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Locational marginal pricing

() Optimal power flow,
(i) DC optimal power flow,
(i) Offer-based optimal power flow,
(iv) Examples,
(v) Properties of locational marginal prices,
(vi) Congestion rent (merchandising surplus) and congestost,
(vii) Contingency constraints,



(viii) Reactive power,
(ix) Losses,
(x) Decomposition and linearization,
(xi) Homework exercises.



9.1 Optimal power flow
9.1.1 Generalization of economic dispatch
9.1.1.1 Constraints on operation

e Besides generator constraints, capacities of transmisisies between
generation and demand can also limit the feasible choicgerération:

— constraints are typically due to maximum temperature &irfiitm
thermal heating of elements due to electrical losses.

— we will think of these limits as being fixed and given, howegver

— rating depends on how long the flow of power is to be sustaindda
ambient conditions.

e There is inherent uncertainty in definitions of line capacit

e Other issues such as voltage constraints and constraiat®dioe need to
maintain stability of the dynamics of the generation—traission system
can also constrain operation:

— we will tacitly assume that these can be translated intariagproxy
constraints.

e There is likely to be even greater uncertainty in the valddgbese limits
than for thermal constraints.



9.1.1.2 Power flow equations
e To check whether or not the line flow and voltage constrairéssatisfied,
we must expand the detail of representation of the networkdpyicitly
incorporating Kirchhoff’s laws, as described in the foratidn of the
power flow equations in Sectidh2.8

9.1.1.3 Losses

e As mentioned, flow of power on transmission lines will incosdes.
e Power flowing from remote generators to load may incur grdasses
than from generation nearby to load:

— effectively changes the relative cost of generation dejpgnoin
location.

9.1.1.4 Other controllable elements

e Besides real power generations, we can also consider exjuasty
controllable elements in the system so as to minimize costsreeet
constraints.



9.1.2 Formulation
9.1.2.1 Variables
¢ In the decision vector, we represent:

— real and reactive power generations at the generatorshvainec
represented in the vectarse R"P andQ € R"P (any buses without
generators can be represented by a generator with capaoity z

— (in the case of demand bids) real and (potentially) reagioxger
demands at the loads, which are represented in the vdatanslE:

o in economic dispatc) was the total demand, but now we must
specify demand locationaly, and Bas now a vector.

— any other controllable quantities in the system, such asdttengs of
phase-shifting transformersand capacitors,

— the voltage magnitudes at every bus in the system, which are
represented in the vectay and

— the voltage angles at every bus in the system except for tfeeeree
bus, which are represented in the vedqy, with p the reference bus:

o the voltage angle at the reference bus is constant sincegasuysly,
it represents an arbitrary time reference.



Variables, continued
P

Q

e \We collect all the variables into the decision vectoes 0 e R", or
—
\Y;

€ R"in the case of demand bids.

Y

X
|
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e Recall from Sectior8.12.3.1that we considered the voltage angles and
magnitudes to be collected together in a vector

(0. N
X(np—l—l) — v P c R (np—|—1).

e Since we assume that there are generators at all buses, e/éhlaav
0,ve R™, so thatNyy, 1) = (2np) — 1.




9.1.2.2 Objective
e As previously, letf : R" — R represent the total cost of generation.
e Typically:

f depends only on the entriesxtorresponding to real power
generations (and, in the case of bid demand, on the demagijt lev
however, in some formulationalso depends somewhat on the
entries ofx corresponding to reactive power generations (and
reactive demands), and

f is separable since the decisions at one generator do ndiyusifiact
the costs at any other generators.

e In this case, we can write the objective as:
VX e Rn Z fk

¢ |In the case of bid demand, this becomes:

vx € R", f(x) = —benefitD) + ZP fi(Pk



9.1.2.3 Equality constraints

e Since we are now including the voltage magnitude at the eafer bus as
a decision variable, we must slightly redefine the power flquedity
constraints compared to SectiBr2.8to be equations in the form:

W,pﬁ([\e,_pD—PﬁJrDﬁ = 0,
W,qu\g,_pD—QHEz = 0,

e wherep, : R?®~1 — R andq, : R?"~1 — R are defined similarly
to (3.8—(3.9):

V[S_p] eRP Y, IO£< S_p ) = > VW[Gicog8; — Bk) + Bucsin(8, — 8y)],
L kel (0)u{¢}
6_ _ (0, :
v [v p] e R 1,%( v ) = Y VeW[Gusin(6, — Bk) — Bacog6, — Bk)].
L keJ(£)U{¢}




Equality constraints, continued

e Note thatv, is now a decision variable, generalizing the case in
Section3.2.7.2and the subsequent development.

e Recall thatJ(¢) is the set of buses joined by a line to ks

e We collect the equations together into a vector equatiomnaino the
form of (3.10):

9(x) =0,
e Where a typical entry afj is of the form:

([2]) oo
o([7]) o

e and the decision vectorincludes the real and reactive generations (and
possibly the demands) as well as the voltage magnitudesrayielsa

e OF.



9.1.2.4 Inequality constraints
e Limits on the entries ix:

X< X< X

¢ A voltage magnitude limit at buécould be 095=v, <v, <V, = 1.05.
e A generator real power limit could bels=P, <P, <P, =0.7.

e There are also constraints involving functions<of

e For example, there are typically angle difference constsanf the form:

Ve,vke J(¢),—1/4 < 8, — Bk < T1/4, (9.1)

e and there might be limits on angle differences between hihsg¢sre not
joined directly by a line.

e What happens if the angle difference between the two endéirud a
exceedst/2?

¢ In addition, transmission line flow constraints can be exgped as
functional constraints via the power flow equations in teais

e That is, we will also have functional constraints of the form

h(x) < h.



Inequality constraints, continued

e A typical functional inequality constraint might limit threal power flow
on a line that joins buéto busk.

e Neglecting shunt elements in the line models, the line flaal pewer
flow function py : R?™~1 — R is defined by:

0 onp—1
v[v ]eR P

Pek ( [\e,p] ) = VWG co 8 — B) + BucSin(B; — Bk)] — (V) *G,
9.2)

e If there is a real power flow limit op,, on the line joining bug andk
then we represent this limit as an inequality constrainhefform
Pek S‘p < Py in the inequality constraints(x) < h.

e Recall that in SectioB.7.1we derived linearized versions of real power
line flow constraints where we linearized voltage anglesiabdlat start.



Inequality constraints, continued

e Other constraints, such as on complex power flow, and duabdlisg
and voltage issues, can also be represented.

9.1.2.5 Problem
e The AC optimal power flow problem is:

min{  (x)|g(x) = 0,x < x < % h(x) <h}. (9.3)

XeRN

e This problem is, in general, non-linear and non-convex:

— recent work has made progress on solving such general fations
directly,

— however, current electricity markets typically use apprations based
on linearization, including DC OPF.



9.2 DC optimal power flow
9.2.1 Motivation
e Optimal power flow presents several difficulties:

— solving a non-linear, non-convex optimization problembo context
of day-ahead and in real-time, and

— specifying the data, particularly the reactive power arnthge
magnitude requirements.

e One simplification involves:

— replacing the representation of the power flow equationis thié DC
power flow model, and
— replacing the functional inequality constraints with sekmized version.

e This simplification neglects losses and reactive poweissund creates a
linearly constrained problem:

— we will consider how to include losses in Sect@il



9.2.2 Formulation

e We will assume that the objective depends only on the reakpow
injections and is additively separable.
e Initially assume specified valué&sandE of real and reactive demand:

— demand bids will be included in particular contexts.

e For simplicity, will assume that the only limits on the eesiinx are
generator constraints of the fol< P < P.

More general generator constraints can also be accomnihdate
For example, we could consider reserves and other ancdEmjces,
We could also consider limits on voltage magnitudes.

e We will assume that the functional inequality constraimts) < h
represent real power line flow limits only.
e In this case, the the optimal power flow problem is:

np _ —
min { k; fk(P)|9(x) =0,P < P < P,h(x) <h, } :




(

min <
xeRN

\

% fi(Pk)
F=s]

Formulation, continued

e Making real and reactive power explicit and separating eeegation
into generation and demand, we obtain:

A2

)-r--o

))-o-s

)
9

/

e whereK is the set of lines with real power line flow limits and we have

assumed that there are specified vectors of real and reactiver

demandD andE, respectively:
— recall that previously in economic dispat&hwas the total demand, but
now we must specify demand at each location in the system.
¢ |If demand response is considered, tileand, in principleE, should also
be part of the decision vector and the equality constraiateine:

(|

6o

D —P+D:0,q([3‘p]) ~Q+E=0.



9.2.3 Further simplifications
e We will further simplify the optimal power flow formulationyb

— omitting the reactive power flow equations, effectivelyuamssg that we
can satisfy them independently of other decisions,

— deleting the reactive power and voltage magnitude varsaioten the
decision vector,

— fixing the voltage magnitude schedulev# = 1, so that generators
have been redefined & buses,

— linearizing the real power flow equations, and

— linearizing the real power line flow limit equations.

e That is, our decision vector will be re-defined tobe [g ],With
—p

6_p = X(np+1) € R(™~), and we will use the DC power flow
approximation to the AC power flow.
e This formulation will include an explicit representatiohamgles:

— paralleling the development in the discussion of power flaa/will
also consider a formulation where the angles are eliminated



9.2.3.1 Omitting reactive power and voltage magnitude

e Omitting the reactive power flow equations and fixing the agét
schedule leaves us with the real power flow equations:

0., o
p([v(o) ) —P=-D.

