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Optimization

(i) Basic definitions,
(ii) Duality,
(iii) Continuous unconstrained problems,
(iv) Continuous equality-constrained problems,
(v) Continuous linear inequality-constrained problems,

(vi) Continuous non-linear inequality-constrained problems,
(vii) Integer problems,
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(viii) Mixed-integer problems,
(ix) Uncertainty,
(x) Homework exercises.
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4.1 Basic definitions
4.1.1 Decision vector

• As with solution of simultaneous equations, the optimization problems
we consider will involve choices of a value of adecision vector.

• We will usually denote the decision vector byx, y, or z.
• It will be chosen fromRn or from some subsetS of Rn.
• As previously, entries of the decision vector will be indexed by subscripts.
• Example:

– the choice of dispatch for generatork is xk, while
– the choices of dispatch for all generators isx.
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4.1.2 Objective
• Consider a functionf : Rn → R that denominates the “cost” or lack of

desirability of solutions for a particular model or system.
• That is, f (x) is the cost of usingx as the solution.
• The function is called anobjective function.
• Examples:

– the operating cost of a generator, and
– the sum of the operating costs of all generators in a system.
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4.1.2.1 Example
• An example of aquadratic function f : R2 → R is given by:

∀x∈ R
2, f (x) = (x1)

2+(x2)
2+2x2−3. (4.1)
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Fig. 4.1. Graph of the
example objective func-
tion defined in (4.1).
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4.1.2.2 Discussion
• We can categorize objectives according to the highest powerof any entry

in the argument.
• We will categorize objectives in a different way in Section4.1.13once we

have discussed optimization in more detail.
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4.1.3 Feasible set
• Our problems will typically involve restrictions on the choices of values

of x.
• We can imagine afeasible setS⊆ Rn from which we must select a

solution.
• Examples:

– the set representing the allowable range of operating conditions of a
generator, and

– the set representing the allowable range of operating conditions for all
the generators in a system.
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4.1.4 Problem
• A minimization problem means to find the minimum value off (x) over

choices ofx that lie in the feasible setS.

Definition 4.1 Let S⊆ R
n, f : S→ R, and f ⋆ ∈ R. Then by:

f ⋆ = min
x∈S

f (x), (4.2)

we mean that:

∃x⋆ ∈ S such that:( f ⋆ = f (x⋆)) and((x∈ S)⇒ ( f (x⋆)≤ f (x))). (4.3)

✷

• We say thatf ⋆ is the minimum off (x) over values ofx in the setS or that
f ⋆ is the minimum off (x) such thatx∈ S.

• Example:
– find the choices of dispatchx for all generators that minimizes the sum

of the operating costs and such that the dispatch meets demand and is
within the allowable operating conditions for all generators.
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4.1.5 Set of minimizers
• The set ofall the minimizers of minx∈S f (x) is denoted by:

argmin
x∈S

f (x).

• If the problem has no minimum (and, therefore, no minimizers) then we
define:

argmin
x∈S

f (x) = /0,

• where/0 is the empty set.
• To emphasize the role ofS, we also use the following notations:

min
x∈Rn

{ f (x)|x∈ S} and argmin
x∈Rn

{ f (x)|x∈ S}.

• We will often use a more explicit notation ifS is defined as the set of
points satisfying a criterion.

• For example, iff : Rn → R, g : Rn → Rm, h : Rn → Rr , and
S= {x∈ Rn|g(x) = 0,h(x)≤ 0} then we will write
minx∈Rn{ f (x)|g(x) = 0,h(x)≤ 0} for minx∈S f (x).
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4.1.6 Lower bound

Definition 4.2 Let S⊆ Rn, f : S→ R, and f ∈ R. If f satisfies:

∀x∈ S, f ≤ f (x),

then we say thatf is a lower bound for the problem minx∈S f (x) or that the
problem minx∈S f (x) is bounded belowby f . If S 6= /0 but no suchf exists,
then we say that the problem minx∈S f (x) is unbounded below(or
unbounded if the “below” is clear from context.)✷

• Considerf : R2 → R defined in (4.1), which we repeat here:

∀x∈ R
2, f (x) = (x1)

2+(x2)
2+2x2−3.

