift factor matrix isĈ=

[

0 K[J−σ]
−1], assuming that the first entry ofP

corresponds to the price reference busσ.
• Demand response can be accommodated by considering a vectorof

demandsD in the decision variable instead of the fixed demand
specificationD.
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Formulation, continued
• The DC optimal power flow problem with angles eliminated is therefore:

min
P∈RnP

{

nP

∑
k=1

fk(Pk)
∣

∣

∣
−1†P=−1†D,ĈP≤ ĈD+d,P≤ P≤ P

}

.

• This is in the form of our generalized economic dispatch problem:

min
x∈Rn

{ f (x)|Âx= b̂,Ĉx≤ d̂,∀k= 1, . . . ,n,δk ≤ Γkxk ≤ δk},

• where we have used ˆ to distinguish this formulation from theformulation
where anglesθ−ρ were explicit and where:

x = P∈ R
nP,

Â = −1†,

b̂ = −1†D,

Ĉ =
[

0 K[J−σ]
−1

]

,
where we have assumed that the first entry
of P corresponds to the price reference bus,

d̂ = ĈD+d = K[J−σ]
−1D−σ +d,
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Formulation, continued
• and where:

xk = [Pk],

δk = [Pk],

δk = [Pk],

Γk = [1].
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Formulation, continued
• We again consider the solution of the optimal power flow problem and

write down the pricing rule for offer-based optimal power flow where
each generatork= 1, . . . ,nP offers∇fk and specifies its limitsPk andPk.

• Let P⋆ be the minimizer of the offer-based optimal optimal power flow
problem with anglesθ−ρ eliminated.
Note that if the offers are the same as in the previous formulation where

we considered anglesθ−ρ represented explicitly, then each
minimizerP⋆ of the angles eliminated problem is also a minimizer
of the problem with angles represented, and vice versa.

Moreover, the angles in the previous solution must also satisfy
θ⋆−ρ = [J−σ]

−1(P⋆
−σ −D−σ).

• Let λ̂⋆ andµ̂⋆ be the Lagrange multipliers associated with the system
constraintsÂx= b̂ andĈx≤ d̂, respectively, in the angles eliminated
problem.
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Formulation, continued
• Let Âk andĈk be the columns of̂A andĈ, respectively, associated with the

decision variablesxk representing generatork.
• That is:

Âk = −1,

Ĉk =











K
[

[J−σ]
−1
]

k
, if k is not the price reference bus,

0, if k= σ is the price reference bus.

• where
[

[J−σ]
−1
]

k
is thek-th column of[J−σ]

−1.

Title Page ◭◭ ◮◮ ◭ ◮ 35 of 136 Go Back Full Screen Close Quit



Formulation, continued
• Note thatĈk is the column of the augmented shift factor matrix

corresponding to generatork.
• Each entry ofĈk represents the fraction of the generation injected by

generatork that flows on the corresponding line when withdrawn at the
price reference bus.

• The entries ofĈσ are all zero since injecting and withdrawing the same
amount of power at the price reference bus has no effect on anyline flows.
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9.4.2 First-order necessary conditions

∃λ̂⋆ ∈ R
m,∃µ̂⋆ ∈ R

r ,∀k= 1, . . . ,nP,∃µ⋆
k
,µ⋆k ∈ R

rk such that:

∀k= 1, . . . ,nP,∇fk(x
⋆
k)+ [Âk]

†λ̂⋆+[Ĉk]
†
µ̂⋆− [Γk]

†µ⋆
k
+[Γk]

†µ⋆k = 0;

M⋆(Ĉx⋆− d̂) = 0;
∀k= 1, . . . ,n,M⋆

k(δk−Γkx
⋆) = 0;

∀k= 1, . . . ,n,M⋆
k(Γkx

⋆−δk) = 0;

Âx⋆ = b̂;
Ĉx⋆ ≤ d̂;

∀k= 1, . . . ,n,Γkx
⋆
k ≥ δk;

∀k= 1, . . . ,n,Γkx
⋆ ≤ δk;

µ̂⋆ ≥ 0;
µ⋆

k
≥ 0; and

µ⋆k ≥ 0.

Title Page ◭◭ ◮◮ ◭ ◮ 37 of 136 Go Back Full Screen Close Quit



9.4.3 Pricing rule

• From Theorem8.1, we can again write down the priceπLMP
Pk

that induces
each profit-maximizing generatork to dispatch according toP⋆

k :

πLMP
Pk

= −[Âk]
†λ̂⋆− [Ĉk]

†
µ̂⋆,

=







λ̂⋆−
[

[J−σ]
−1
]

k

†
K†µ̂⋆, if k is not the price reference bus,

λ̂⋆, if k is the price reference bus,

• whereλ̂⋆ is the Lagrange multiplier associated with the system equality
constraint−1†P=−1†D, representing overall power balance.

• In particular, the payment to generatork for generationPk is:

[πLMP
xk

]
†
Pk = (λ̂⋆− [Ĉk]

†
µ̂⋆)Pk,

=







(

λ̂⋆−
[

[J−σ]
−1
]

k

†
K†µ̂⋆

)

Pk,
if k is not the

price reference bus,

λ̂⋆×Pk, if k is the price reference bus.
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Pricing rule, continued
• Generatork is paid based on:

the Lagrange multiplier̂λ⋆ on the “overall” power balance constraint
associated with the price reference bus, and

a weighted average of the Lagrange multipliers ˆµ⋆ associated with the
line flow limit constraints, where the weights are given by the shift
factors.

• This is again thelocational marginal price at busk.
• We can write down the vector of LMPs as:

πLMP
P = 1λ̂⋆− [Ĉ]

†
µ̂⋆. (9.4)

• In general,̂λ⋆, the value of the Lagrange multiplier on the “overall”
power balance constraint, has a different value to the analogous Lagrange
multiplier that would be obtained if the transmission constraints were
ignored:

That is,λ̂⋆ is not the same as the “unconstrained price” obtained from the
offer-based economic dispatch calculation ignoring transmission
constraints!
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Pricing rule, continued

• To summarize, the LMP at busk, πLMP
Pk

, is equal to:

the LMP at the price reference bus,
minus a weighted sum of the Lagrange multipliers on the line flow limit

constraints.
• The weights are “shift factors” to the constraints.
• We will generalize this to include losses in Section9.11.
• Since the dispatchP⋆ must be the same as in offer-based optimal power

flow where we considered anglesθ explicitly, it must also be the case that
LMPs in each case must provide the same incentives, as shown in the next
Theorem.

Title Page ◭◭ ◮◮ ◭ ◮ 40 of 136 Go Back Full Screen Close Quit



Pricing rule, continued

Theorem 9.1
• Consider the LMPs in the two formulations of offer-based optimal

power flow with angles included and with angles eliminated,
respectively.

• For some choices of Lagrange multipliersλ⋆ and µ⋆ satisfying the
first-order necessary conditions of offer-based optimal power flow with
angles included and for some choices of Lagrange multipliers λ̂⋆ and
µ̂⋆ satisfying the first-order necessary conditions of offer-based optimal
power flow with angles eliminated we have that:

∀k= 1, . . . ,n,λ⋆
k = λ̂⋆− [Ĉk]

†
µ̂⋆, (9.5)

µ⋆ = µ̂⋆. (9.6)

• If there are unique values of the Lagrange multipliers then (9.5)
and (9.6) hold for these values so that the unique LMPs are the same in
both formulations.
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Pricing rule, continued
Proof
• Let P⋆ be the minimizer of the offer-based optimal optimal power flow

problem with anglesθ−ρ eliminated and let̂λ⋆, µ̂⋆, µ⋆
k
, andµ⋆k be the

Lagrange multipliers associated with the system constraints Âx= b̂ and
Ĉx≤ d̂ and with the generator constraints, respectively.

• Defineθ⋆−ρ = [J−σ]
−1(P⋆

−σ−D−σ), whereP⋆
−σ is the vector obtained from

P⋆ by deleting the entry corresponding to the row eliminated from J.
• Direct substitution then shows that:

x⋆ =

[

P⋆

θ⋆−ρ

]

,

λ⋆ andµ⋆ defined by and (9.5) and (9.6), and
µ⋆

k
, andµ⋆k,

• satisfy the first-order necessary conditions of offer-based power flow
with angles included.

✷
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Pricing rule, continued

• The LMP at busk, πLMP
Pk

, is often described as being the sum of:

– an energy price component (that is,λ̂⋆) and
– a congestion price component (that is,−[Ĉk]

†
µ̂⋆).