9.2.3.2 Linearization of power flow

e We linearize the real power flow equations ab®t = 0 to obtain the
DC power flow approximation:

op 0 =
3, ([1])0-7=0

e where we assume th@t? = 0 andv(?9 = 1 satisfy the real power flow
equations for injection®(© = 0.

e As in Section3.6, we definel = gg ([0] ) , SO that the power flow
—p

equatlons become:



9.2.3.3 Linearization of real power line flow limit constnés
e The real power line flow limit constraints are:

V(K) € K, pu ( [8“’]) < Pu:

e Linearizing these abo®® = 0 and maintaining/® = 1 we obtain:

V(IK) € K,ggfg ([ D O_p < Pu— Pek ( [2]) = Pk

e sincepy 2 =0.
e Asin Section3.7.], we define a matriX to have rows
Ky = geL'_‘t ( 2 and also define a vectdrto have entries
d(ex) = Puk, SO that the line flow inequality constraints become:
K6, <d.



9.2.3.4 Other constraints

e We can also add linearized versions of other constraints asistability
and voltage constraints to the formulation.

e Suchproxy constraints may approximately abstract from a large number
of off-line studies.



9.2.4 Explicit representation of angles
9.2.4.1 Formulation
e The DC optimal power flow problem is therefore:

min { nzp fie(Fe)
k=1

PeR™ 6_pcR"P~1

Jeppzﬁ,Kepgd,Egpgﬁ}.

e This problem is in the form of our generalized economic disipa
problem:

min{ f(x)|Ax=b,Cx< d,Yk=1,...,n,8, < M < &},

XeRN
e wWhere:
X = [g_p] cR",
A = [_I ‘J]7
b = -D,
C = [0 K],



Formulation, continued
e and where:

Xk = [H(]ak: 1,...,np,
Xnp+1) = O-p;

xeRYNf(x) = Y f(R),
K=
o = [P,
o = [Pl
re = [1.



9.3 Offer-based optimal power flow, angles represented expltly

e We consider the solution of the optimal power flow problem amite
down the pricing rule for offer-based optimal power flow wdeach
generatok = 1,...,np offers Jfy and specifies its limit®, andPy.

ok

o Letx = [g*p] be the minimizer of the offer-based optimal power flow
problem.

e Let A\* andu* be the Lagrange multipliers associated with the system
constraintsAx = b andCx < d, respectively.

e Let Ax andCy be the columns ofA andC, respectively, associated with the
decision variablegy representing generatir

e That is:

Ak — _Ik7
Cy = O

e Wherel is a vector with all zeros except for a one in #ah place.
e Note that the corresponding columns for the variallgs, 1) = 6, are
the matrices) andK, respectively, sé\p,41) = J,Cnpr1) = K.



9.3.1 First-order necessary conditions

N eR™ W e R, vk=1,...,np+ 1,3y, Fk € R’k such that:

Vk=1,...,np+ 1, Ofc(x) + [Ad N + [C T — [N " + M | = 0;
DN+ KT = o;
M*(Cx"—d) = O
Vk=1,...,n,Mg(d—TxX*) = 0;
Vk=1,....n,M(Mx*—8) = O;
AX® = b;
Cx* < d;
\V/kzl,...,n,rkaE > O
Vk=1,...,n,MxX" < &;
> 0

i > 0; and
K > 0.



9.3.2 Pricing rule

e From Theoren8.1, we can write down the pric:ﬂl,skMP that induces

profit-maximizing generatdk to dispatch according tg;:
T[{:T‘(MP _ _[Ak]T)\*_[Ck]TIJ-*;
*
= A,

e whereAj is the Lagrange multiplier associated with the system camgt
00, ( H ) 0p — P = —Dyand wherw_p ( H ) is thek-th row of
J

e The price MP is called thdocational marginal price or LMP at busk.

e That is, the payment to generatofor generatiorf is:

T
] Pe= A x P

e Generatok is paid based on the Lagrange multiplier on the power
balance constraint associated with its bus.



Pricing rule, continued

e Similarly, using an argument based on bid demand, we fincdignaand
pays based on the Lagrange multiplier associated with &s bu

— Several markets, including ERCOT, charge demand basedaata
weighted averageof LMPs in a zone.

¢ \We can write the vector of LMPs for all buses1£vIP =\~

e If the formulation were expanded to include reserves andrahcillary
services then the LMPs would also include additional terefeted to
these services as we derived for the case of reserves witlamgmission
constraints.

e However, current market formulations with ancillary sees typically do
not represent locational issues in detail:

— for example, deliverability of spinning reserves may notbasidered,
or only considered approximately in terms of deliverapild “zones,”
— this results in some inconsistences in such models.



9.3.3 Sensitivity interpretation

e Typically, the LMP at a bus can be interpreted as the minimast per
unit energy of delivering an additional infinitesimal ambohpower to
that bus or the value per unit energy of producing an addition
infinitesimal amount of power at that bus.

“Marginal” means a derivative or infinitesimal change irsthontext.

e In particular, if the conditions hold to apply Theorehi4, then the
Lagrange multiplier on a constraint equals the sensitivitihe objective
to a change in the right-hand side of the constraint.

e The LMP for busk is the Lagrange multiplier on the power balance
constraint for bus.

e The LMP therefore represents the sensitivity of cost to gkhann
production (or demand) at biks

Minimizing the cost (minus benefits) is equivalent to maximg the
benefits minus the cost, or tkarplus.

Recall from Sectior.3that the sensitivity of surplus to changes in
production is called thenarginal surplus.



Sensitivity interpretation, continued

e \We are again pricing at the marginal surplus, but it now \&iiem bus to
bus.
e The sensitivity interpretation is not always valid when stpaints are
“Just” binding:
— a typical example is where there is a range of possible vallies
Lagrange multipliers,
— analogous to the transmission-unconstrained case whenithe jump
in marginal costs between blocks.



9.4 Offer-based optimal power flow, angles eliminated

e To understand the relationship between the constraintsrenidMPs, we
will further re-formulate the optimal power flow problem tinginate the
angles using thehift factors:

— for a given problem specification, the angle eliminated faaton
using shift factors and the angles included formulation Weahave just
considered must have the same dispatch solution,

— this observation will allow us to interpret the LMPs in terofghe
Lagrange multiplier on power balance and on the line flowtkmi

e The shift factors formulation will also lead to a decompiositapproach
that can be utilized to represent the AC power flow equations.



9.4.1 Formulation
e Recall the system constraints:

Je_p—P — —D7
K6, < d.

e In Section3.7.4 we discussed eliminating, by re-writing
JO_,—P=-Das:

~1'p = —1'D,
6o = [Jo _1(P—0—5—0)7

e Wherea is the slack bus angd is the angle reference bus.

For reasons that will become clear, lmwill also be called the “price
reference bus,” as distinct from tlaaglereference bus, bys

However, typically, we will either chooseto be the same as the angle
reference bug or (in small examples) chooseto be a bus with
demand.

Note that we continue to assume that there is a generatoe atabk bus
having generation variable.



Formulation, continued

e Using theaugmented shift factor matrix C from Section3.7.5 the
system equality and inequality constrair®sl®—(3.20) then become:

—1'p = —1'D,
CP < CD+d,

e whereP — D is the vector of net injections at all buses, and the augrdente
shift factor matrix iSC = [0 K[J 4] *], assuming that the first entry Bf
corresponds to the price reference bus

e Demand response can be accommodated by considering a gector
demand® in the decision variable instead of the fixed demand
specificatiorD.



Formulation, continued

e The DC optimal power flow problem with angles eliminated isréfore:

PER"P

np R o .
min { S (R (_1TP = -1"D.CP<CD+d,P<P< P} .
k=1

e This is in the form of our generalized economic dispatch |emb

min{ f(x)|Ax=b,Cx<d,vk=1,...,n,8, < M < d},

XeRN

e Where we have used " to distinguish this formulation fromftrenulation
where angle$_, were explicit and where:

o > X
I

D.) O)
I I

PcR"™,
1t
—-1'D,
0 Kl where we have assumed that the first entry
[ o] } ’of P corresponds to the price reference bus,

éﬁ —|— d — K [J_o'] _15_0' —|— d,



Formulation, continued

e and where:
X = [P,
O = [Py,
o = [P
e = [1].



Formulation, continued

e We again consider the solution of the optimal power flow peabband
write down the pricing rule for offer-based optimal powemflavhere
each generatdc= 1, ..., np offers Ofy and specifies its limit®, andPy.

e Let P* be the minimizer of the offer-based optimal optimal powewflo
problem with angle$®_, eliminated.

Note that if the offers are the same as in the previous forianavhere
we considered anglés,, represented explicitly, then each
minimizer P* of the angles eliminated problem is also a minimizer
of the problem with angles represented, and vice versa.