• This function is illustrated in Figure4.1.
• For the feasible setS= R2, the valuef =−10 is a lower bound for the

problem minx∈S f (x), as shown in Figure4.1.
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4.1.7 Level and contour sets

Definition 4.3 Let S⊆ Rn, f : S→ R, and f̃ ∈ R. Then thelevel setat
value f̃ of the functionf is the set:

L f ( f̃ ) = {x∈ S| f (x)≤ f̃}.

Thecontour setat value f̃ of the functionf is the set:

C f ( f̃ ) = {x∈ S| f (x) = f̃}.

✷

• Contour and level sets are useful for visualizing functions.
• If f : R3 → R, how many dimensions are needed to graphf ? How many

are needed to show the contour set?
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4.1.7.1 Example
• Consider the functionf : R2 → R defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2. (4.4)
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Fig. 4.2. Graph of
function defined
in (4.4).
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4.1.7.2 Contour set for example
• The contour setsC f ( f̃ ) can be shown in a two-dimensional

representation.
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Fig. 4.3. Contour sets
C f ( f̃ ) of the function
defined in (4.4) for
values f̃ = 0,2,4,6, . . ..
The heights of the con-
tours decrease towards

the point

[

1
3

]

, which is

illustrated with a• and
is the contour of height
0.
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4.1.8 Unconstrained optimization
• If the feasible set isS= Rn then the problem is said to beunconstrained.

4.1.8.1 Example
• For example, consider the objectivef : R2 → R defined in (4.4):

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2.

• From Figure4.3, which shows the contour sets off , we can see that:

min
x∈R2

f (x) = f ⋆ = 0,

argmin
x∈R2

f (x) =

{[

1
3

]}

,

• so that there is a minimumf ⋆ = 0 and a unique minimizerx⋆ =

[

1
3

]

of

this problem.
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4.1.9 Equality-constrained optimization
• If g : Rn → Rm and the feasible set isS= {x∈ Rn|g(x) = 0} then the

problem is said to beequality-constrained.
• The power flow equations in Section3.2.8is an example of equality

constraints.

4.1.9.1 Sub-types of equality-constrained optimization problems
Linearly constrained

• If g is affine then the problem is calledlinearly constrained.
• The DC power flow approximation to the power flow equations in

Section3.6 is an example of linear equality constraints.

Example

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

∀x∈ R
2,g(x) = x1−x2,

min
x∈R2

{ f (x)|g(x) = 0} = min
x∈R2

{ f (x)|x1−x2 = 0}. (4.5)
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Example, continued

• The unique minimizer of Problem (4.5) is x⋆ =

[

2
2

]

.
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Fig. 4.4. Contour sets
C f ( f̃ ) of function re-
peated from Figure4.3
with feasible set from
Problem (4.5) super-
imposed. The heights
of the contours de-
crease towards the point
[

1
3

]

. The minimizer

x⋆ =

[

2
2

]

is illustrated

with a•.
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Non-linearly constrained

• If there is no restriction ong then the problem is callednon-linearly
constrained.

• The AC power flow equations in Section3.2.8is an example of non-linear
equality constraints.

Example

• For example, consider the same objective as previously,f : R2 → R

defined in (4.4):

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2.

• However, letg : R2 → R be defined by:

∀x∈ R
2,g(x) = (x1)

2+(x2)
2+2x2−3.

• Consider the equality-constrained problem:

min
x∈R2

{ f (x)|g(x) = 0}. (4.6)
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Example, continued

• The unique minimizer of Problem (4.6) is x⋆ ≈

[

0.5
0.9

]

.
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Fig. 4.5. Contour sets
C f ( f̃ ) of function repeated
from Figure4.3 with feasi-
ble set from Problem (4.6)
superimposed. The heights
of the contours decrease

towards the point

[

1
3

]

. The

minimizer x⋆ is illustrated
as a•.
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4.1.10 Inequality-constrained optimization
• If g : Rn → Rm, h : Rn → Rr , and the feasible set is
S= {x∈ Rn|g(x) = 0,h(x)≤ 0} then the problem is said to be
inequality-constrained.