• Note that the LMP at the price reference busλ̂⋆ and the Lagrange
multipliers on the line flow limit constraints, and hence thecongestion
commponent−[Ĉk]

†
µ̂⋆, will each depend on the location of the price

reference bus.
• However, according to Theorem9.1, the LMP at each bus is independent

of the choice of the location of the price reference bus:
– for any given busk, the sum of the energy price component and

congestion price component istheLMP at busk, independent of the
choice of price reference bus.

• When we include consideration of losses, the LMP will be the sum of
energy, congestion, and loss components.
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9.5 Example
• Consider the one-line two-bus system from Section3.8with MW

capacity and per unit impedance (on a 1 MVA base) as shown.
• Let busρ = 1 be the angle reference bus, so the unknown angle isθ2.
• Let busσ = 2 be the slack/price reference bus.
• There are generators at both buses 1 and 2 andD2 = 110 MW at bus 2.
• The offers are specified by:

∀P1 ∈ [0,200],∇f1(P1) = $25/MWh,
∀P2 ∈ [0,50],∇f2(P2) = $35/MWh.

P1

P2

1 2

110 MW
demand

0+0.001
√
−1

100 MW

✲

✛

✲✚✙
✛✘ ✚✙

✛✘
✲

Fig. 9.1. One-line two-
bus network.
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9.5.1 Admittance matrix
• We repeat the analysis from Section3.8, with the demand vectorD

replaced byD =

[

0
D2

]

.

• As discussed in Section3.8, the line admittance is:

Y12 =
1

0+0.001
√
−1

,

= −1000
√
−1.

• The bus admittance matrix is:
[

Y12 −Y12
−Y12 Y12

]

=

[

−1000
√
−1 1000

√
−1

1000
√
−1 −1000

√
−1

]

,

=

[

B11
√
−1 B12

√
−1

B21
√
−1 B22

√
−1

]

.
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9.5.2 Jacobian
• Evaluating the sub-matrix of the Jacobian corresponding toreal power

and angles at the condition of flat start:

J =
∂p
∂θ−ρ

([

0
1

])

,

=
∂p
∂θ−1

([

0
1

])

,

=
∂p
∂θ2

([

0
1

])

,

=

[

−B12
B12

]

,

=

[

−1000
1000

]

.
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9.5.3 DC power flow
• The DC power flow constraints are:

Jθ−ρ = P−D,

=

[

P1
P2−D2

]

,

• where we note thatD =

[

0
D2

]

.

• Substituting, we obtain:
[

−1000
1000

]

[θ2 ] =

[

P1
P2−D2

]

.
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9.5.4 Eliminating angles
• We eliminateθ2 to obtain the following form:

−P1−P2 = −D2,

[θ2] = [J−σ]
−1[P1],

• where, to formJ−σ, we have deleted the second row ofJ corresponding to
the price reference/slack busσ = 2:

J−σ = [−1000],

[J−σ]
−1 = [−0.001].

• Note that theanglereference bus is busρ = 1, whereas theprice
reference bus is busσ = 2!
Example shows that the angle and price reference buses can bedifferent

buses!
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Eliminating angles, continued
• The power flow equations are then:

−P1−P2 = −D2,

θ2 = [−0.001][P1].

• For positive values ofP1, we have thatθ2 < 0= θ1.
Power flows from “higher” to “lower” angles.
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9.5.5 Line flow constraints
• Assume that the real power line flow limit of 100 MW applies only in the

direction of the arrow in Figure9.1.
• Ignore the constraint on flow in the direction opposite to thearrow.
• The line flow constraint is then specified byKθ−ρ ≤ d, where:

d = [p(12)],

= [100] ,
K = [−B12],

= [−1000].

• Therefore:

(K[θ2]≤ d) ⇔ ([−1000][θ2]≤ [100]),
⇔ (θ2 ≥−0.1).

• For |θ2| ≤ 0.1 we have that sin(θ1−θ2) = sin(−θ2)≈−θ2, so that the
DC power flow approximation is reasonable.
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9.5.6 Shift factors
• The matrix of shift factors is:

K[J−σ]
−1 = [−1000][−0.001],

= [1].

• That is, ifP1 is injected at bus 1 and withdrawn at bus 2 then[1][P1] = P1
will flow on the line between bus 1 and bus 2.

• If P2 is injected at bus 2 and withdrawn at bus 2 then no power will flow
on the line between bus 1 and bus 2.

• That is, the augmented shift factor matrix is:

Ĉ =
[

K[J−σ]
−1 0

]

,

= [1 0] .
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9.5.7 Line flow constraints with angles eliminated
• The system equality and inequality constraints with angleseliminated are:

−1†P = −1†D,

ĈP ≤ ĈD+d.

• SinceĈ= [1 0], D =

[

0
D2

]

, andd = [100], these constraints become:

−P1−P2 = −D2,

P1 ≤ 100.

• As mentioned in Section3.8, we could see this from Figure9.1directly:
– Generation at buses 1 and 2 must meet demand at bus 2.
– For withdrawal at the price reference busσ = 2, all injection at bus 1

flows on the line; therefore generation at bus 1 must be withinthe
capacity of the line.

– For withdrawal at the price reference busσ = 2, no injection at bus 2
flows on the line.
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9.5.8 Offer-based optimal power flow, angles represented explicitly
• Offer-based optimal power flow involves:

P⋆
1 = 100 MW generation from generator 1,

P⋆
2 = 10 MW generation from generator 2, and

flow of 100 MW on the line, so that
θ⋆2 = [J−σ]

−1[P⋆
1 ] = [−0.001][P⋆

1 ] = [−0.1].
• None of the four generator constraints are binding so, by complementary

slackness, the Lagrange multipliers on the generator constraints are zero:

µ⋆
k

= 0,k= 1,2,

µ⋆k = 0,k= 1,2.

• Therefore, both generators are “marginal.”
• Except for certain cases where the Lagrange multipliers arenot uniquely

defined, the number of marginal generators is at least one more than the
number of binding transmission constraints.

• See Exercises9.1, 9.2, and9.4.
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Offer-based optimal power flow, angles represented explicitly, continued
• The first-order necessary conditions include:

∀k= 1,2, 0 = ∇fk(P
⋆
k )+ [Ak]

†λ⋆+[Ck]
†µ⋆− [Γk]

†µ⋆
k
+[Γk]

†µ⋆k,

= ∇fk(P
⋆
k )+ [Ak]

†λ⋆+[Ck]
†µ⋆, sinceµ⋆

k
= µ⋆k = 0,

= ∇fk(P
⋆
k )−λ⋆

k, sinceCk = 0.

• Therefore:

λ⋆
1 = ∇f1(P

⋆
1),

= $25/MWh,
λ⋆

2 = ∇f2(P
⋆
2),

= $35/MWh.

• The LMPs are $25/MWh and $35/MWh, respectively.
• These are, respectively, the costs per unit energy of delivering an

additional infinitesimal amount of power to buses 1 and 2.
• How would the LMPs change if the slack/price reference bus bus changed

to σ = 1 or if the angle reference bus changed toρ = 2?
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9.5.9 Offer-based optimal power flow, angles eliminated
• In this formulation, the first-order necessary conditions include:

∀k= 1,2, 0 = ∇fk(P
⋆
k )+ [Âk]

†λ̂⋆+[Ĉk]
†
µ̂⋆− [Γk]

†µ⋆
k
+[Γk]

†µ⋆k,

= ∇fk(P
⋆
k )− λ̂⋆+[Ĉk]

†
µ̂⋆.

• Therefore:

$35/MWh = ∇f2(P
⋆
2),

= λ̂⋆− [0]µ̂⋆,

= λ̂⋆,

$25/MWh = ∇f1(P
⋆
1),

= λ̂⋆− [1]µ̂⋆,
= $35/MWh− µ̂⋆,

µ̂⋆ = $10/MWh.

• The LMP at the price reference bus, busσ = 2, is λ̂⋆ = $35/MWh.
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9.6 Larger example
• Recall the previous four-line four-bus example from Section 3.9with

MW capacities and per unit impedances (on a 1 MVA base) as shown.

• Let ρ = 0 be the angle reference bus, so unknown angles areθ−ρ =

[θ1
θ2
θ3

]

.

• Demand is 3000 MW at bus 0 and busσ = 0 is the price reference bus.