Moreover, the angles in the previous solution must alsefyati

0%y = [Jo] "(P"s—D.o).

o Let\* and|I* be the Lagrange multipliers associated with the system
constraintsAx = b andCx < d, respectively, in the angles eliminated
problem.



Formulation, continued

e Let A, andCy be the columns of andC, respectively, associated with the
decision variableg, representing generatkr
e Thatis:

Ak — _17
K [[J_o]_l} T if kis not the price reference bus,

& =
0, if k=aoisthe price reference bus.

o where[[J_o] _1} ) is thek-th column of[J_g] ™.



Formulation, continued

e Note thatCy is the column of the augmented shift factor matrix
corresponding to generatkr

e Each entry ofC, represents the fraction of the generation injected by
generatok that flows on the corresponding line when withdrawn at the
price reference bus.

e The entries oCy are all zero since injecting and withdrawing the same
amount of power at the price reference bus has no effect ohranffows.



9.4.2 First-order necessary conditions

I ER™ IR Vk=1,...,np, P € R"« such that:

k= 1,...,np, Ofc(x0) + [Ad A+ [Gd ' — M T+ M T = o,
M*(Cx —d) = O;
vk=1,....,n,Mg(®, —TX*) = 0;
Vk=1,...,n,Mg(Fx*— &) = 0;
AX = b
Cx < d;
vk=1,...,nMxE > &
Vk=1,....,nMx" < Sk;
> 0;

i > 0; and
L > 0.



9.4.3 Pricing rule
MP

e From Theoren8.1, we can again write down the pria:%k that induces
each profit-maximizing generat&ito dispatch according tg;:

R LENTT IR
e = (AR -6
- T
D A [[J_o]_l}k K'pr, if kis not the price reference bus,
5\*, if kis the price reference bus,

e where)* is the Lagrange multiplier associated with the system eatyual
constraint—1"P = —1'D, representing overall power balance.
e In particular, the payment to generatoior generatiort is:

mtMPR = - 60 )R.

A + el
. 1 T if kis not the
— { (A [[‘]—"] }k Kl ) P price reference bus,

A* x = if kis the price reference bus



Pricing rule, continued
e Generatok is paid based on:

the Lagrange multipliek* on the “overall” power balance constraint
associated with the price reference bus, and

a weighted average of the Lagrange multipligr@Ssociated with the
line flow limit constraints, where the weights are given by ghift
factors.

e This is again thdéocational marginal price at busk.
e \We can write down the vector of LMPs as:

rsMP — 13— ¢ . (9.4)

e In generalfx*, the value of the Lagrange multiplier on the “overall”
power balance constraint, has a different value to the goak®Lagrange
multiplier that would be obtained if the transmission coaisits were
ignored:

That is,\* is not the same as the “unconstrained price” obtained fram th
offer-based economic dispatch calculation ignoring tnassion
constraints!



Pricing rule, continued
e To summarize, the LMP at bls Tl‘F:kMP, Is equal to:

the LMP at the price reference bus,
minus a weighted sum of the Lagrange multipliers on the liow fimit
constraints.

e The weights are “shift factors” to the constraints.

e \WWe will generalize this to include losses in Sectibhl

e Since the dispatcR* must be the same as in offer-based optimal power
flow where we considered angl@®xplicitly, it must also be the case that
LMPs in each case must provide the same incentives, as sinaiva next
Theorem.



Pricing rule, continued

Theorem 9.1

e Consider the LMPs in the two formulations of offer-basedmogak
power flow with angles included and with angles eliminated,
respectively.

e For some choices of Lagrange multiplie¥sand |t satisfying the
first-order necessary conditions of offer-based optimalgoflow with
angles included and for some choices of Lagrange multiphémand
[I* satisfying the first-order necessary conditions of offasdx optimal
power flow with angles eliminated we have that:

vk=1,....n A = A — G f, (9.5)

o= (9.6)

e If there are unique values of the Lagrange multipliers th@®)(
and ©.6) hold for these values so that the unique LMPs are the same in
both formulations.



Pricing rule, continued
Proof
e Let P* be the minimizer of the offer-based optimal optimal powewflo
problem with angle$_, eliminated and lex*, o, Eﬁ andfi; be the

Lagrange multipliers associated with the system congtrAin= b and
Cx < d and with the generator constraints, respectively.
e Defined*, = [J ] (P, —D_g), whereP*, is the vector obtained from
P* by deleting the entry corresponding to the row eliminatednfd.
e Direct substitution then shows that:
X = >
= o, |
A* andy* defined by and9.5) and 0.6), and
M, andfi,
e satisfy the first-order necessary conditions of offer-dgsmwver flow
with angles included.

O



Pricing rule, continued
e The LMP at bug, T[%(MP, is often described as being the sum of:

— an energy price component (that)k) and
— a congestion price component (thatis[ﬁk]Tﬁ*).

e Note that the LMP at the price reference Aisand the Lagrange
multipliers on the line flow limit constraints, and hence tomgestion

commponent- [Ck]Tﬂ*, will each depend on the location of the price
reference bus.

e However, according to Theoretnl, the LMP at each bus is independent
of the choice of the location of the price reference bus:

— for any given bug, the sum of the energy price component and
congestion price componenttlse LMP at busk, independent of the
choice of price reference bus.

e When we include consideration of losses, the LMP will be tma of
energy, congestion, and loss components.



9.5 Example
e Consider the one-line two-bus system from Sec8@with MW
capacity and per unit impedance (on a 1 MVA base) as shown.
e Let busp = 1 be the angle reference bus, so the unknown andlg is
e Let buso = 2 be the slack/price reference bus.
e There are generators at both buses 1 and Zand 110 MW at bus 2.
e The offers are specified by:

VPL € [0,200,0f(P1) = $25/MWh
VP, € [0,50], 0f2(Py) = $35/MWh

100 MW demand

1 2
(P
*‘ 0+ 0.501\/?1 110 MW

Fig. 9.1. One-line two-
bus network.



9.5.1 Admittance matrix
e \We repeat the analysis from Secti®i8, with the demand vectdd

replaced byD = 52 :
e As discussed in Sectidh 8, the line admittance is:
1
92 = 570000/ T
= —1000/ 1.

e The bus admittance matrix is:
Y2 —92|  [-1000/—1 1000/-1
-2 12| 1000/—-1 —1000/—-1|’

_ (Bi11v/—1 B12\/—1]‘
| Boiv—1 Bpov-1




9.5.2 Jacobian

e Evaluating the sub-matrix of the Jacobian correspondingadbpower
and angles at the condition of flat start:

= a5 (1)
i)
-3 (1)




9.5.3 DC power flow
e The DC power flow constraints are:

Je_p = P—ﬁ,
P1
P2—52 ’
_ 0
e Where we note thdd = [— )
D>

e Substituting, we obtain:

- [2 5]



9.5.4 Eliminating angles
e \We eliminated, to obtain the following form:
—PL—P, = —Dg,
62] = [3] [P,

e where, to forml_g, we have deleted the second rowdaforresponding to
the price reference/slack bas= 2:

Jo = [_1OOQ7
(3o = [-0.001.

e Note that theanglereference bus is bys= 1, whereas therice
reference bus is bus = 2!

Example shows that the angle and price reference buses chffdrent
buses!



Eliminating angles, continued
e The power flow equations are then:

_Pl_PZ — _527
8, — [~0.001[Py].

e For positive values oP;, we have thab, < 0= 0;.
Power flows from “higher” to “lower” angles.



9.5.5 Line flow constraints

e Assume that the real power line flow limit of 2100 MW appliesyom the
direction of the arrow in Figuré.1

¢ Ignore the constraint on flow in the direction opposite todhew.

e The line flow constraint is then specified KY_, < d, where:

d = [Pa2l,
— [100],
K = [-Bi2,

— [-1000.

e Therefore:

(K[62] <d) < ([-100Q[62] <[100Q),
& (02> -01).

e For|6,| < 0.1 we have that sii; — 82) = sin(—02) ~ —05, so that the
DC power flow approximation is reasonable.



9.5.6 Shift factors
e The matrix of shift factors is:

Kdo]™ = [~1000[—0.001],
= [1].
e Thatis, if Py is injected at bus 1 and withdrawn at bus 2 thiP;| = P,
will flow on the line between bus 1 and bus 2.
e If P> is injected at bus 2 and withdrawn at bus 2 then no power wil flo

on the line between bus 1 and bus 2.
e That is, the augmented shift factor matrix is:

~

C = [K[3q™ 0],
= [1 O].



9.5.7 Line flow constraints with angles eliminated
e The system equality and inequality constraints with anglesinated are:

~1'"p = 1D,
CP < CD+d.
e SinceC=[1 0],D= [502] , andd = [100], these constraints become:
_Pl_PZ — _527
P, < 100

e As mentioned in SectioB.8, we could see this from Figu&1 directly:

— Generation at buses 1 and 2 must meet demand at bus 2.

— For withdrawal at the price reference bms- 2, all injection at bus 1
flows on the line; therefore generation at bus 1 must be witlen
capacity of the line.

— For withdrawal at the price reference bms- 2, no injection at bus 2
flows on the line.