• The line flow constraints in Section3.7.2is an example of inequality
constraints.

4.1.10.1 Sub-types of inequality-constrained optimization problems
Linear inequality constraints

• If h is affine then the problem islinear inequality-constrained.
• The DC power flow approximation to line flow constraints in

Section3.7.3is an example of linear inequality constraints.
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Linear program

• If the objective is linear andg andh are affine then the problem is called a
linear program or a linear optimization problem .

• Minimizing a linear objective over:
– linearized power balance constraints (3.17), and
– linearized line flow constraints (3.18),
is an example of a linear optimization problem.

Example

∀x∈ R
2, f (x) = x1−x2,

∀x∈ R
2,g(x) = x1+x2−1,

∀x∈ R
2,h(x) =

[

−x1
−x2

]

,

min
x∈R2

{ f (x)|g(x)=0,h(x)≤ 0}= min
x∈R2

{x1−x2|x1+x2−1=0,x1≥ 0,x2≥0}.

(4.7)
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Example, continued
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Fig. 4.6. Contour sets
C f ( f̃ ) of objective func-
tion and feasible set for
Problem (4.7). The contour
sets are the parallel lines.
The feasible set is shown
as the line joining the two

points

[

1
0

]

and

[

0
1

]

. The

heights of the contours
decrease to the left and up.

The minimizerx⋆ =

[

0
1

]

is

illustrated as a•.
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Linear program, continued

• We often emphasize the linear and affine functions by writing:

min
x∈R2

{c†x|Ax= b,Cx≤ d},

• wherec∈ R
n, A∈ R

m×n, b∈ R
m, C∈ R

r×n, andd ∈ R
r and wherec† is

thetransposeof c.
• For Problem (4.7), the appropriate vectors and matrices are:

c=

[

1
−1

]

,A= [1 1] ,b= [1],C=

[

−1 0
0 −1

]

,d =

[

0
0

]

.

• We can write this non-negatively constrained problem even more
concisely as:

min
x∈R2

{c†x|Ax= b,x≥ 0}. (4.8)
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Linear program, continued

• There is a rich body of literature on linear programming and there are
special purpose algorithms to solve linear programming problems.

• The best known are:
– thesimplex algorithm (and variants), and
– interior point algorithms .

• The reliability and capabilities of commercial linear programming
packages are two of several reasons why linearized approximations to the
the power flow equality and inequality constraints are typically used in
practice in implementation of electricity markets as optimization
problems.
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Quadratic program

• If f is quadratic andg andh are affine then the problem is called a
quadratic program or aquadratic optimization problem .

Example

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

∀x∈ R
2,g(x) = x1−x2,

∀x∈ R
2,h(x) = 3−x2. (4.9)
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Example, continued
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Fig. 4.7. Contour sets
C f ( f̃ ) of objective function
and feasible set for Prob-
lem (4.10). The heights
of the contours decrease

towards the point

[

1
3

]

. The

feasible set is the “half-line”

starting at the point

[

3
3

]

.

The minimizerx⋆ =

[

3
3

]

is

illustrated with a•.
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Example, continued

min
x∈R2

{ f (x)|g(x) = 0,h(x)≤ 0} = 4, (4.10)

argmin
x∈R2

{ f (x)|g(x) = 0,h(x)≤ 0} =

{[

3
3

]}

= {x⋆}.

Quadratic program, continued

• We can emphasize the quadratic and linear functions by writing:

min
x∈R2

{

1
2

x†Qx+c†x|Ax= b,Cx≤ d

}

,

• where we have omitted the constant term in the objective.
• For Problem (4.10), the appropriate vectors and matrices are:

Q=

[

2 0
0 2

]

,c=

[

−2
−6

]

,A= [1 −1] ,b= [0],C= [0 −1] ,d = [−3].
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Non-linear program

• If there are no restrictions onf , g, andh, then the problem is called a
non-linear program or anon-linear optimization problem.

• This format can represent AC optimal power flow, which we will
formulate in Section9.1.