�
�
�
�
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❅
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❅

❅
❅
❅
❅

�
�
�
�
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�
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❅

❅
❅
❅
❅
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�
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�

❅
❅
❅
❅

❅
❅
❅
❅
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�

❅
❅
❅
❅

❅
❅
❅
❅

�
�
�
�

�
�
�
�

❅
❅
❅
❅

❅
❅
❅
❅

�
�
�
�

P1 P2

D0 P3

1 2

0 3

0+0.001
√
−1

3000 MW
0+0.001

√
−1

3000 MW
0+0.002

√
−1

300 MW

0+0.001
√
−1

3000 MW

❅
❅
❅❘

�
�

�✠

�
�

�✠ ❅
❅

❅■

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✛

✛

❄ ❄

Fig. 9.2. Four-line
four-bus network.
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Larger example, continued
• Assume that the transmission line capacities are:

p(10) = 3000MW,

p(21) = 3000MW,

p(23) = 300MW,

p(30) = 3000MW,

• in the directions implied by the arrows.
• We ignore limits on these lines in the directions opposite tothe arrows.
• The generation offers are:

∀P1 ∈ [0,1500],∇f1(P1) = $40/MWh,
∀P2 ∈ [0,1000],∇f2(P2) = $20/MWh,
∀P3 ∈ [0,1500],∇f3(P3) = $50/MWh.

• This is the same demand and offers as a previous example, but now we
must satisfy the transmission constraints.

Title Page ◭◭ ◮◮ ◭ ◮ 57 of 136 Go Back Full Screen Close Quit



9.6.1 DC power flow
• Recall that the DC power flow constraints are:

Jθ−ρ = P−D,

• where:

J =







−1000 0 −1000
2000 −1000 0

−1000 1500 −500
0 −500 1500






,D =







D0
0
0
0






.

• Since bus 0 is actually a demand bus and there is only generation at buses
1, 2, and 3, the DC power flow constraints are:







−1000 0 −1000
2000 −1000 0

−1000 1500 −500
0 −500 1500







[θ1
θ2
θ3

]

=







0
P1
P2
P3






−







D0
0
0
0






.
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9.6.2 Eliminating angles
• Eliminating the angles yields:

−P1−P2−P3 = −D0,

θ−ρ =

[

0.0008 0.0006 0.0002
0.0006 0.0012 0.0004
0.0002 0.0004 0.0008

][

P1
P2
P3

]

.
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9.6.3 Line flow constraints
• The line flow constraints are specified byKθ−ρ ≤ d, where:

d =









p(10)
p(21)
p(23)
p(30)









,

=







3000
3000
300

3000






,

K =







1000 0 0
−1000 1000 0

0 500 −500
0 0 1000






.
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9.6.4 Shift factors
• The matrix of shift factors is:

K[J−σ]
−1 =







1000 0 0
−1000 1000 0

0 500 −500
0 0 1000







[

0.0008 0.0006 0.0002
0.0006 0.0012 0.0004
0.0002 0.0004 0.0008

]

,

=







0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8






.

• The augmented shift factor matrix is:

Ĉ =
[

0 K[J−σ]
−1] ,

=







0.0 0.8 0.6 0.2
0.0 −0.2 0.6 0.2
0.0 0.2 0.4 −0.2
0.0 0.2 0.4 0.8






.
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9.6.5 Line flow constraints with angles eliminated
• The system equality and inequality constraints with angleseliminated are:

−1†P = −1†D,

ĈP ≤ ĈD+d,

• Since:

Ĉ =







0.0 0.8 0.6 0.2
0.0 −0.2 0.6 0.2
0.0 0.2 0.4 −0.2
0.0 0.2 0.4 0.8






,D =







D0
0
0
0






,d =







3000
3000
300

3000






,

• these constraints become:

−P1−P2−P3 = −D0,






0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8







[

P1
P2
P3

]

≤







3000
3000
300

3000






.
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9.6.6 DC optimal power flow problem with angles eliminated
• Using the explicit form of the objective and constraints, the DC optimal

power flow problem with angles eliminated is:

min
P1 ∈ R,
P2 ∈ R,
P3 ∈ R























































40×P1
+20×P2
+50×P3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−P1−P2−P3 =−D0,







0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8







[

P1
P2
P3

]

≤







3000
3000
300

3000






,

0≤ P1 ≤ 1500,
0≤ P2 ≤ 1000,
0≤ P3 ≤ 1500























































.
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9.6.7 Line flows using solution ignoring transmission constraints
• The solution of offer-based economic dispatch ignoring transmission

constraints wasP⋆
1 = 1500 MW,P⋆

2 = 1000 MW, andP⋆
3 = 500 MW.

• Substituting, we obtain flows of:






0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8







[

P⋆
1

P⋆
2

P⋆
3

]

=







0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8







[

1500
1000
500

]

,

=







1900
400
600

1100






,

6≤







3000
3000
300

3000






,

• since the constraint on flow on the line between buses 2 and 3 would be
violated.
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Line flows using solution ignoring transmission constraints, continued
• If we dispatchedP1 = P3 = 0 MW andP2 = 1000 MW, then the flow on

the line between buses 2 and 3 would be 400 MW, which would still
violate the constraint!

• Will we be able to utilize all the low-priced power from bus 2?
• Offer-based economic dispatch is sometimes explained by saying that the

“offer blocks” are stacked up from lowest to highest offer price inmerit
order until demand is met as in Figure5.5 in Section5.5.

• Using this analogy, we might be led to believe that we will notbe able to
use all of the low-priced power from bus 2 in offer-based optimal power
flow, since using the lowest priced “block” alone would violate the
transmission constraints.
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9.6.8 Offer-based optimal power flow
• To find the offer-based optimal power flow solution, we need touse a

formal optimization process.
• Using either the formulation with angles represented or theshift factors

formulation with angles eliminated, the problem is a linearprogram,
which can be solved, yielding the solution:
P⋆

1 = 750 MW generation from generator 1,
P⋆

2 = 1000 MW generation from generator 2,
P⋆

3 = 1250 MW generation from generator 3, and
flow of 300 MW on the line from bus 2 to bus 3.

• In this case, only the generator constraint for generator 2 is binding so, by
complementary slackness, the Lagrange multipliers on all the other
generator constraints are zero:

µ⋆
k

= 0,k= 1,2,3

µ⋆k = 0,k= 1,3.

• Generators 1 and 3 are marginal and there is one binding transmission
constraint.
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Offer-based optimal power flow, continued
• Note that generator 1 is not fully dispatched, so the generators are not in

“merit order” ignoring the transmission constraints:
– this is sometimes, misleadingly, called “out of merit” dispatch,
– it is following the general principle from Section5.5that generation

with lower marginal costs is used whenever possible in preference to
using generation with higher marginal costs;

– however, transmission constraints prevent full utilization of generation
from generator 1 even though we are using some generation from high
cost generator 3.

• Only the line constraint for the line joining bus 2 to bus 3 is binding so,
by complementary slackness, the Lagrange multipliers on all the line
constraints are zero:

µ̂⋆(10) = 0,

µ̂⋆(21) = 0,

µ̂⋆(30) = 0.
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9.6.9 Offer-based optimal power flow, angles represented explicitly
• The first-order necessary conditions include:

∀k= 1, . . . ,4, 0 = ∇fk(P
⋆
k )+ [Ak]

†λ⋆+[Ck]
†µ⋆− [Γk]

†µ⋆
k
+[Γk]

†µ⋆k,

= ∇fk(P
⋆
k )−λ⋆

k− [Γk]
†µ⋆

k
+[Γk]

†µ⋆k, sinceCk = 0,

= ∇fk(P
⋆
k )−λ⋆

k, for k= 1,3, sinceµ⋆
k
= µ⋆k = 0 for k= 1,3.

• Therefore:

λ⋆
1 = ∇f1(P

⋆
1),

= $40/MWh,
λ⋆

3 = ∇f3(P
⋆
3),

= $50/MWh.

• The LMPs are $40/MWh and $50/MWh, respectively, at buses 1 and 3.
• These are, respectively, the costs per unit energy of delivering an

additional infinitesimal amount of power to buses 1 and 3.
The power is “delivered” to these buses by generating it locally.
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9.6.10 Offer-based optimal power flow, angles eliminated
• In this formulation, the first-order necessary conditions include:

∀k= 1, . . . ,4, 0 = ∇fk(P
⋆
k )+ [Âk]

†λ̂⋆+[Ĉk]
†
µ̂⋆− [Γk]

†µ⋆
k
+[Γk]

†µ⋆k,

= ∇fk(P
⋆
k )− λ̂⋆+[Ĉk]

†
µ̂⋆, for k= 1,3,

= ∇fk(P
⋆
k )− λ̂⋆+[Ĉk]

†









0
0

µ̂⋆(23)
0









,
sinceµ̂⋆(10) = µ̂⋆(21)

= µ̂⋆(30) = 0.