9.5.8 Offer-based optimal power flow, angles representeglieitly
e Offer-based optimal power flow involves:
Py = 100 MW generation from generator 1,
P; = 10 MW generation from generator 2, and
flow of 100 MW on the line, so that
5= [36] [P}] = [-0.001[P;] = [-0.1].
e None of the four generator constraints are binding so, byptementary
slackness, the Lagrange multipliers on the generator @nis are zero:

Eﬁ = 0,k=12,

& = 0k=12

e Therefore, both generators are “marginal.”
e Except for certain cases where the Lagrange multiplieraatreniquely
defined, the number of marginal generators is at least one than the

number of binding transmission constraints.
e See Exercise8.], 9.2, and9.4.



Offer-based optimal power flow, angles represented expliccontinued
e The first-order necessary conditions include:

vk=1,2,0 = Of(R) + [AJ N + [Cd T — Mo g + [T T
= Df(PY) + [Ak]TA* +[Ci] T, sincep: =i =
= [Of(PY) — Ak, sinceCy = 0.
e Therefore:
AL = Of(PY),

— $25/MWh
Ay = Ofa(P),
— $35/MWh

e The LMPs are $25/MWh and $35/MWh, respectively.

e These are, respectively, the costs per unit energy of delyan
additional infinitesimal amount of power to buses 1 and 2.

e How would the LMPs change if the slack/price reference bissdanged
to o =1 or if the angle reference bus changegte 27?



9.5.9 Offer-based optimal power flow, angles eliminated
¢ In this formulation, the first-order necessary conditiamdude:

* NELEY * Ti%
vk=1,2,0 = Of(P) + [Ad A + (G — M T+ M T
* I % Tax
= Of(P) — A+ [Gd i
e Therefore:

$35/MWh = [Of(P5),

= A [0,
A
ADf1(Pf),
A — [,
$35/MWh— [,
(¥ = $10/MWh

e The LMP at the price reference bus, ms- 2, isA* = $35/MWh.

$25/MWh



9.6 Larger example

e Recall the previous four-line four-bus example from Set8® with
MW capacities and per unit impedances (on a 1 MVA base) asrshow

01
e Letp = 0 be the angle reference bus, so unknown angle6_gre [62] :

O3
e Demand is 3000 MW at bus 0 and bois= 0 is the price reference bus.

2

0-+0.001/—1
3000 MW
0+0.001/-1 | 0+0.002,/-1
3000 MW 300 MW
0+0.001/-1
3000 MW 3
) Fig. 9.2. Four-line
o four-bus network.
Do P3



Larger example, continued
e Assume that the transmission line capacities are:

P2y = 3000MW,
Py = 300MW,

Pap = 3000MW,

e in the directions implied by the arrows.
e We ignore limits on these lines in the directions oppositd&arrows.
e The generation offers are:

VP € [0,1500, Of1(Py) = $40/MWh
VP, € [0,1000, Of2(P,) = $20/MWh
VP € [0,1500, Of3(Ps) = $50/MWh

e This is the same demand and offers as a previous exampleplwuia
must satisfy the transmission constraints.



9.6.1 DC power flow
e Recall that the DC power flow constraints are:

Je_p — P—B,
e Where:
—1000 0 —100 Do
I 2000 —1000 0 5 0
~ | —=1000 1500 -500(°'= | O
0 -500 1500 0
e Since bus 0 is actually a demand bus and there is only gemea@tbuses

1, 2, and 3, the DC power flow constraints are:

—1000 0 -1000] o 0 Do
2000 —1000 Of [go| _ |P| _| O
—1000 1500 —500 92 = 0

0 -500 1500 -3 P, 0



9.6.2 Eliminating angles
e Eliminating the angles yields:
~PL—P—P3 = Do,
0.0008 Q0006 OOOOZ] [P1]

0, = |0.0006 00012 00004| | P
0.0002 Q0004 Q0008] | Ps



9.6.3 Line flow constraints
e The line flow constraints are specified K§_, < d, where:

[ P10)
_ | Py
d Py |’
| Pso) |
3000]
| 3000
o 300] °
| 3000
1000 0]
« _ |—1000 1000
o 0O 500 -500|
| 0 0 1000



9.6.4 Shift factors
e The matrix of shift factors is:

- 1000 0

0.0008 00006 0000
Kot = | 1% 1090 0.0006 00012 0000421],

0 500 —500
_ 0 0 1000 0.0002 Q0004 00008

08 06 02
—-0.2 06 02
- 0.2 04 -0.2
02 04 08

e The augmented shift factor matrix is:

~

C = [O K[J—O]_l]7
00 08 06 02
00 -0.2 06 0.2
~— (00 02 04 -0.2
00 02 04 08



9.6.5 Line flow constraints with angles eliminated
e The system equality and inequality constraints with anglesinated are:

~1'"p = 1D,
CP < CD+d,
e Since:
00 08 06 02 Do 300
é_ 00 —02 06 02 D — 0 d— 3000
— 100 0204 —02(°"— |0 ]|’ | 300}/
00 02 04 08 0 3000
e these constraints become:
—P,—P,—P; = —Do,
08 06 02 P 300
~02 06 02 Pl ~ | 3000
0.2 04 -0.2 P2 = | 300]"
02 04 08| L3 3000



9.6.6 DC optimal power flow problem with angles eliminated

e Using the explicit form of the objective and constraintg IC optimal
power flow problem with angles eliminated is:

( _Pl_PZ_P3:_BO7 )
08 06 02] p 300
02 06 02 3000
| A0xPL i | 0% 04 0.2 [P2] = | "300|
min -y F20xP g5 g4 gl LPe 3000| (-
PER, | +50xP; 2 04 0
P, e R,
P C R 0< P < 150Q
0< P, < 1000
\ 0< Ps < 1500 /




9.6.7 Line flows using solution ignoring transmission comaints

e The solution of offer-based economic dispatch ignoringgraission
constraints wa®; = 1500 MW, P; = 1000 MW, andP; = 500 MW.
e Substituting, we obtain flows of:

08 06 02 p* 08 06 02 150
—-0.2 06 02 X —-0.2 06 02 1000
02 04 -0.2 02 04 -0.2 500!
02 04 08 02 04 08

-1900
400
= | 600]|"
| 1100
-3000]
3000
% | 300]"
| 3000

e since the constraint on flow on the line between buses 2 andiBivbe
violated.




Line flows using solution ignoring transmission constraigt continued

e If we dispatchedP;, = P; =0 MW andP, = 1000 MW, then the flow on
the line between buses 2 and 3 would be 400 MW, which would stil
violate the constraint!

e Will we be able to utilize all the low-priced power from bus 2?

e Offer-based economic dispatch is sometimes explainedyiggéhat the
“offer blocks” are stacked up from lowest to highest offeicpnn merit
order until demand is met as in Figue5in Section5.5.

e Using this analogy, we might be led to believe that we will betable to
use all of the low-priced power from bus 2 in offer-based mopli power
flow, since using the lowest priced “block” alone would viglghe
transmission constraints.



9.6.8 Offer-based optimal power flow

¢ To find the offer-based optimal power flow solution, we needde a
formal optimization process.

e Using either the formulation with angles represented ossth# factors
formulation with angles eliminated, the problem is a linpargram,
which can be solved, yielding the solution:

P; = 750 MW generation from generator 1,

P; = 1000 MW generation from generator 2,

P; = 1250 MW generation from generator 3, and
flow of 300 MW on the line from bus 2 to bus 3.

e In this case, only the generator constraint for generateriniding so, by
complementary slackness, the Lagrange multipliers ommalbther
generator constraints are zero:

o= 0k=123
= 0,k=13.

e Generators 1 and 3 are marginal and there is one bindinghtiasi®n
constraint.



Offer-based optimal power flow, continued

e Note that generator 1 is not fully dispatched, so the geaesare not in

“merit order” ignoring the transmission constraints:

— this is sometimes, misleadingly, called “out of merit” casgh,

— it is following the general principle from Sectidn5that generation
with lower marginal costs is used whenever possible in peefge to
using generation with higher marginal costs;

— however, transmission constraints prevent full utiliaatof generation
from generator 1 even though we are using some generationHigh
cost generator 3.

e Only the line constraint for the line joining bus 2 to bus 3iisding so,
by complementary slackness, the Lagrange multipliers ldhaline
constraints are zero:

W(lo) = 0,
W((21) = 0,
ﬁ?so) =0



9.6.9 Offer-based optimal power flow, angles representeglieitly
e The first-order necessary conditions include:

vk=1...,4,0 = Of(F) +[AJ N + [ W — [Md b+ [Mid T
= Of(P) = Ao — [ pe T J T smceCk_O
= Df(P) — Ak, fork=1,3, sincel; = =0 fork=1,3.

e Therefore:
AT = DOfy(PY),
= $40/MWh,
A3 = Of3(P3),
= $50/MWh

e The LMPs are $40/MWh and $50/MWh, respectively, at busesdl3an
e These are, respectively, the costs per unit energy of deliyan
additional infinitesimal amount of power to buses 1 and 3.