Example
min
x∈R3

{ f (x)|g(x) = 0,h(x)≤ 0}, (4.11)

• where f : R3 → R, g : R3 → R2, andh : R3 → R are defined by:

∀x∈ R
3, f (x) = (x1)

2+2(x2)
2,

∀x∈ R
3,g(x) =

[

2−x2−sin(x3)
−x1+sin(x3)

]

,

∀x∈ R
3,h(x) = sin(x3)−0.5.
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Convexity

• We will see in Section4.1.13that we can also classify problems on the
basis of the notion ofconvexity.

Piece-wise linearization

• Some electricity market formulations are most naturally expressed with a
non-linear (possibly quadratic) objective:
– may actually be solved through a piece-wise linearized approximation.

• See in Section5.6.
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4.1.10.2 Satisfaction of constraints

Definition 4.4 Let h : Rn → R
r . An inequality constrainthℓ(x)≤ 0 is called

abinding constraint or anactive constraintatx⋆ if hℓ(x⋆) = 0. It is called
non-binding or inactive atx⋆ if hℓ(x⋆)< 0. The set:

A(x⋆) = {ℓ ∈ {1, . . . , r}|hℓ(x
⋆) = 0}

is called theset of active constraintsor theactive setfor h(x)≤ 0 atx⋆. ✷
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Example

∀x∈ R
2,h(x) =

[

3−x2
x1+x2−10

]

.
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Fig. 4.8. Pointsx⋆,x⋆⋆,
and x⋆⋆⋆ that are fea-
sible with respect to
inequality constraints.
The feasible set is the
shaded triangular region
for which x2 ≥ 3 and
x1+x2 ≤ 10.
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Example, continued

x⋆ =

[

5
4

]

• The constraintsh1(x)≤ 0 andh2(x)≤ 0 are non-binding so that the
active set isA(x⋆) = /0.

• This point is in the interior of the set{x∈ R2|h(x)≤ 0}.

x⋆⋆ =

[

5
3

]

• The constrainth2(x)≤ 0 is non-binding while the constraint
h1(x)≤ 0 is binding so that the active set isA(x⋆⋆) = {1}.

• This point is on the boundary of the set{x∈ R2|h(x)≤ 0}.

x⋆⋆⋆ =

[

7
3

]

• The constraintsh1(x)≤ 0 andh2(x)≤ 0 are both binding so that the
active set isA(x⋆⋆⋆) = {1,2}.

• This point is on the boundary of the set{x∈ R2|h(x)≤ 0}.

Title Page ◭◭ ◮◮ ◭ ◮ 32 of 165 Go Back Full Screen Close Quit



Discussion

• The importance of the notion of binding constraints is that it is typical for
some but not all of the inequality constraints to be binding at the
optimum.
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4.1.11 Summary
• For small example problems, inspection of a carefully drawndiagram can

yield the minimum and minimizer.
• For larger problems where the dimension ofx increases significantly past

two, or the dimension ofg or h increases, the geometry becomes more
difficult to visualize and intuition becomes less reliable in predicting the
solution.

• For larger problems we will use special-purpose software tofind the
minimum and minimizer:
– the PowerWorld optimal power flow solver is an example of

special-purpose software that is particularly tailored topower systems
optimization problems.

• A demonstration version of PowerWorld can be obtained from

www.powerworld.com/download-purchase/demo-software .

• A tutorial on using PowerWorld is available at

www.ece.utexas.edu/ ˜ baldick/classes/394V/PowerWorld.pdf .
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4.1.12 Solutions of optimization problems
4.1.12.1 Local and global minima

• Recall Problem (4.2) and its minimumf ⋆:

f ⋆ = min
x∈S

f (x).

• Sometimes, we callf ⋆ in Problem (4.2) theglobal minimum of the
problem to emphasize that there is nox∈ S that has a smaller value of
f (x).