• Therefore, the LMPs at buses 1 and 3 also satisfy:

λ⋆
1 = $40/MWh,

= ∇f1(P
⋆
1),

= λ̂⋆−0.2× µ̂⋆(23), where 0.2 is the shift factor for bus 1,

λ⋆
3 = $50/MWh,

= ∇f3(P
⋆
3),

= λ̂⋆− (−0.2)× µ̂⋆(23), where(−0.2) is the shift factor for bus 3.
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Offer-based optimal power flow, angles eliminated, continued
• Solving these equations simultaneously forλ̂⋆ andµ̂⋆(23), we obtain:

µ̂⋆(23) = $25/MWh,

λ̂⋆ = $45/MWh.

• Therefore, the LMPs at buses 0 and 2 are:

λ⋆
0 = λ̂⋆,

= $45/MWh,
where we note that bus 0 is the price reference bus,

λ⋆
2 = λ̂⋆−0.4× µ̂⋆(23),

where 0.4 is the shift factor for bus 2,
= $35/MWh.
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Offer-based optimal power flow, angles eliminated, continued
• Substituting, we obtain flows of:







0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8







[

P⋆
1

P⋆
2

P⋆
3

]

=







0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8







[

750
1000
1250

]

,

=







1450
700
300

1550






,

≤







3000
3000
300

3000






.
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9.6.11 Offer-based optimal power flow solution
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P⋆
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λ⋆
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0 = $45/MWh P⋆
3 = 1250MW,

λ⋆
3 = $50/MWh,
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❅
❅
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Fig. 9.3. Offer-based
optimal power flow
for four-line four-bus
network.
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9.7 Properties of locational marginal prices
• LMPs can be different at every bus:

λ⋆
0 = $45/MWh,

λ⋆
1 = $40/MWh,

λ⋆
2 = $35/MWh,

λ⋆
3 = $50/MWh.

• LMPs can be the same as or lower than the offer price at bus:
– lower than offer price if cheaper imports are feasible,
– same as offer price if generator is marginal.

• LMPs can be higher than offer price at bus:
– if no more capacity is available at bus.

• LMPs can be higher or lower at demand than at generation:
– LMP at demand is higher than LMP at buses 1 and 2,
– LMP at demand is lower than LMP at bus 3.
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Properties of LMPs, continued
• Power can flow from bus with higher LMP to bus with lower LMP:

– From bus 3, with LMP of $50/MWh to bus 0 with LMP of $45/MWh,
– Injection at bus 3 causes counterflow on line from bus 3 to bus 2,

allowing for all the cheap generation at bus 2 to be used.
– Flow from bus 3 to bus 0 is aside-effectof generator 3 injecting at bus 3.

• LMPs can be higher than any generator offer price:
– if increasing demand necessitates decreasing generation at cheap

generator. (See in Homework Exercise9.2.)
• LMPs can be lower than any generator offer price:

– if increasing demand by 1 MW allows for more than 1 MW increaseat a
cheap generator.
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Properties of LMPs, continued
• LMPs can be lower than transmission unconstrained price:

– under offer-based economic dispatch ignoring transmission constraints,
unconstrained price was $50/MWh,

– under offer-based optimal power flow, LMP is $45/MWh at bus 0.
– Note that the transmission unconstrained price is not equalto

λ̂⋆ = $45/MWh.
• LMPs can be higher than transmission unconstrained price:

– in the one line example in Section9.5, the LMP at the right was
$35/MWh for demand of 110 MW,

– the solution ignoring transmission constraints would result in an LMP at
the right of $25/MWh.
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9.8 Congestion rent and congestion cost
9.8.1 Congestion rent

• In the four-line, four-bus example, the payments are:
Demand paysD0×λ⋆

0 = 3000MW×$45/MWh= $135,000/h,
The generator at bus 1 is paid

P⋆
1 ×λ⋆

1 = 750MW×$40/MWh= $30,000/h,
The generator at bus 2 is paid

P⋆
2 ×λ⋆

2 = 1000MW×$35/MWh= $35,000/h,
The generator at bus 3 is paid

P⋆
3 ×λ⋆

3 = 1250MW×$50/MWh= $62,500/h,
• Total payment to the generators is $127,500/h, which is lessthan the

payment by demand of $135,000/h.
• The difference between the payment by demand minus the payment to

generators is called thecongestion rent.
• The congestion rent is $7,500/h for this example.
• Note that there would be the same congestion rent in markets,such as

ERCOT, that charge demand based on aload weighted averageof the
LMPs in a zone.
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Congestion rent, continued
• Congestion rent is a revenue stream that accrues to the ISO.
• It is disbursed back to market participants throughfinancial transmission

rights (known in ERCOT ascongestion revenue rights):
– See in Section11.

• Congestion rent is sometimes calledmerchandising surplus.

Title Page ◭◭ ◮◮ ◭ ◮ 77 of 136 Go Back Full Screen Close Quit



9.8.2 Congestion cost
• A related, but different, concept is the (revealed)congestion cost, which

is defined as difference between:
cost of dispatch under offer-based optimal power flow ($112,500/h),
minus
cost of dispatch under offer-based economic dispatch ignoring

transmission constraints ($105,000/h).
• Congestion cost represents the increased cost of fuel needed due to the

finite capability of the transmission network.
• The congestion cost is $7,500/h in this case, which happens to be the

same as the congestion rent.
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9.8.3 Congestion rent versus congestion cost
• The congestion rent isnot generally equal to the congestion cost.
• In this particular four bus example, the congestion rent andcongestion

cost happen to be the same!
• More typically, the congestion rent is larger than the congestion cost:

– In the two bus example with demand of 110 MW, the congestion rent is
$1000/h, while the congestion cost is $100/h.

• Congestion rent and congestion cost are often confused:
– although they are either both zero or both non-zero, there isno direct

relationship between them.
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9.8.4 Non-negativity of congestion rent

Theorem 9.2Congestion rent is always non-negative for non-negative line
flow limits.

Proof
• By definition, congestion rent is:

payment by demand− payment to generators= [πLMP
P ]

†
(D−P⋆),

• whereπLMP
P is the vector of LMPs.

• From (9.4), we have:

πLMP
P = 1λ̂⋆− [Ĉ]

†
µ̂⋆,

• whereλ̂⋆ andµ̂⋆ are the Lagrange multipliers in the angles eliminated
formulation.
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Non-negativity of congestion rent, continued
• Therefore:

congestion rent= [πLMP
P ]

†
(D−P⋆),

=
[

1λ̂⋆− [Ĉ]
†
µ̂⋆
]†
(D−P⋆), using expression forπLMP

P ,

= [λ̂⋆]
†
(1†D−1†P⋆)− [µ̂⋆]†Ĉ(D−P⋆),

= −[µ̂⋆]†Ĉ(D−P⋆),

• since1†D−1†P⋆ = 0; that is,D andP⋆ satisfy the system equality
constraint.

• Let Ĉ(ℓk) be therow of Ĉ corresponding to the line joining busesℓ and
k, let p(ℓk) be the corresponding line limit, and let ˆµ⋆(ℓk) be the
corresponding Lagrange multiplier on the line limit constraint
Ĉ(P−D)≤ d.
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Non-negativity of congestion rent, continued
• Then:

[πLMP
P ]

†
(D−P⋆) = −[µ̂⋆]†Ĉ(D−P⋆), from the previous page,

= [µ̂⋆]†Ĉ(P⋆−D),

= ∑
µ̂⋆
(ℓk)=0

µ̂⋆(ℓk)Ĉ(ℓk)(P
⋆−D)+ ∑

µ̂⋆
(ℓk) 6=0

µ̂⋆(ℓk)Ĉ(ℓk)(P
⋆−D),

= 0+ ∑
µ̂⋆
(ℓk) 6=0

µ̂⋆(ℓk)Ĉ(ℓk)(P
⋆−D),

= ∑
µ̂⋆
(ℓk) 6=0

µ̂⋆(ℓk)p(ℓk), by complementary slackness,

sinceĈ(ℓk)(P
⋆−D) is the flow on the line

joining busℓ to k,
≥ 0,

• assuming that∀ℓ,k, p(ℓk) ≥ 0, and noting that ˆµ⋆(ℓk) ≥ 0,∀ℓ,k.