The power is “delivered” to these buses by generating itipca



9.6.10 Offer-based optimal power flow, angles eliminated
¢ In this formulation, the first-order necessary conditiamdude:

A 115 T -
vk=1,...,4,0 = Of(R)+ [Ad A +[Cd I — M + [Md T
— Of(P) — A+ [Cd e, fork=1,3,

"0
X\ )k A 4T 0 since; 100 — A*Zl)
= Of(P) -M+1Cd | o |, (10,

e Therefore, the LMPs at buses 1 and 3 also satisfy:
Al = $40/MWh
Of1(Pp),
A —0.2x [23, where 02 is the shift factor for bus 1,
A3 = $50/MWh
Dif3(P3),
= N —(-0.2) x i35, where(—0.2) is the shift factor for bus 3.



Offer-based optimal power flow, angles eliminated, conteul
e Solving these equations simultaneously)ﬁérandpf(*23), we obtain:

A* = $45/MWh
e Therefore, the LMPs at buses 0 and 2 are:
Ao = N,
= $45/MWh
where we note that bus 0 is the price reference bus,
A5 = N —0.4x %3),
where 04 is the shift factor for bus 2,
= $35/MWh



Offer-based optimal power flow, angles eliminated, conteul
e Substituting, we obtain flows of:

08 06 02] .., - 08 06 02

02 06 027 02 06 02 15%8
02 04 —0.2 02 04 02| | 1900
02 04 08 02 04 08

" 1450]
700
= | 300]"
| 1550
"3000
3000

300| -
| 3000

IA




9.6.11 Offer-based optimal power flow solution

P; = 750MW, P; = 1000MW,
A7 = $40/MWh, A5 = $35/MWh,
marginal at full output

flow 700 MW,
below limit
flow 1450 MW, | flow 300 MW,
below limit at limit
flow 1550 MW,
below limit
- 3
— Fig. 9.3. Offer-based
_ Do & optimal power flow
)I?*O: ggg /cl)\/IMVY/\{; P; = 1250Mw, for four-line four-bus
0 A3 = $50/MWh, network.
marginal



9.7 Properties of locational marginal prices
e LMPs can be different at every bus:

A5 = $45/MWh
AY = $40/MWh
A5 = $35/MWh
A5 = $50/MWh

e LMPs can be the same as or lower than the offer price at bus:

— lower than offer price if cheaper imports are feasible,
— same as offer price if generator is marginal.

e LMPs can be higher than offer price at bus:
— if no more capacity is available at bus.
e LMPs can be higher or lower at demand than at generation:

— LMP at demand is higher than LMP at buses 1 and 2,
— LMP at demand is lower than LMP at bus 3.



Properties of LMPs, continued
e Power can flow from bus with higher LMP to bus with lower LMP:

— From bus 3, with LMP of $50/MWh to bus 0 with LMP of $45/MWh,

— Injection at bus 3 causes counterflow on line from bus 3 to bus 2
allowing for all the cheap generation at bus 2 to be used.

— Flow from bus 3 to bus 0 is side-effecbf generator 3 injecting at bus 3.

e LMPs can be higher than any generator offer price:

— if increasing demand necessitates decreasing generaioheap
generator. (See in Homework Exercise.)

e LMPs can be lower than any generator offer price:

— ifincreasing demand by 1 MW allows for more than 1 MW increaisa
cheap generator.



Properties of LMPs, continued
e LMPs can be lower than transmission unconstrained price:
— under offer-based economic dispatch ignoring transmrmssomstraints,
unconstrained price was $50/MWh,

— under offer-based optimal power flow, LMP is $45/MWh at bus 0.
— Note that the transmission unconstrained price is not eiqqual

A* = $45/MWh.
e LMPs can be higher than transmission unconstrained price:

— in the one line example in Secti@b5, the LMP at the right was
$35/MWh for demand of 110 MW,

— the solution ignoring transmission constraints would teawtan LMP at
the right of $25/MWh.



9.8 Congestion rent and congestion cost
9.8.1 Congestion rent
¢ In the four-line, four-bus example, the payments are:

Demand pay®g x A§ = 3000MW x $45/MWh= $135000/h,
The generator at bus 1 is paid
Py x A} = 750MW x $40/MWh= $30,000/h,
The generator at bus 2 is paid
P; x A5 = 1000MW x $35/MWh= $35 000/h,
The generator at bus 3 is paid
P x A5 = 1250MW x $50/MWh = $62 500/h,

e Total payment to the generators is $127,500/h, which istleasthe
payment by demand of $135,000/h.

e The difference between the payment by demand minus the payme
generators is called thmngestion rent

e The congestion rent is $7,500/h for this example.

e Note that there would be the same congestion rent in maikath, as
ERCOT, that charge demand based doaal weighted averageof the
LMPs in a zone.



Congestion rent, continued

e Congestion rent is a revenue stream that accrues to the 1SO.
e It is disbursed back to market participants throfighncial transmission
rights (known in ERCOT agongestion revenue rightk

— See in Sectiod 1.
e Congestion rent is sometimes calle@rchandising surplus



9.8.2 Congestion cost

e Arelated, but different, concept is the (revealedingestion costwhich
Is defined as difference between:

cost of dispatch under offer-based optimal power flow ($80@/h),

minus

cost of dispatch under offer-based economic dispatch iggor
transmission constraints ($105,000/h).

e Congestion cost represents the increased cost of fuel dekeseto the
finite capability of the transmission network.

e The congestion cost is $7,500/h in this case, which hapelns the
same as the congestion rent.



9.8.3 Congestion rent versus congestion cost

e The congestion rent isot generally equal to the congestion cost.

e In this particular four bus example, the congestion rent@mestion
cost happen to be the same!

e More typically, the congestion rent is larger than the catiga cost:

— In the two bus example with demand of 110 MW, the congestiahise
$1000/h, while the congestion cost is $100/h.

e Congestion rent and congestion cost are often confused:

— although they are either both zero or both non-zero, theme tirect
relationship between them.



9.8.4 Non-negativity of congestion rent

Theorem 9.2Congestion rent is always non-negative for non-negative li
flow limits.

Proof
e By definition, congestion rent is:

T
payment by demand- payment to generatoes [TLJF:MP] (D—P),
° WherET[,;MP is the vector of LMPs.

e From ©.4), we have:
P = 1 - €)',

o Where\* and* are the Lagrange multipliers in the angles eliminated
formulation.



Non-negativity of congestion rent, continued
e Therefore:

congestion rent= [TLJF:MP]T(B —PY),
= [15\* — [CA:]TQ*} T(ﬁ — P*), using expression fom'F:MP,
= M'aD-1"P) — [ 'EO-P),
= ~[KT'CO P,
e sincel™D — 1'P* = 0; that is,D andP* satisfy the system equality
constraint.

o Let C(gk) be therow of C corresponding to the line joining buséand
k, let P, be the corresponding line limit, and I|H§’tZk be the

corresponding Lagrange multiplier on the line I|m|t coasit
C(P—D) < d.



Non-negativity of congestion rent, continued

e Then:
T A
[TLJF:MP] (D—P*) = —[“*]TC(D— P*), from the previous page,
= [r)'¢(P*-D), B
> WwCa(P*=D)+ > uCi(P"=D),
F=0 F 70
(g 70
= Z “@k)b(gk), by complementary slackness,
%kﬁéo

sinceC,y (P*—D) is the flow on the line
joining bus/ to k,
> 0,

e assuming that'’, k, pa > 0, and noting tham’(}k) > 0,V/, k.



Non-negativity of congestion rent, continued
e Thatis:

payment by demand- payment to generators- Z ﬁ@k)ﬁ(gk),
W((Kk)%o
> 0.

e \We have proved that the congestion rent is non-negative.
O

e We could have used Theore8r2to prove this result. (See Exerci9e’.)

e Note that we have also proved that the congestion rent id egtlee sum
over the binding line constraints of the product of the cgpmnding
Lagrange multiplier and the flow limit.

¢ In theflowgatetransmission rights mechanism we associate congestion
rent individually to each binding line constraint:

— the ERCOT zonal market used a flowgate transmission rights
mechanism based on inter-zonal flow limits.



9.9 Contingency constraints
9.9.1 Pre-contingency versus post-contingency flow

¢ In the formulation of transmission limits, we have impligibeen
considering limits ompre-contingency flow

e However, most transmission systems eoatingency limited.

e That is, the binding constraint is on a limiting post-cogéncy flow that
would occur on contingency of another line:

— flows in the post-contingency case result from the generatiections
and the post-contingency network.

e These contingency constraints can also be considered iimonulation,
but requireoutage shift factors

— fraction of post-contingency flow on a line due to injectidiganerator
and withdrawal at price reference bus,
— as derived in SectioB.12.4



9.9.2 Example

e Consider the following eight-line four-bus system.

e To be secure against all single contingencies, we must tgp#ra system
so that for any outaged element, the flows on the remainingisyare
within limits.

e There are eight possible single element outages.

2
Each line N
_ 04 0.002y—1
Each line 1500 MW Each line
0+0.002y -1 171 0+0.002/-1
1500 MW Each line 300 MW
04 0.002y—1
1500 MW )

A 3

Fig. 9.4. Eight-line
Do @ four-bus network.



Example, continued
e For example, consider an outage of one of the lines joinirsgZoio bus 3.

e This would yield the system shown.

e \We can analyze the contingency constraints by calculatiaghift

factors for the outage system.

e For example, we would consider the shift factors to the remgiline

joining bus 2 to bus 3.