Definition 4.5 Let ‖•‖ be a norm onRn, S⊆ R
n, x⋆ ∈ S, and f : S→R. We

say thatx⋆ is a local minimizer of the problem minx∈S f (x) if:

∃ε > 0 such that∀x∈ S,(‖x−x⋆‖< ε)⇒ ( f (x⋆)≤ f (x)). (4.12)

The valuef ⋆ = f (x⋆) is called alocal minimum of the problem.✷

Title Page ◭◭ ◮◮ ◭ ◮ 35 of 165 Go Back Full Screen Close Quit



4.1.12.2 Convex sets

Definition 4.6 Let S⊆ R
n. We say thatS is aconvex setor thatS is

convexif ∀x,x′ ∈ S,∀t ∈ [0,1],(1− t)x+ tx′ ∈ S. ✷

• A line segment joining any two points in a convex setS is itself entirely
contained inS.
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Examples of convex sets

• A line segment is a convex set.

Fig. 4.9. Convex sets
with pairs of points
joined by line segments.
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Examples of non-convex sets

• The union of two non-overlapping line segments is non-convex.
• Non-convex sets can have “indentations.”

Fig. 4.10. Non-convex
sets.

Title Page ◭◭ ◮◮ ◭ ◮ 38 of 165 Go Back Full Screen Close Quit



4.1.12.3 Examples of local and global minimizers
Multiple local minimizers over a convex set

• f : R→ R has two local minimizers atx⋆ = 3,x⋆⋆ =−3 overS.
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local and global
minimum and minimizer

f ⋆

f ⋆⋆

local minimum
and minimizer

not a local minimum

f (x)

x⋆⋆ x⋆x̂

Fig. 4.11. Local min-
ima, f ⋆ and f ⋆⋆, with
corresponding local
minimizers x⋆ and x⋆⋆,
over a convex setS =
{x ∈ R| − 4 ≤ x ≤ 4}.
The point x⋆ is the
global minimizer and
f ⋆ the global minimum
overS.
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Multiple local minimizers over a non-convex set

• Over the non-convex setP= {x∈ R|−4≤ x≤ 1 or 2≤ x≤ 4} there are
three local minimizers,x⋆ = 3,x⋆⋆ =−3, andx⋆⋆⋆ = 1.
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x

local and global
minimum and minimizer

local minimum
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local minimum
and minimizer

x

f (x)

x⋆⋆ x⋆x⋆⋆⋆

f ⋆

f ⋆⋆

f ⋆⋆⋆

Fig. 4.12. Local and
global minima and min-
imizers of a problem
over a non-convex set
P = {x ∈ R| − 4 ≤ x ≤
1 or 2≤ x≤ 4}.
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Multiple local minimizers over a non-convex set in higher dimension

• The local minimizers arex⋆ ≈

[

2.4
−0.1

]

andx⋆⋆ ≈

[

0.8
−0.7

]

.
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Fig. 4.13. Contour sets
of the function defined
in (4.4) with feasible
set shaded. The two
local minimizers are in-
dicated by bullets. The
heights of the contours
decrease towards the

point

[

1
3

]

.
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4.1.12.4 Discussion
• Iterative improvement algorithms, as typically used in minimizing

problems defined in terms of continuous variables, involve generating a
sequence of successively “better” points that provide successively better
values of the objective or closer satisfaction of the constraints or both.

• With an iterative improvement algorithm, we can usually only guarantee,
at best, that we are moving towards a local minimum and minimizer.

• For the problem illustrated in Figure4.13, if an iterative improvement

algorithm were started at the pointx(0) =

[

1
−2

]

, what would you expect

as the result?
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4.1.13 Convex functions
4.1.13.1 Definitions

Definition 4.7 Let S⊆ Rn be a convex set and letf : S→ R. Then, f is a
convex functiononS if:

∀x,x′ ∈ S,∀t ∈ [0,1], f ([1− t]x+ tx′)≤ [1− t] f (x)+ t f (x′). (4.13)

If f : Rn → R is convex onRn then we say thatf is convex. A function
h : S→ Rr is convex onS if each of its componentshℓ is convex onS. If
h : Rn → R

r is convex onRn then we say thath is convex. The setS is
called thetest set.
Furthermore,f is astrictly convex function onS if:

∀x,x′ ∈ S,(x 6= x′)⇒
(

∀t ∈ (0,1), f ([1− t]x+ tx′)< [1− t] f (x)+ t f (x′)
)

.