Title Page ◭◭ ◮◮ ◭ ◮ 82 of 136 Go Back Full Screen Close Quit



Non-negativity of congestion rent, continued
• That is:

payment by demand− payment to generators= ∑
µ̂⋆
(ℓk) 6=0

µ̂⋆(ℓk)p(ℓk),

≥ 0.

• We have proved that the congestion rent is non-negative.
✷

• We could have used Theorem8.2to prove this result. (See Exercise9.7.)
• Note that we have also proved that the congestion rent is equal to the sum

over the binding line constraints of the product of the corresponding
Lagrange multiplier and the flow limit.

• In theflowgate transmission rights mechanism we associate congestion
rent individually to each binding line constraint:
– the ERCOT zonal market used a flowgate transmission rights

mechanism based on inter-zonal flow limits.
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9.9 Contingency constraints
9.9.1 Pre-contingency versus post-contingency flow

• In the formulation of transmission limits, we have implicitly been
considering limits onpre-contingency flow.

• However, most transmission systems arecontingency limited.
• That is, the binding constraint is on a limiting post-contingency flow that

would occur on contingency of another line:
– flows in the post-contingency case result from the generation injections

and the post-contingency network.
• These contingency constraints can also be considered in ourformulation,

but requireoutage shift factors:
– fraction of post-contingency flow on a line due to injection at generator

and withdrawal at price reference bus,
– as derived in Section3.12.4
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9.9.2 Example
• Consider the following eight-line four-bus system.
• To be secure against all single contingencies, we must operate the system

so that for any outaged element, the flows on the remaining system are
within limits.

• There are eight possible single element outages.
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Fig. 9.4. Eight-line
four-bus network.
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Example, continued
• For example, consider an outage of one of the lines joining bus 2 to bus 3.
• This would yield the system shown.
• We can analyze the contingency constraints by calculating the shift

factors for the outage system.
• For example, we would consider the shift factors to the remaining line

joining bus 2 to bus 3.
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Fig. 9.5. Contingency
on eight-line four-bus
network.
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Example, continued
• For this example, a contingency on one of the lines joining bus 2 and 3 is

the most binding contingency:
– the corresponding post-contingency system happens to havethe same

admittances and total capacities on each corridor as we considered
previously in the pre-contingency limited case.

• To be secure with respect to a contingency on one of the lines joining bus
2 and 3, we must operate so that this contingency would not result in
overload of the remaining lines post-contingency.

• Assuming the same offers as previously, the resulting generation dispatch
and LMPs are the same as the solution we found for the pre-contingency
limited case.
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Example, continued
• However, thepre-contingencyflows resulting from this dispatch are

different to the solution we found previously:
– we must dispatch so that post-contingency flows are within constraints

on post-contingency system,
– but unless the contingency actually occurs, flows will be dueto

generation injections and the pre-contingency network,
– pre-contingency flows are typically well below capacities.

• Consider a corridor of two parallel, identical lines each with 100 MW
capacity joining two zones. What is the maximum pre-contingency flow
on each line to ensure security?
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Example, continued
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Fig. 9.6. Pre-
contingency flows
on eight-line
four-bus network.
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9.9.3 Representation of contingency constraints
• Note that thepost-contingencyflows in the system must be represented in

terms of the generation levelspre-contingencyin the economic dispatch
problem:
– the relevant system constraint is onpost-contingencyflow as a function

of generation,
– this is evaluated by using the outage shift factors.
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Representation of contingency constraints, continued
• In the ERCOT zonal system, the Commercially Significant Constraints

(CSCs) were represented by the effect onpre-contingencyflow on the
CSCs as a function of generation:
– however, pre- and post-contingency shift factors are different,
– so the approximation used in the ERCOT zonal system used the

incorrectderivative of the function representing the post-contingency
flows that appear in the system constraints; the wrong shift factors were
used.

– As discussed previously, this distorted the incentives away from
inducing the behavior that would be consistent with
contingency-constrained economic dispatch.

– When generators then behaved consistently with their incentives, but
inconsistent with actual constraints, ERCOT had to adjust the
constraints or take out-of-market actions to maintain feasibility.
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Representation of contingency constraints, continued
• In nodal systems, including the ERCOT nodal system, contingency

constraints are correctly represented in terms of (linearizations of)
post-contingency flows.

• Incentives for generators are better aligned with the actual transmission
constraints:
– because more of the constraints are represented, and
– because the contingency constraints are represented correctly.

• It should be remembered that linearizations are an approximation and that
there is uncertainty in the values of limits.
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9.10 Reactive power prices
9.10.1 Offer-based economic dispatch formulation

• Recall the AC formulation:

min
x∈Rn























nP

∑
k=1

fk(xk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

([

θ−ρ
v

])

−P=−D,q

([

θ−ρ
v

])

−Q=−E,

P≤ P≤ P,∀(ℓk) ∈K, pℓk

([

θ−ρ
v

])

≤ pℓk























,

• where we now explicitly allow the cost (and the offer) for generatork to

be a function of both real and reactive power, so thatxk =

[

Pk
Qk

]

.

• We neglect other ancillary services for simplicity.
• In this case, the system equality constraints include both terms for real

power and for reactive power.
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9.10.2 Pricing rule, angles explicit

• Let the minimizer bex⋆ =







P⋆

Q⋆

θ⋆−ρ
v⋆






.

• We assume that we can find Lagrange multipliersλ⋆ andµ⋆ on the system
equality and inequality constraints:
– Lagrange multipliers will typically exist in practice, butthis is not

generally true in the absence of additionalconstraint qualifications, as
discussed in Section4.6.1.
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Pricing rule, angles explicit, continued
• Let λ⋆

Pk andλ⋆
Qk be the Lagrange multipliers on real and reactive power

balance at generatork.
• From Theorem8.3, we can write down the pricing rule for generatork:

πxk =

[

λ⋆
Pk

λ⋆
Qk

]

,

• so that there are prices for both real and reactive power.
• That is, the payment to generatork is:

[πxk]
†xk = λ⋆

PkPk+λ⋆
QkQk,

• on the basis of both its real and reactive power production.
• How would you expect the values ofλ⋆

Pk andλ⋆
Qk to compare?
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9.10.3 Discussion
• Although thetheoreticaldevelopment of prices for reactive power is

straightforward, a difficulty with setting up a market for reactive power is
that reactive power does not “travel” far, so that there are serious issues of
geographical market power.

• Furthermore, although real power reserves are typically less valuable than
energy, reactive reserves may be more valuable than steady-state reactive
power:
– so contingency constraints should be explicitly represented.

• No existing markets directly price reactive power using an offer-based
economic dispatch formulation with AC power flow.
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9.11 Loss prices
9.11.1 Offer-based economic dispatch formulation

• Again recall the AC formulation:

min
x∈Rn























nP

∑
k=1

fk(Pk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

([

θ−ρ
v

])

−P=−D,q

([

θ−ρ
v

])

−Q=−E,

P≤ P≤ P,∀(ℓk) ∈K, pℓk

([

θ−ρ
v

])

≤ pℓk























.

• In this case, we will simplify the optimal power flow formulation by:
– omitting the reactive power flow equations,
– omitting other ancillary services,
– deleting the reactive power and voltage magnitude variables from the

decision vector, and
– fixing the voltage magnitude schedule atv(0).
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Offer-based economic dispatch formulation, continued
• However, we will keep the non-linear real power flow equations explicit

and our decision vector will bex=

[

P
θ−ρ

]

, to yield:

min
P,θ−ρ















nP

∑
k=1

fk(Pk)

∣

∣

∣

∣

∣

∣

∣

∣

p

([

θ−ρ
v(0)

])

−P=−D,P≤ P≤ P,

∀(ℓk) ∈K, pℓk

([

θ−ρ
v(0)

])

≤ pℓk















.