Each line

_ 04 0.002y—1
Each line 1500 MW
0+0.002y -1
1500 MW Each line
04 0.002y—1

1500 MW

04 0.002/—-1

300 MW

Fig. 9.5. Contingency
on eight-line four-bus
network.



Example, continued

e For this example, a contingency on one of the lines joiningdand 3 is
the most binding contingency:

— the corresponding post-contingency system happens tothawsame
admittances and total capacities on each corridor as wedsyed
previously in the pre-contingency limited case.

e To be secure with respect to a contingency on one of the lmemg bus
2 and 3, we must operate so that this contingency would nottries
overload of the remaining lines post-contingency.

e Assuming the same offers as previously, the resulting gdio@rdispatch
and LMPs are the same as the solution we found for the prengmmicy
limited case.



Example, continued

e However, thgre-contingencylows resulting from this dispatch are
different to the solution we found previously:

— we must dispatch so that post-contingency flows are withimstraints
on post-contingency system,

— but unless the contingency actually occurs, flows will be wue
generation injections and the pre-contingency network,

— pre-contingency flows are typically well below capacities.

e Consider a corridor of two parallel, identical lines eaclhiiO0 MW
capacity joining two zones. What is the maximum pre-cordirgy flow
on each line to ensure security?



Example, continued

Py = 750MW, P; = 1000MW,
A7 = $40/MWh, A5 = $35/MWh,
marginal at full output
D "
1 2
each flow 312.5
below 1500 M
each flow 687.5 MW, | | | each flow 187.5 MW,
below 1500 MW limit below 300 MW limit
each flow 812.5
N/ below 1500 MW /.
0 g 3
= Fig. 9.6. Pre-
_ Do & contingency flows
}I?*O_: gz?g /(I)\/IMV\\;Y{ P = 1250MW, On eight-line
0~ A% = $50/MWh, four-bus network.
marginal



9.9.3 Representation of contingency constraints

e Note that thepost-contingencflows in the system must be represented in
terms of the generation levgbse-contingencyn the economic dispatch
problem:

— the relevant system constraint is post-contingencflow as a function
of generation,
— this is evaluated by using the outage shift factors.



Representation of contingency constraints, continued

e In the ERCOT zonal system, the Commercially Significant Qaiirsts
(CSCs) were represented by the effecipoe-contingencylow on the
CSCs as a function of generation:

— however, pre- and post-contingency shift factors are diffe

— so the approximation used in the ERCOT zonal system used the
incorrectderivative of the function representing the post-contiye
flows that appear in the system constraints; the wrong sgfofs were
used.

— As discussed previously, this distorted the incentivesydnan
inducing the behavior that would be consistent with
contingency-constrained economic dispatch.

— When generators then behaved consistently with their e but
inconsistent with actual constraints, ERCOT had to adjuest t
constraints or take out-of-market actions to maintainifelty.



Representation of contingency constraints, continued

¢ In nodal systems, including the ERCOT nodal system, coatiny
constraints are correctly represented in terms of (lizeséinns of)
post-contingency flows.

e Incentives for generators are better aligned with the attalasmission
constraints:

— because more of the constraints are represented, and
— because the contingency constraints are representedttyprre

e |t should be remembered that linearizations are an appwdiomand that
there is uncertainty in the values of limits.



9.10 Reactive power prices
9.10.1 Offer-based economic dispatch formulation
e Recall the AC formulation:

| ([v])-p=-0aa([V?]) -o=&

np
min < z fk(Xk) ?
k=1

©

XeRN

e Where we now explicitly allow the cost (and the offer) for geattork to
&

be a function of both real and reactive power, so ¥at o)

/

e \We neglect other ancillary services for simplicity.
e In this case, the system equality constraints include kasthg for real
power and for reactive power.



9.10.2 Pricing rule, angles explicit
P*

e Let the minimizer bet* = 0

e We assume that we can find Lagrange multiplierandpy” on the system
equality and inequality constraints:

— Lagrange multipliers will typically exist in practice, btltis is not
generally true in the absence of additionahstraint qualifications, as
discussed in Sectioh.6.1



Pricing rule, angles explicit, continued
e Let Ay, andAg, be the Lagrange multipliers on real and reactive power

balance at generatér
e From Theoren8.3, we can write down the pricing rule for generakor

*
Qk

e SO that there are prices for both real and reactive power.
e That is, the payment to generatois:

[T ] T = APk + AGKQk;

e on the basis of both its real and reactive power production.
e How would you expect the values &f, andAg, to compare?



9.10.3 Discussion

e Although thetheoreticaldevelopment of prices for reactive power is
straightforward, a difficulty with setting up a market foaative power is
that reactive power does not “travel” far, so that there aress issues of
geographical market power.

e Furthermore, although real power reserves are typicadly \aluable than
energy, reactive reserves may be more valuable than sstatreactive
power:

— S0 contingency constraints should be explicitly represgnt

e NoO existing markets directly price reactive power using fiarebased
economic dispatch formulation with AC power flow.



9.11 Loss prices
9.11.1 Offer-based economic dispatch formulation
e Again recall the AC formulation:

MR R

Np
min < Z f(Py)
k=1

XeRN

\
e In this case, we will simplify the optimal power flow formuilat by:

— omitting the reactive power flow equations,

— omitting other ancillary services,

— deleting the reactive power and voltage magnitude varsaioten the
decision vector, and

— fixing the voltage magnitude schedulevét .

/



Offer-based economic dispatch formulation, continued
e However, we will keep the non-linear real power flow equagierplicit

and our decision vector will be= g ] , to yield:
—p

s e—p . )
p([V(O)DPZ ,P<P<P,

Np D
min{ S (R
K=1 V({k) € K, pu ( [e_o%] ) < Pu

~
.

P,
v

\

e Let the minimizer be?* and®*,,.
e We assume that we can find Lagrange multiplierandpy” on the system
equality and inequality constraints:
— Lagrange multipliers will typically exist in practice, btltis is again not
generally true in the absence of additionahstraint qualifications, as
discussed in Sectioh.6.1



9.11.2 Pricing rule, angles explicit

e Note that the decision variable for generéaitas xx = [F].
e From Theoren8.3, we can write down the pricing rule:

EMP



9.11.3 Formulation to eliminate angles
9.11.3.1 Transformation

e \We consider a similar transformation of the equality caxiats to the one
we used when we eliminated the angles to formulate the DC pove
equations in SectioB.6.7and Exercis&.4.
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e Assumeo = 1, define the invertible matrig8/ = [0 |

(2] >
- (sn([3]) - 0)
o (e8] (3] o).

e Wherep g <[3@‘;D ,P_g, andD_g are the sub-vectors qn‘< [3@‘3]) P,

andD, respectively, with the price reference bus deleted.

] . and notice that:



Transformation, continued
e That is, the AC power flow is equivalent to satisfying:

1 p([e(‘@]) ~1'p = —1'D,
6_ _
o (3] - - o

9.11.3.2 Losses

1 p<[e(“;D ~1'P=-1'D,

e requires that generation equal demand plus losses.
e Thatis, losses arg'p ( [8@‘3] )

e The equality:



9.11.3.3 Inverting the power flow equations

e What does power flow software calculate?

e GivenP_; andD_g, it calculates the correspondifig, (andv) that solve
the power flow equations.

e That s, it inverts the equations:

0_ _
P—o ( [V(og] ) —Ps=-D_g,

e to solve for the angl@_, as a function oP.

e That is, power flow software implicitly defines an inversedtion é_p to
p_g that satisfies:

8,(P ~
VP g, P ( [ F\)/((o)_o)] ) —Po=-D.

¢ In other words, we can us?ﬁp to substitute for angles according to:

65 =0,(Pyg).



9.11.3.4 Loss function
e Recall the exact loss functidn: R" — R defined in Sectio3.11.2by:

vxe R L(x) = 1"p(x).

e As in Section3.11.3 we define a related functidn: R"~1 — R, which
evaluates losses in terms of injections:

VP e R™ L I(Pg)=1"p ( les/((g)){)] ) |



9.11.3.5 Power balance with losses
e Define the functiorg  R"™ — R by:

WPER™,§(P) = 1'p ( leff(g“)]) _1'P+1'D,

= [(Po)—1"P+1'D.

e If we requireg{P) = 0 then we require that total generation equals total
demand plus losses.

e Note that:
9§ i —1, if kis the price reference bus,
—H<( )= a—FI;k( ;) —1, if kis not the price reference bus.



9.11.3.6 Line flows
e Similarly, define the functio and vectoth by:

- 8,(P =
VP € R™,V(¢K) € K, hyy (P) = pu ([ F\’/((ofj )D Doy = Pa:
e Then if we require thah(P) < h, we have have satisfied the system
inequality constraints.

e Note that the partial derivatives bfare theincremental shift factors,
meaning the sensitivity of flows on lines to net injectionbuades.