If f : Rn → R is strictly convex onRn then we say thatf is strictly convex.
A function h : S→ Rr is strictly convex onS if each of its componentshℓ is
strictly convex onS. If h : Rn → Rr is strictly convex onRn then we say
thath is strictly convex.✷
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Definitions, continued
• The condition in (4.13) means that linear interpolation of convexf

between points on the curve is never below the function values.

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5
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x

f (x)

Fig. 4.14. Linear in-
terpolation of a convex
function between points
never under-estimates
the function. (For clar-
ity, the line interpolating
f between x = 0 and
x = 1 is drawn slightly
above the solid curve:
it should be coincident
with the solid curve.)
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Definitions, continued

Definition 4.8 Let S⊆ R
n be a convex set and letf : S→ R. We say thatf

is aconcave functiononS if (− f ) is a convex function onS. ✷

4.1.13.2 Examples
• A linear or affine function is convex and concave on any convexset.
• The functionf : R→ R shown in Figure4.11is not convex on the convex

setS= {x∈ R|−4≤ x≤ 4}.
• Qualitatively, convex functions are “bowl-shaped” and have level sets that

are convex sets.
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4.1.13.3 Relationship to optimization problems

Theorem 4.1LetS⊆ Rn be a convex set and f: S→ R. Then:
(i) If f is convex onS then it has at most one local minimum overS.

(ii) If f is convex onS and has a local minimum overS then the local
minimum is the global minimum.

(iii) If f is strictly convex onS then it has at most one minimizer over
S.

✷

Definition 4.9 If S⊆ Rn is a convex set andf : Rn → R is convex onS,
then minx∈S f (x) is called aconvex problem. ✷

• If:
– the functionf : Rn → R is convex,
– the functiong : Rn → Rm is affine, with∀x∈ Rn,g(x) = Ax−b, and
– the functionh : Rn → Rr is convex,

• then minx∈Rn{ f (x)|g(x) = 0,h(x)≤ 0} is a convex problem.
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4.1.13.4 Discussion
• Theorem4.1shows that a convex problem has at most one local

minimum.
• If we find a local minimum for a convex problem, it is in fact theglobal

minimum.
• Iterative improvement algorithms can find the global minimaof convex

problems.
• Non-convex problems are generally much more difficult to solve.
• We will consider this in more detail in the context of integerproblems and

will bear this in mind when we formulate electricity market problems as
optimization problems.
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4.1.13.5 Characterizing convex functions
First derivative

Theorem 4.2LetS⊆ Rn be a convex set and suppose that f: S→ R is
partially differentiable with continuous partial derivatives onS. Then f
is convex onS if and only if:

∀x,x′ ∈ S, f (x)≥ f (x′)+∇f (x′)†
(x−x′). (4.14)

✷

• Recall from Section2.5.2.1that the functionφ : Rn → R on the
right-hand side of (4.14) defined by:

∀x∈ R
n,φ(x) = f (x′)+∇f (x′)†(x−x′),

• is called thefirst-order Taylor approximation of the functionf ,
linearized aboutx′.

Title Page ◭◭ ◮◮ ◭ ◮ 48 of 165 Go Back Full Screen Close Quit



First-order Taylor expansion

• The inequality in (4.14) shows that the first-order Taylor approximation
of a convex function never over-estimates the function.
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10

x

f (x),φ(x)

Fig. 4.15. First order
Taylor approximation
about x = −2 (shown
dashed) and aboutx= 3
(shown dotted) of a
convex function (shown
solid).
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Second derivative

• There are also tests of convexity involving positive semi-definiteness of
the matrix of second derivatives, which is called theHessianand is
denoted∇2f or ∇2

xxf .

Theorem 4.3LetS⊆ Rn be convex and suppose that f: S→ R is twice
partially differentiable with continuous second partial derivatives onS.
Suppose that the second derivative∇2f is positive semi-definite
throughoutS. Then f is convex onS. If ∇2f is positive definite
throughoutS then f is strictly convex throughoutS. ✷

• Which of the following matrices are positive semi-definite?