• Let the minimizer beP⋆ andθ⋆−ρ.
• We assume that we can find Lagrange multipliersλ⋆ andµ⋆ on the system

equality and inequality constraints:
– Lagrange multipliers will typically exist in practice, butthis is again not

generally true in the absence of additionalconstraint qualifications, as
discussed in Section4.6.1.
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9.11.2 Pricing rule, angles explicit
• Note that the decision variable for generatork is xk = [Pk].
• From Theorem8.3, we can write down the pricing rule:

πLMP
Pk

= λ⋆
k.
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9.11.3 Formulation to eliminate angles
9.11.3.1 Transformation

• We consider a similar transformation of the equality constraints to the one
we used when we eliminated the angles to formulate the DC power flow
equations in Section3.6.7and Exercise3.4.

• Assumeσ = 1, define the invertible matrixM =

[

1 1†

0 I

]

, and notice that:

(

p

([

θ−ρ
v(0)

])

−P=−D

)

⇔
(

M p

([

θ−ρ
v(0)

])

−M P=−M D

)

,

⇔
(

1†p

([

θ−ρ
v(0)

])

−1†P=−1†D, p−σ

([

θ−ρ
v(0)

])

−P−σ =−D−σ

)

,

• wherep−σ

([

θ−ρ
v(0)

])

,P−σ, andD−σ are the sub-vectors ofp

([

θ−ρ
v(0)

])

,P,

andD, respectively, with the price reference bus deleted.
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Transformation, continued
• That is, the AC power flow is equivalent to satisfying:

1†p

([

θ−ρ
v(0)

])

−1†P = −1†D,

p−σ

([

θ−ρ
v(0)

])

−P−σ = −D−σ.

9.11.3.2 Losses
• The equality:

1†p

([

θ−ρ
v(0)

])

−1†P=−1†D,

• requires that generation equal demand plus losses.

• That is, losses are1†p

([

θ−ρ
v(0)

])

.
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9.11.3.3 Inverting the power flow equations
• What does power flow software calculate?
• GivenP−σ andD−σ, it calculates the correspondingθ−ρ (andv) that solve

the power flow equations.
• That is, it inverts the equations:

p−σ

([

θ−ρ
v(0)

])

−P−σ =−D−σ,

• to solve for the angleθ−ρ as a function ofP−σ.
• That is, power flow software implicitly defines an inverse function θ̂−ρ to

p−σ that satisfies:

∀P−σ, p−σ

([

θ̂−ρ(P−σ)

v(0)

])

−P−σ =−D−σ.

• In other words, we can usêθ−ρ to substitute for angles according to:

θ−ρ = θ̂−ρ(P−σ).

Title Page ◭◭ ◮◮ ◭ ◮ 102 of 136 Go Back Full Screen Close Quit



9.11.3.4 Loss function
• Recall the exact loss functionL : Rn → R defined in Section3.11.2by:

∀x∈ R
n,L(x) = 1†p(x).

• As in Section3.11.3, we define a related function̂L : RnP−1 → R, which
evaluates losses in terms of injections:

∀P−σ ∈ R
nP−1, L̂(P−σ) = 1†p

([

θ̂−ρ(P−σ)
v(0)

])

.
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9.11.3.5 Power balance with losses
• Define the function ˆg : RnP → R by:

∀P∈ R
nP, ĝ(P) = 1†p

([

θ̂−ρ(P−σ)

v(0)

])

−1†P+1†D,

= L̂(P−σ)−1†P+1†D.

• If we requireĝ(P) = 0 then we require that total generation equals total
demand plus losses.

• Note that:

∂ĝ
∂Pk

(P) =







−1, if k is the price reference bus,
∂L̂
∂Pk

(P−σ)−1, if k is not the price reference bus.
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9.11.3.6 Line flows
• Similarly, define the function̂h and vectorh by:

∀P∈ R
nP,∀(ℓk) ∈K, ĥ(ℓk)(P) = pℓk

([

θ̂−ρ(P−σ)

v(0)

])

,h(ℓk) = pℓk.

• Then if we require that̂h(P)≤ h, we have have satisfied the system
inequality constraints.

• Note that the partial derivatives ofĥ are theincremental shift factors,
meaning the sensitivity of flows on lines to net injections atbuses.
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9.11.3.7 Formulation
• We can formulate the offer-based economic dispatch problemas:

min
P∈RnP

{

nP

∑
k=1

fk(Pk)
∣

∣ĝ(P) = 0, ĥ(P)≤ h,P≤ P≤ P

}

,

• where the functions ˆg andĥ are provided by power flow software.
• Let the minimizer beP⋆.
• Let P⋆

−σ be the sub-vector ofP⋆ with the entry for the price reference bus
deleted.

• As previously, we assume that we can find Lagrange multipliers λ̂⋆ andµ̂⋆

on the system equality and inequality constraints:
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9.11.4 Pricing rule, angles eliminated
• From Theorem8.3, we can write down the pricing rule for generatork:

πLMP
Pk

= −
[

∂ĝ
∂Pk

(P⋆)

]†

λ̂⋆−
[

∂ĥ
∂Pk

(P⋆)

]†

µ̂⋆,

=























λ̂⋆, if k is the price
reference bus,

(

1− ∂L̂
∂Pk

(P⋆
−σ)

)

λ̂⋆−
[

∂ĥ
∂Pk

(P⋆)

]†

µ̂⋆,
if k is not the price
reference bus,
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Pricing rule, angles eliminated, continued
• As previously, these prices must match the corresponding prices from the

formulation with angles explicitly represented, so that:

λ⋆
k =















λ̂⋆, if k is the price reference bus,

(

1− ∂L̂
∂Pk

(P⋆
−σ)

)

λ̂⋆−
[

∂ĥ
∂Pk

(P⋆)

]†

µ̂⋆,
if k is not the price
reference bus,

• The LMP at busk, λ⋆
k, is equal to:

the LMP at the price reference bus,
minus the loss penalty for the effect on marginal losses,
minus a weighted sum of the Lagrange multipliers on the line flow limit

constraints.
• The weights are the incremental shift factors to the constraints:

– in the DC power flow approximation, the weights were the DC shift
factors.
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Pricing rule, angles eliminated, continued
• Generalizing the case without losses, the LMP at busk is often described

as being the sum of:

– an energy price component (that is,λ̂⋆),

– a loss price component (that is,−∂L̂
∂Pk

(P⋆
−σ)λ̂⋆), and

– a congestion price component (that is,−
[

∂ĥ
∂Pk

(P⋆)

]†

µ̂⋆).

• Again note that the LMP at the price reference bus, the marginal losses,
and the Lagrange multipliers on the line flow limit constraints will each
depend on the location of the price reference bus.

• However, the LMP at each bus is independent of the choice of the
location of the price reference bus.

Title Page ◭◭ ◮◮ ◭ ◮ 109 of 136 Go Back Full Screen Close Quit



9.11.5 Evaluation of LMP in practice
• In practice, approximations may be used:

– the incremental shift factors∂L̂
∂Pk

may be approximated by the DC shift

factors, and/or

– terms in the marginal loss expression∂L̂
∂Pk

may be approximated.

• In practice, these approximations include either or both of:
– approximating the functional form by linearizing the powerflow

equations, or
– evaluating the partial derivatives at a point other thanP⋆.

• In either case, this can make the resultingevaluationof the LMP
dependent on the choice of angle or price reference bus:
– because theapproximationdepends on the choice of angle or price

reference bus.
• If the approximation involves using DC shift factors instead of

incremental shift factors, then this will generally over-estimate the
contribution to losses of remote generators as discussed inSection3.11.6.

Title Page ◭◭ ◮◮ ◭ ◮ 110 of 136 Go Back Full Screen Close Quit



9.11.6 Example
• We modify the one-line two-bus system from Section3.8to include

losses as in Section3.11.4.
• Busρ = 1 is the angle reference bus, so the unknown angle isθ2.
• Busσ = 2 is the slack/price reference bus.
• There are generators at both buses 1 and 2.
• There isD2 MW of demand at bus 2.
• The offers are specified by:

∀P1 ∈ [0,200],∇f1(P1) = $25/MWh,
∀P2 ∈ [0,50],∇f2(P2) = $35/MWh.

P1

P2

1 2

D2 MW
demand

Y12 =

100−1000
√
−1

100 MW

✲

✛

✲✚✙
✛✘ ✚✙

✛✘
✲

Fig. 9.7. One-line two-
bus network.
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9.11.6.1 Admittance matrix
• We modify the line admittance to include losses:

Y12= 100−1000
√
−1.

• The example is similar to that in Section3.11.4.
• The bus admittance matrix is:

[

Y12 −Y12
−Y12 Y12

]

=

[

100−1000
√
−1 −100+1000

√
−1

−100+1000
√
−1 100−1000

√
−1

]

,

=

[

G11+B11
√
−1 G12+B12

√
−1

G21+B21
√
−1 G22+B22

√
−1

]

.

