Solving Mixed-Integer Linear
Programs with MATLAB

Bowen Hua
Department of Electrical and Computer Engineering
The University of Texas at Austin
November 2018

Outline

* Install MATLAB and YALMIP
* Example problem
* Example unit commitment problem

Outline

* Install MATLAB and YALMIP
* Example problem
* Example unit commitment problem

Install MATLAB and YALMIP

e Cockrell School provides licenses for MATLAB.
e http://www.engr.utexas.edu/itg/products/8017-matlab
* Remember to install the optimization toolbox.

e Download YALMIP and install it.

https://yalmip.github.io/download/

https://yalmip.github.io/tutorial/installation/
Unzip the downloaded file into a folder ~/YALMIP-master.
Add the folder with all its subfolders to your MATLAB path

e See next slide for detailed instructions

http://www.engr.utexas.edu/itg/products/8017-matlab
https://yalmip.github.io/download/
https://yalmip.github.io/tutorial/installation/

Add YALMIP to MATLAB Path

e Click “Set Path” on the MATLAB toolbar

@ @ MATLAB R2018a - academic use
P
HOME PLOTS APPS
= [= E: ::I - . [.= New Variable » .~ Analyze Code mr
L= L+ 4[] Find Files &l H E_‘q} 3 |_\r’ {0} Preferences
~ (1> Open Variable ¥ _ (L_:f Run and Time -
New New New Open /i=| Compare Import Save Favorites ~ Layout[lf__}“l Set Path]
Script Live Script * - Data Workspace 'r‘_*,J Clear Workspace A - Clear Commands ¥ -
FILE VARIABLE CODE ENVIRONMENT

e Click “Add with Subfolders”

e Add the above-mentioned folder
* Run yalmiptest in MATLAB to test the installation

What is YALMIP?

* YALMIP is a modeling environment for
optimization problem:s.

* It allows a user to describe an optimization
problem by writing algebraic equations.

* It then translate the optimization problem
into a form that is recognizable by a solver.

 The solver then finds the solution to the
problem.

User

o

] |

| |
Modeling env.
YALMIP, AMPL

I |

Solver
Gurobi, CPLEX

Outline

* Install MATLAB and YALMIP
* Example problem
* Example unit commitment problem

Describe the problem with YALMIP

* Declare variables

* Define constraints

e Define the objective function
* Solve

Example Problem

* Problem (4.45) in Section 4.8.3 on page 143 of Section 4.
* Mathematical formulation of the problem:

min {4z+4+x|—x=-3,0<2z<1,2z<x <4z},
zeZxeR

Declare variables

e Code: e binvar (1, 1) defines a binary
z = binvar(1l,1); variable.
x = sdpvar (1,1); e sdpvar (1, 1) defines a

continuous variable.

Define constraints

e Put all constraints in a list:
constr = [-x == -3];
constr = [constr, 2*z <= x <=4 * z];

* Double-sided inequality constraints are supported.

Define objective function

Objective = 4*z + x;

Solve

options = sdpsettings ('verbose',1, 'solver', "INTLINPROG'") ;
sol = optimize (constr,Objective,options);
* We use the built-in mixed-integer linear program solve of MATLAB, intlinprog.

* To see the optimal objective function value, we can use:
* value (Objective)

* To see the optimal value of the decision variables, we can use:
* value (x)
* value (z)

Outline

* Install MATLAB and YALMIP
* Example problem
* Example unit commitment problem

Example unit
commitment problem

* Unit Commitment Example in
Section 10.8.1 on page 126 of
Section 10.

* Mathematical formulation of
the problem:

min
(THG W o

2
) 1000(uy; + uat) + 25Py¢ + 35P
t=1

s.t. 0< Py <100z, Vit
0 S Pgt § 5022t, Vi
uyp = 211 — 1
U2 = 221 — <211
U21 = 221
U292 = 222 — 221
P11 + P21 =110
P + Py = 125
21t € {0, 1}, Vit
2ot € {0, 1}, YVt
Ut € {O, 1}, Vi
Ut € {O, 1}, Vit

Declare variables

e Code: e binvar (2, 1) defines a 2-
z1 = binvar(2,1); column-vector of binary
z2 = binvar(2,1); variables.
ul = binvar(2,1); * sdpvar (2, 1) defines a 2-
uz = binvar(Z,1); column-vector of continuous
Pl = sdpvar(2,1); variables.
P2 = sdpvar(2,1);

ez1, ul, P1 arevariables for
generator 1.

Define constraints

* Bounds for power outputs. These constraints are defined in vector form:
private constr = [0 <= Pl <= 100 * z1];
private constr = [private constr, 0 <= P2 <= 50 * zl1l];

* Logical constraints between startup and on/off variables:

private constr = [private constr, ul(l) == z1(1) - 1];
private constr = [private constr, ul(2) == z1(2) - z1(1)];
private constr = [private constr, u2(l) == z2(1)];

private constr = [private constr, u2(2) == z2(2) - z2(1)];

* Power balance constraints:
power balance = [P1(1l) + P2(1l) == 110];
power balance = [power balance, P1(2) + P2(2) == 125];

Define objective function

Objective = 1000 * (sum(ul) + sum(u2)) + 25 * sum(Pl) + 35 * sum(P2);

Solve

options = sdpsettings ('verbose',1, 'solver', "INTLINPROG'") ;
sol = optimize ([private constr, power balance],Objective,options);

* To see the optimal objective function value, we can use:
* value (Objective)

* To see the optimal value of the decision variables, we can use:
* value (P1)