9.11.3.7 Formulation
e We can formulate the offer-based economic dispatch problem

min { nzp fi(P) |a(P) = 0,h(P) <h,P<P < P} :

e where the functiong andh are provided by power flow software.

e Let the minimizer bd>*.

e Let P*; be the sub-vector d?* with the entry for the price reference bus
deleted. .

e As previously, we assume that we can find Lagrange multgheand i
on the system equality and inequality constraints:



9.11.4 Pricing rule, angles eliminated
e From Theoren8.3, we can write down the pricing rule for generakor

LA [Sgkm*)rx* [ggk( )ru,

A%, if k is the price
reference bus,

A 1 e r .
oL c. |0h x| ~x If kisnotthe price
\ (1_ Pk(PjG)))‘ B [aPk(P )] I, reference bus,




Pricing rule, angles eliminated, continued

e As previously, these prices must match the correspondicg$pfrom the
formulation with angles explicitly represented, so that:

~

( A%, if k is the price reference bus,
A =
= 10 oy Ve [90 by " if kis not the price
\ aﬂ( 0H<( K reference bus,

e The LMP at bu, A}, is equal to:

the LMP at the price reference bus,

minus the loss penalty for the effect on marginal losses,

minus a weighted sum of the Lagrange multipliers on the lio fimit
constraints.

e The weights are the incremental shift factors to the coimga

— in the DC power flow approximation, the weights were the D@t shi
factors.



Pricing rule, angles eliminated, continued

e Generalizing the case without losses, the LMP atkissoften described
as being the sum of:

— an energy price component (thatié)

oL . 2,
BPk(P_(,))\ ), and
oh

+
— a congestion price component (thatB[aPk(P*)] ).

— a loss price component (that is

e Again note that the LMP at the price reference bus, the martpsses,
and the Lagrange multipliers on the line flow limit consttaiwill each
depend on the location of the price reference bus.

e However, the LMP at each bus is independent of the choiceeof th
location of the price reference bus.



9.11.5 Evaluation of LMP in practice
e In practice, approximations may be used:

— the incremental shift facto;gl% may be approximated by the DC shift
factors, and/or )
— terms in the marginal loss express%; may be approximated.

e In practice, these approximations include either or both of
— approximating the functional form by linearizing the povlexv
equations, or
— evaluating the partial derivatives at a point other tRan

e In either case, this can make the resultavgluationof the LMP
dependent on the choice of angle or price reference bus:

— because thapproximationdepends on the choice of angle or price
reference bus.

e If the approximation involves using DC shift factors instexd
incremental shift factors, then this will generally oveatimate the
contribution to losses of remote generators as discuss@€dation3.11.6



9.11.6 Example

e \We modify the one-line two-bus system from Sect®ato include
losses as in Sectidh11.4

e Busp = 1 is the angle reference bus, so the unknown andle.is

e Buso = 2 is the slack/price reference bus.

e There are generators at both buses 1 and 2.

e There isD» MW of demand at bus 2.

e The offers are specified by:

VP € [0,200,0f1(P1) = $25/MWh
VP € [0,50], Of2(P,) = $35/MWh

1 —®
D12 = D, MW

100—- 1000/ -1 demand
100 MW

Fig. 9.7. One-line two-
bus network.



9.11.6.1 Admittance matrix
e \We modify the line admittance to include losses:
212 =100— 1000/ —1.

e The example is similar to that in Secti@rl1.4
e The bus admittance matrix is:

%2 —9%2| [ 100-1000/—1 —100+1000/—1
—%2 912 —100+1000/—1 100—1000,/—1|’

(G11+B11v—1 Gio+ 312\/1]
| G21+Bo1v—1 Go2+Bo2v—1]°

e We assume that the voltage magnitudes are maintained eqoiaétper
unit, so thav(® = 1= [1] .

1



9.11.6.2 Capacity constraint

e We also assume that the thermal capacity constraints aressqa in
terms of maximunturrentmagnitude:

— for voltages equal to one per unit, the previous 100 MW cauirstr
becomes a 100 per unit current constraint,
— there is a constraint on flow at each end of the line.

e Since we have ignored shunt elements, the current is the ainoth
ends of the line:

— we can consider current at either end of the line (or at angtfmwi the
line.)



Capacity constraint, continued
e The currenty flowing from bus 1 into the line is:

l1 = A1iVi+ A1\,

whereA is the bus admittance matrix,
andV is the voltage phasor at bks=1, 2,

= (100— 1000V —1)(V1—Vo).
132 = |100—1000V/=1|° V1 — Vo [?,
= [(100)2+ (1000?] |v1 — v2(cog8,) + sin(82)v—1)|*,
= [(100)2+ (10002] |1 (cog8,) + sin(8,)v/—1)|*,
since the voltage magnitudes are one per unit,
— [(100)%+(10002][(1— cog82)) + (sin(82))?,
= [(100)%2+ (1000?][2— 2o 6,)]
e If we require the magnitude of the current to be less than &0 this
requiresd; > —0.0995= 6, radian:
— very close to the limit of-0.1 radian we found in the lossless case.



9.11.6.3 Power flow at capacity
e Using the expressions for real power injection, we obtain:

pl(ez) = —100 CO$92) — 1000 Sir(ez) + 100,

p1(8;) = —100co%H,) —1000sir6,) + 100
= 9987,

pz(ez) = —100 C0$92) + 1000 Sir(ez) + 100,

P2(8,) = —100co0$8,)+ 1000sir(6,) + 100,
= —08.88.

e That is, when flow is at capacity, 99.87 MW is injected at busta the
line and 98.88 MW is delivered to bus 2.

e Note that losses ane (61) + p2(02), which are 0.99 MW when the line
flow is at capacity:

— Recall that in Sectio.11.4the quadratic approximation yielded losses
of 1MW for a flow of 100 MW.

e Injected power at bus 1 is less than 100 MW since some regmbiwver is
Injected into the line to maintain voltage equal to 1 per.unit



9.11.6.4 Dispatch and prices for varying demand
e If demand is less than or equal to 98.88 MW then only genefaier
dispatched to meet demand:
— the Lagrange multiplier on the line flow constrainp@zg =0.

— LMP at bus 1 is\] = $25/MWh, reflecting offer at bus 1,

— generation at bus 1 is slightly more than demand,

— LMP at bus 2 is slightly more than $25/MWh, reflecting margina
impact of losses to transmit from bus 1 to bus 2:

A5 = A%
aL )
(25 0)
oL .
> S|nce0<aP1(P) < 1.



Dispatch and prices for varying demand, continued
¢ If demand is greater than 98.88 MW then both generator 1 anergtor
2 are dispatched:
— the Lagrange multiplier on the line flow constrainp@zg > 0.

— LMP at bus 1 is\] = $25/MWh, reflecting offer at bus 1,

— generation at bus 1 is 99.87 MW,

— LMP at bus 2 is\; = $35/MWh, reflecting offer at bus 2,

— generation at bus 2 {®, —98.88 MW),

— losses are 0.99 MW.

— Difference between LMPs at ends of line due to both losses and
congestion:

~ ~ T
* aL * ah(lz) * A%

. :
aL * ah %9
= A3— lap (PDAZ+ [apilz)(P*)] U(12)],




9.11.7 Surplus

e Recall from Sectior3.11that losses can be approximated by a convex
quadratic function of injections, so thgis convex.

e Similarly, thermal line flow limit constraints ih are convex for small
enough angle differences across the lines.

e From the pricing and uplift Theore®3for convex non-linear system
constraints there will be a surplus.

e That is, assuming thermal constraints are the only bindomgiraints,
pricing that includes the marginal losses will generaterplss for the
ISO:

— pricing based on marginal losses will more than cover theafos
production of the lost energy, and
— surplus can, in principle, be disbursed back to market@pénts.



9.12 Decomposition approaches
9.12.1 Inverting the power flow equations

e In general, we cannot explicitly invert the power flow eqoas to
analytically determine the functiomsandh.

e As in the discussion of losses, however, for a given choiggeakrations
we can use power flow software to calculate:

— the power flows,

— the sensitivity of power flows to generation,
— the losses, and

— the sensitivity of losses to generation.

e We can also solveontingency power flowsfor each contingency to
evaluate, for given pre-contingency generations:

— the contingency power flows, and
— the sensitivity of the contingency power flows to generation



9.12.2 Successively linearizing constraints

e Using the power flows and sensitivities, we can approxintaddsses
with a first-order Taylor approximation about the given cleoof
generations.

e Using the power flows and sensitivities, we can also apprateéneach
pre-contingency line flow constraint and each post-coetnoy line flow
constraint by its first-order Taylor approximation abowt gwven choice
of generations.

e We can also linearize other types of constraints in addibbareal power
flow constraints:

— constraints on complex power flow,

— current limits,

— voltage and reactive power constraints, and
— transient and dynamic stability constraints.

e We can solve the offer-based optimal power flow by iteratiatpeen
solving power flow and optimizing the linearized approximat

e \We successively re-linearize the power flow solution at esdition of
the optimized linear approximation.



Linearizing constraints, continued

¢ \oltage and reactive power constraints require solutioA@fpower flow
including reactive power:

Linearizing voltage constraints in terms of real powergseh proxy
thermal limit for the voltage constraints.

Since the voltage to real power relationship is highly noedr, the
linearization will change significantly from iteration ti@ration.

This is particularly true for voltage-related contingemonstraints.