• We assume that the voltage magnitudes are maintained equal to one per

unit, so thatv(0) = 1=

[

1
1

]

.
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9.11.6.2 Capacity constraint
• We also assume that the thermal capacity constraints are expressed in

terms of maximumcurrentmagnitude:
– for voltages equal to one per unit, the previous 100 MW constraint

becomes a 100 per unit current constraint,
– there is a constraint on flow at each end of the line.

• Since we have ignored shunt elements, the current is the sameat both
ends of the line:
– we can consider current at either end of the line (or at any point on the

line.)
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Capacity constraint, continued
• The currentI1 flowing from bus 1 into the line is:

I1 = A11V1+A12V2,

whereA is the bus admittance matrix,
andVk is the voltage phasor at busk= 1,2,

= (100−1000
√
−1)(V1−V2).

|I1|2 =
∣

∣100−1000
√
−1

∣

∣

2 |V1−V2|2 ,
= [(100)2+(1000)2]

∣

∣v1−v2(cos(θ2)+sin(θ2)
√
−1)

∣

∣

2
,

= [(100)2+(1000)2]
∣

∣1− (cos(θ2)+sin(θ2)
√
−1)

∣

∣

2
,

since the voltage magnitudes are one per unit,
= [(100)2+(1000)2][(1−cos(θ2))

2+(sin(θ2))
2],

= [(100)2+(1000)2][2−2cos(θ2)]

• If we require the magnitude of the current to be less than 100 then this
requiresθ2 ≥−0.0995= θ2 radian:

– very close to the limit of−0.1 radian we found in the lossless case.
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9.11.6.3 Power flow at capacity
• Using the expressions for real power injection, we obtain:

p1(θ2) = −100cos(θ2)−1000sin(θ2)+100,
p1(θ2) = −100cos(θ2)−1000sin(θ2)+100,

= 99.87,
p2(θ2) = −100cos(θ2)+1000sin(θ2)+100,
p2(θ2) = −100cos(θ2)+1000sin(θ2)+100,

= −98.88.

• That is, when flow is at capacity, 99.87 MW is injected at bus 1 into the
line and 98.88 MW is delivered to bus 2.

• Note that losses arep1(θ1)+ p2(θ2), which are 0.99 MW when the line
flow is at capacity:
– Recall that in Section3.11.4the quadratic approximation yielded losses

of 1MW for a flow of 100 MW.
• Injected power at bus 1 is less than 100 MW since some reactivepower is

injected into the line to maintain voltage equal to 1 per unit.
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9.11.6.4 Dispatch and prices for varying demand
• If demand is less than or equal to 98.88 MW then only generator1 is

dispatched to meet demand:
– the Lagrange multiplier on the line flow constraint is ˆµ⋆(12) = 0.
– LMP at bus 1 isλ⋆

1 = $25/MWh, reflecting offer at bus 1,
– generation at bus 1 is slightly more than demand,
– LMP at bus 2 is slightly more than $25/MWh, reflecting marginal

impact of losses to transmit from bus 1 to bus 2:

λ⋆
2 = λ̂⋆,

=
λ⋆

1
(

1− ∂L̂
∂P1

(P⋆
1)

),

> λ⋆
1, since 0< ∂L̂

∂P1
(P⋆

1)< 1.

Title Page ◭◭ ◮◮ ◭ ◮ 116 of 136 Go Back Full Screen Close Quit



Dispatch and prices for varying demand, continued
• If demand is greater than 98.88 MW then both generator 1 and generator

2 are dispatched:
– the Lagrange multiplier on the line flow constraint is ˆµ⋆(12) > 0.
– LMP at bus 1 isλ⋆

1 = $25/MWh, reflecting offer at bus 1,
– generation at bus 1 is 99.87 MW,
– LMP at bus 2 isλ⋆

2 = $35/MWh, reflecting offer at bus 2,
– generation at bus 2 is(D2−98.88 MW),
– losses are 0.99 MW.
– Difference between LMPs at ends of line due to both losses and

congestion:

λ⋆
1 =

(

1− ∂L̂
∂P1

(P⋆
1)

)

λ⋆
2−

[

∂ĥ(12)
∂P1

(P⋆)

]†

µ̂⋆(12),

= λ⋆
2−

[

∂L̂
∂P1

(P⋆
1)λ

⋆
2+

[

∂ĥ(12)
∂P1

(P⋆)

]†

µ̂⋆(12)

]

,

< λ⋆
2.
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9.11.7 Surplus
• Recall from Section3.11that losses can be approximated by a convex

quadratic function of injections, so that ˆg is convex.
• Similarly, thermal line flow limit constraints in̂h are convex for small

enough angle differences across the lines.
• From the pricing and uplift Theorem8.3for convex non-linear system

constraints there will be a surplus.
• That is, assuming thermal constraints are the only binding constraints,

pricing that includes the marginal losses will generate a surplus for the
ISO:
– pricing based on marginal losses will more than cover the cost of

production of the lost energy, and
– surplus can, in principle, be disbursed back to market participants.
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9.12 Decomposition approaches
9.12.1 Inverting the power flow equations

• In general, we cannot explicitly invert the power flow equations to
analytically determine the functions ˆg andĥ.

• As in the discussion of losses, however, for a given choice ofgenerations
we can use power flow software to calculate:
– the power flows,
– the sensitivity of power flows to generation,
– the losses, and
– the sensitivity of losses to generation.

• We can also solvecontingency power flowsfor each contingency to
evaluate, for given pre-contingency generations:
– the contingency power flows, and
– the sensitivity of the contingency power flows to generation.
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9.12.2 Successively linearizing constraints
• Using the power flows and sensitivities, we can approximate the losses

with a first-order Taylor approximation about the given choice of
generations.

• Using the power flows and sensitivities, we can also approximate each
pre-contingency line flow constraint and each post-contingency line flow
constraint by its first-order Taylor approximation about the given choice
of generations.

• We can also linearize other types of constraints in additionto real power
flow constraints:
– constraints on complex power flow,
– current limits,
– voltage and reactive power constraints, and
– transient and dynamic stability constraints.

• We can solve the offer-based optimal power flow by iterating between
solving power flow and optimizing the linearized approximation.

• We successively re-linearize the power flow solution at eachsolution of
the optimized linear approximation.
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Linearizing constraints, continued
• Voltage and reactive power constraints require solution ofAC power flow

including reactive power:
Linearizing voltage constraints in terms of real power yields a proxy

thermal limit for the voltage constraints.
Since the voltage to real power relationship is highly non-linear, the

linearization will change significantly from iteration to iteration.
This is particularly true for voltage-related contingencyconstraints.
Moreover, voltage constraints may define a non-convex feasible set.

• Recent work on OPF using a rectangular representation of voltage
phasors may allow for more effective modeling of such constraints.

• Transient and dynamic stability constraints require solution of transient
behavior.
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9.12.3 Iterative re-linearization
(i) Set initial list of indices of binding constraints,W, to be empty.

(ii) Set initial linearization of losses to zero.
(iii) Solve offer-based optimal power flow for generations,given current

loss linearization and current set of linearized constraints as
specified by indices inW.

(iv) Solve power flow and contingency power flows given generations
from solution to step(iii) .

(v) Update linearization of losses.
(vi) For each binding or violated pre- or post-contingency constraint

(and possibly also some constraints that are close to limitsor have
been binding at previous iterations):
• form the first-order Taylor approximation to the constraint, and
• include the index of the constraint inW.

(vii) If there are violated constraints or the change from the previous
solution of offer-based economic dispatch is too large thengo to
step(iii) .

(viii) Otherwise, end.
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Iterative re-linearization, continued
• This decomposition can be used even in the case of DC powerflowto

avoid explicitly representing all the line flow constraintsinto the
offer-based optimal power flow calculation.

• In a real-time market, linearization of the line flow constraints can be
based on the results ofstate estimation.
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9.13 Summary
• In this chapter we have considered transmission constraints.
• We formulated the optimal power flow problem and considered

offer-based optimal power flow.
• We applied the previously derived pricing rule to obtain thelocational

marginal prices.
• We considered properties of the locational marginal prices.
• We discussed several other topics, including congestion rent, prices with

AC power flow, losses, and decomposition techniques.
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Homework exercises

9.1Consider the example one-line two-bus system as shown in Figure9.8 that
was first introduced in Section9.5. Busσ = 1 is the slack/price reference bus
and busρ = 2 is the angle reference bus, so the unknown angle isθ1. (This is the
opposite choice to the development in Section9.5.) There are generators at both
buses 1 and 2 with offers again specified by:

∀P1 ∈ [0,200],∇f1(P1) = $25/MWh,
∀P2 ∈ [0,50],∇f2(P2) = $35/MWh.