Moreover, voltage constraints may define a non-convex liéaset.

e Recent work on OPF using a rectangular representation tfgel
phasors may allow for more effective modeling of such camsts.
e Transient and dynamic stability constraints require sotubf transient

behavior.



9.12.3 lterative re-linearization

() Setinitial list of indices of binding constraint8y, to be empty.

(i) Set initial linearization of losses to zero.

(i) Solve offer-based optimal power flow for generatiogs/en current
loss linearization and current set of linearized constsaas
specified by indices iiV.

(iv) Solve power flow and contingency power flows given getiens
from solution to stefiii) .

(v) Update linearization of losses.

(vi) For each binding or violated pre- or post-contingenoystraint
(and possibly also some constraints that are close to lonitsve
been binding at previous iterations):

e form the first-order Taylor approximation to the constraartd
e include the index of the constraint 1.

(vii) If there are violated constraints or the change from pinevious
solution of offer-based economic dispatch is too large theto
step(iii) .

(viii) Otherwise, end.



lterative re-linearization, continued

e This decomposition can be used even in the case of DC poweidlow
avoid explicitly representing all the line flow constraim#o the
offer-based optimal power flow calculation.

¢ In areal-time market, linearization of the line flow consita can be
based on the results sfate estimation



9.13 Summary

e In this chapter we have considered transmission consiraint

e We formulated the optimal power flow problem and considered
offer-based optimal power flow.

e We applied the previously derived pricing rule to obtain ltheational
marginal prices.

e \We considered properties of the locational marginal prices

e We discussed several other topics, including congestiat) peices with
AC power flow, losses, and decomposition techniques.
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Homework exercises

9.1 Consider the example one-line two-bus system as shown uré®¥gy8 that
was first introduced in Sectioh5. Buso = 1 is the slack/price reference bus
and bug = 2 is the angle reference bus, so the unknown ande. i€This is the

opposite choice to the development in Sec®dn) There are generators at both
buses 1 and 2 with offers again specified by:

VP, € [0,200,0f(P,) = $25/MWh
VP, € [0, 50], sz(Pz) = $35/MWh
Find the LMPs for the following values of demabdg:
(i) Dp = 90MW.

(i) D, = 100MW. (Specify the range of LMPs for bus 2.)
(iii) D, = 125MW.

1 2
@ Fig. 9.8. One-line two-
> bus network for exer-
0+0.001,/-1

Demand cise.
100 MW D,



9.2 Consider the example four-line four-bus system from Sedié and
illustrated in Figure.9. Buso = 0 is the slack/price reference bus. Bus 0 is

01
the angle reference bus, so the unknown angle8.are [62] . Demand is at
O3
bus 0.
0+0.001/—-1
3000 MW
0+0.001/-1 | 0+0.002/-1
3000 MW 300 MW
0+0.001/-1
3000 MW _ _
< 3 Fig. 9.9. Four-line
@ four-bus network for
Do homework exercise.



Use GAMS, PowerWorld, the excel solver, or thesM AB optimization toolbox
to solve the following variations on the example in Sec®o® Continue to the
use the DC power flow approximation, with angles eliminatéat. each case,
specify the dispatch and the LMPs. You should obtain the &agg multipliers
from the optimization software in order to facilitate yo@lculations.

() The generation offers are the same as in the example:

VP, € [0,1500, 0f(P,) = $40/MWh
VPZE[O,looq,sz(Pz) = $20/MWh,
VP, € [0,1500, Of3(Ps) = $50/MWh

However, the demand changedlg= 1500MW. Note that there is a
range of values of LMPs. Specify any valid set of LMPs.



(ii) The demand is the same as in the example, sogat 3000MW.
However, the generation offer capacity of generator 3 caaifiggm 1500
MW to 1200 MW. That is, the offers are now:

VP, € [0,1500, 0f1(P,) = $40/MWh
VP, € [O, 100q, sz(Pz) = $20/MWh,
VP; € [0,1200, Of3(P;) = $50/MWh
(i) The generation offers are the same as in the example:
VP, € [0,1500, Of1(P,) = $40/MWh
VP, € [O, 100q, sz(Pz) = $20/MWh,
VP; € [0,1500, Of3(P;) = $50/MWh
The demand is the same as in the example, sdahat 3000MW.

However, the transmission capacity of the line from bus 2i® b
changes fronp,,; = 3000MW top(,;) = 600MW.



9.3 We again consider the modified one-line two-bus system frenti@9.5
that includes losses, as shown in Fig@rg0 Busp = 1 is the angle reference
bus, so the unknown anglefls. The power flow injections are:

p1(62) = —-100 C0$62) — 1000 Slr(ez) + 100
p2(62) = —100co0%6)+ 1000sir{8,) + 100,

Adding and subtracting these equations, we obtain:

pl(ez) + p2(92) = 200-—200 CO$62),

P2(02) — p1(82) P1(62) + P2(82) — 2pa(82),
— 2000sir(8,).

1 “®
100 MW D, MW

demand Fig. 9.10. One-line
two-bus network.




Noting that the injection at bus 1 & = p;(62) and that the losses are
L(02) = p1(02) + p2(62), we obtain:

L(8,) = 200—200c0$8;),
L(Gz)—ZPl = 20003"{92)

We now suppose that there is a functionR — R that expresses losses in terms
of P,. The equations become:

~

L(P) = 200-200c0%6,),
L(P)—2P, = 2000sir{6,).

() Eliminate6, from the last two equations. A
(i) Use the “quadratic equation” to express the lods@y) as a function of
P:. (There are two solutions. Which operating condition woydd
prefer: the lower or the higher losses? Use that one.)
(i) Graph the losses& versusP;.



(iv) Differentiate the expression for lossesvith respect tdP;.

(v) Find the LMPs and dispatch when deman®js= 98.88MW, so that the
line is just at limit.

(vi) Bonus question: perform several iterations of theatiee linearization
algorithm described in Sectidh12.3to solve for the LMPs and dispatch
for the three cases of demand:

(a) 52 = 90MW,
(b) D, = 100MW, and
(c) D, = 110MW.



9.4 Use PowerWorld to open the 13 bus system that you downloamted f
Exercise 7.1. Select the “Tools” menu and then start thetisollpy clicking on
the “Play” button. Then select the “Add Ons” menu and clickBrnimal LP.”
The system has been set up so that PowerWorld then solvediarabpower
flow with all pre-contingency flow limits enforced. In the lmlving parts, each
time you modify the system, you need to click on “Primal LP’t¢éesolve for the
optimal power flow.

(i) Click on each generator in turn to obtain the minimum arakimum

production capacity for each generator.
(i) What line is at capacity for the initial configuration mfad? How many

marginal generators are there?
(i) Remove the load at bus J by clicking on the associatezuibreaker.
Re-solve. What lines are at capacity? How many marginal rgéors are

there?
(iv) Now return the load at bus J to service and remove thejdiméng bus B

to A. Re-solve. What lines are at capacity? How many marginal
generators are there?



9.5Using the DC power flow approximation to linearize the relaship
between the real power flows on the lines and the angles, u$4S=k the
MATLAB functionquadpr og to solve the DC optimal power flow that
minimizes the cost of production of the generators subgetihéarized
constraints on the line flows. The system has three busess hu2, and 3, and
three lines, with ther-equivalent line models specified as follows:

e shunt elements purely capacitive with admittand®.( —1 so that the
combined shunt elements at each bus are:

Y =% =9%=0.02/—1,

and
e series elements having admittances:

%, = (0.01+0.1v/—1) ",
Y3 = (0.015+0.15/—1) ",
Y = (0.02+0.2v/-1) .

Furthermore, assume the following.
e There are generators at bus 1 and bus 2 and a real power loat btid
3.



¢ All lines have real power flow limits of 0.75 in each directj@xcept for
the line joining buses 2 and 3, which has real power flow limit8.5 in
each direction. That is, there are six transmission congsran total.

¢ All voltage magnitudes are set to 1.0 per unit so thed&n be ignored in
the formulation.

e Zero cost for reactive power production and no constraintseactive
power production nor on reactive power flow so tQatan be ignored in
the formulation.

e Costs for real power production at the generators:

$
f(P) = P x1 4+ (P)?x 01—
1(Py) . per unit (Pr) (per unil)2
fz(Pz) = P2><1.1 $ ; —I—(P) XOO5L
per unit (per uni?

whereP is the real power production at generaltot 1,2, with
0 < P < 1 for each generator.

e No other constraints on production.
e Reference bus at bys= 1 and slack bus at bus= 3.



Use the formulation with explicit representation of angldse as initial guess
P_(g) =0 ande(_ci) =0.
() Specify the decision vector, omitting any known conssan

(i) Derive the linearized form of the power flow equality cbraints.

(iii) Derive the linearized form of the power flow inequalitpnstraints.

(iv) Specify the bound (or box) constraints.

(v) Use GAMS or MATLAB to solve the problem and report the solution of

the DC optimal power flow.

9.6 Re-solve the optimal power flow problem in Exerc#8 using the angles
eliminated formulation. Use as initial guelég) =0.

9.7 Use Theoren8.2from Section3.12.7to prove Theorend.2in
Section9.8.4
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