Find the LMPs for the following values of demandD2:
(i) D2 = 90MW.
(ii) D2 = 100MW. (Specify the range of LMPs for bus 2.)

(iii) D2 = 125MW.

P1

P2

1 2

Demand
D2

0+0.001
√
−1

100 MW

✲

✛

✲✚✙
✛✘ ✚✙

✛✘
✲

Fig. 9.8. One-line two-
bus network for exer-
cise.
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9.2Consider the example four-line four-bus system from Section 9.6and
illustrated in Figure9.9. Busσ = 0 is the slack/price reference bus. Busρ = 0 is

the angle reference bus, so the unknown angles areθ−ρ =

[θ1
θ2
θ3

]

. Demand is at

bus 0.
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D0 P3
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0 3
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√
−1

3000 MW
0+0.001

√
−1

3000 MW
0+0.002

√
−1

300 MW
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√
−1

3000 MW

❅
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❅❘

�
�

�✠

�
�

�✠ ❅
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❅■

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✛

✛

❄ ❄

Fig. 9.9. Four-line
four-bus network for
homework exercise.
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Use GAMS, PowerWorld, the excel solver, or the MATLAB optimization toolbox
to solve the following variations on the example in Section9.6. Continue to the
use the DC power flow approximation, with angles eliminated.For each case,
specify the dispatch and the LMPs. You should obtain the Lagrange multipliers
from the optimization software in order to facilitate your calculations.

(i) The generation offers are the same as in the example:

∀P1 ∈ [0,1500],∇f1(P1) = $40/MWh,
∀P2 ∈ [0,1000],∇f2(P2) = $20/MWh,
∀P3 ∈ [0,1500],∇f3(P3) = $50/MWh.

However, the demand changes toD0 = 1500MW. Note that there is a
range of values of LMPs. Specify any valid set of LMPs.
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(ii) The demand is the same as in the example, so thatD0 = 3000MW.
However, the generation offer capacity of generator 3 changes from 1500
MW to 1200 MW. That is, the offers are now:

∀P1 ∈ [0,1500],∇f1(P1) = $40/MWh,
∀P2 ∈ [0,1000],∇f2(P2) = $20/MWh,
∀P3 ∈ [0,1200],∇f3(P3) = $50/MWh.

(iii) The generation offers are the same as in the example:

∀P1 ∈ [0,1500],∇f1(P1) = $40/MWh,
∀P2 ∈ [0,1000],∇f2(P2) = $20/MWh,
∀P3 ∈ [0,1500],∇f3(P3) = $50/MWh.

The demand is the same as in the example, so thatD0 = 3000MW.
However, the transmission capacity of the line from bus 2 to bus 1
changes fromp(21) = 3000MW top(21) = 600MW.
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9.3We again consider the modified one-line two-bus system from Section9.5
that includes losses, as shown in Figure9.10. Busρ = 1 is the angle reference
bus, so the unknown angle isθ2. The power flow injections are:

p1(θ2) = −100cos(θ2)−1000sin(θ2)+100,
p2(θ2) = −100cos(θ2)+1000sin(θ2)+100.

Adding and subtracting these equations, we obtain:

p1(θ2)+ p2(θ2) = 200−200cos(θ2),

p2(θ2)− p1(θ2) = p1(θ2)+ p2(θ2)−2p1(θ2),

= 2000sin(θ2).

P1

P2

1 2

D2 MW
demand

100 MW
✲

✛

✲✚✙
✛✘ ✚✙

✛✘
✲

Fig. 9.10. One-line
two-bus network.
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Noting that the injection at bus 1 isP1 = p1(θ2) and that the losses are
L(θ2) = p1(θ2)+ p2(θ2), we obtain:

L(θ2) = 200−200cos(θ2),

L(θ2)−2P1 = 2000sin(θ2).

We now suppose that there is a functionL̂ : R→ R that expresses losses in terms
of P2. The equations become:

L̂(P1) = 200−200cos(θ2),

L̂(P1)−2P1 = 2000sin(θ2).

(i) Eliminateθ2 from the last two equations.
(ii) Use the “quadratic equation” to express the lossesL̂(P1) as a function of

P1. (There are two solutions. Which operating condition wouldyou
prefer: the lower or the higher losses? Use that one.)

(iii) Graph the losseŝL versusP1.
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(iv) Differentiate the expression for lossesL̂ with respect toP1.
(v) Find the LMPs and dispatch when demand isD2 = 98.88MW, so that the

line is just at limit.
(vi) Bonus question: perform several iterations of the iterative linearization

algorithm described in Section9.12.3to solve for the LMPs and dispatch
for the three cases of demand:

(a) D2 = 90MW,
(b) D2 = 100MW, and
(c) D2 = 110MW.
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9.4Use PowerWorld to open the 13 bus system that you downloaded for
Exercise 7.1. Select the “Tools” menu and then start the solution by clicking on
the “Play” button. Then select the “Add Ons” menu and click on“Primal LP.”
The system has been set up so that PowerWorld then solves an optimal power
flow with all pre-contingency flow limits enforced. In the following parts, each
time you modify the system, you need to click on “Primal LP” tore-solve for the
optimal power flow.

(i) Click on each generator in turn to obtain the minimum and maximum
production capacity for each generator.

(ii) What line is at capacity for the initial configuration ofload? How many
marginal generators are there?

(iii) Remove the load at bus J by clicking on the associated circuit breaker.
Re-solve. What lines are at capacity? How many marginal generators are
there?

(iv) Now return the load at bus J to service and remove the linejoining bus B
to A. Re-solve. What lines are at capacity? How many marginal
generators are there?
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9.5Using the DC power flow approximation to linearize the relationship
between the real power flows on the lines and the angles, use GAMS or the
MATLAB functionquadprog to solve the DC optimal power flow that
minimizes the cost of production of the generators subject to linearized
constraints on the line flows. The system has three buses, buses 1, 2, and 3, and
three lines, with theπ-equivalent line models specified as follows:

• shunt elements purely capacitive with admittance 0.01
√
−1 so that the

combined shunt elements at each bus are:

Y1 = Y2 = Y3 = 0.02
√
−1,

and
• series elements having admittances:

Y12 = (0.01+0.1
√
−1)

−1
,

Y23 = (0.015+0.15
√
−1)

−1
,

Y31 = (0.02+0.2
√
−1)

−1
.

Furthermore, assume the following.
• There are generators at bus 1 and bus 2 and a real power load of 1at bus

3.
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• All lines have real power flow limits of 0.75 in each direction, except for
the line joining buses 2 and 3, which has real power flow limitsof 0.5 in
each direction. That is, there are six transmission constraints in total.

• All voltage magnitudes are set to 1.0 per unit so thatv can be ignored in
the formulation.

• Zero cost for reactive power production and no constraints on reactive
power production nor on reactive power flow so thatQ can be ignored in
the formulation.

• Costs for real power production at the generators:

f1(P1) = P1×1
$

per unit
+(P1)

2×0.1
$

(per unit)2,

f2(P2) = P2×1.1
$

per unit
+(P2)

2×0.05
$

(per unit)2,

wherePk is the real power production at generatork= 1,2, with
0≤ Pk ≤ 1 for each generator.

• No other constraints on production.
• Reference bus at busρ = 1 and slack bus at busσ = 3.
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Use the formulation with explicit representation of angles. Use as initial guess
P(0)
−3 = 0 andθ(0)

−1 = 0.
(i) Specify the decision vector, omitting any known constants.
(ii) Derive the linearized form of the power flow equality constraints.

(iii) Derive the linearized form of the power flow inequalityconstraints.
(iv) Specify the bound (or box) constraints.
(v) Use GAMS or MATLAB to solve the problem and report the solution of

the DC optimal power flow.

9.6Re-solve the optimal power flow problem in Exercise9.5using the angles
eliminated formulation. Use as initial guessP(0)

−3 = 0.

9.7Use Theorem8.2from Section8.12.7to prove Theorem9.2 in
Section9.8.4.
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