0, I ,
[

1 1
1 1

]

= 11†,

[

1 −0.5
−0.5 1

]

,

[

1 0
0 −1

]

.

• Which of the following matrices are positive definite?

0, I ,
[

1 1
1 1

]

,

[

1 −0.5
−0.5 1

]

,

[

1 0
0 −1

]

.
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4.1.13.6 Quadratic functions

∀x∈ R
n, f (x) =

1
2

x†Qx+c†x, (4.15)

• whereQ∈ R
n×n andc∈ R

n are constants andQ is symmetric.
• The Hessian of this function isQ, which is constant and independent ofx.
• If Q is positive semi-definite then, by Theorem4.3, f is convex.
• If Q is positive definite then, by Theorem4.3, f is strictly convex.
• If Q= 0, so thatf is linear, what can you say about the convexity off ?
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4.2 Duality
• Taking thedual of a constrained problem is a process whereby a new

problem is defined where the role of the variables and the constraints is
either partially or completely exchanged.

• The constraints in the original problem are said to bedualized.
• For reasons that will become clear as we discuss optimality conditions,

duality has a close relationship with prices.
• Let f : Rn → R,g : Rn → R

m, andh : Rn → R
r .

• Consider the problem:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}. (4.16)

• We define two functions associated withf ,g, andh, called the
Lagrangian and thedual function:
– to define them, we will first need to consider generalizationsof the

notion of minimum and maximum.
• We then consider the relationship between these functions and

minimizing f .
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4.2.1 Generalization of maximum and minimum
4.2.1.1 Infimum

• To discuss problems that potentially do not have a minimum, we need a
more general definition.

Definition 4.10Let S⊆ Rn, f : S→ R. Then, infx∈S f (x), theinfimum of
the corresponding minimization problem, minx∈S f (x), is defined by:

inf
x∈S

f (x)=











thegreatest lower bound for
minx∈S f (x), if minx∈S f (x) is bounded below,

−∞, if minx∈S f (x) is unbounded below,
∞, if minx∈S f (x) is infeasible.

By definition, the infimum is equal to the minimum of the corresponding
minimization problem minx∈S f (x) if the minimum exists, but the infimum
exists even if the problem has no minimum. To emphasize the role of S, we
also use the notation infx∈Rn{ f (x)|x∈ S} and analogous notations for the
infimum.✷
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4.2.1.2 Example
Unconstrained problem with unbounded objective

∀x∈ R, f (x) = x. (4.17)

• There is nof ⋆ ∈ R such that∀x∈ R, f ⋆ ≤ f (x).
• The problem minx∈R f (x) is unbounded below.
• The infimum is infx∈R f (x) =−∞.
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4.2.1.3 Supremum

max
x∈S

f (x) =−min
x∈S

(− f (x)). (4.18)

Definition 4.11Let S⊆ Rn, f : S→ R. Then, supx∈S f (x), thesupremum
of the corresponding maximization problem maxx∈S f (x) is defined by:

sup
x∈S

f (x)=











the least upper boundfor
maxx∈S f (x), if maxx∈S f (x) is bounded above,

∞, if maxx∈S f (x) is unbounded above,
−∞, if maxx∈S f (x) is infeasible.

The supremum is equal to the maximum of the corresponding
maximization problem maxx∈S f (x) if the maximum exists.✷

• In some cases, we may need to considerextended real functionsf in
Definitions4.10and4.11that themselves take on the values∞ or−∞.

• In these cases, we make the natural definitions of inf and sup.
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4.2.2 Lagrangian

Definition 4.12 Consider the functionL : Rn×Rm×Rr → R defined by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,L(x,λ,µ) = f (x)+λ†g(x)+µ†h(x). (4.19)

The functionL is called theLagrangian and the variablesλ andµ are
called thedual variables. If there are no equality constraints then
L : Rn×Rr →R is defined by omitting the termλ†g(x) from the definition,
while if there are no inequality constraints thenL : Rn×Rm→ R is defined
by omitting the termµ†h(x) from the definition.✷

• Sometimes, the symbol for the dual variables is introduced when the
problem is defined by writing it in parenthesis after the constraint, as in
the following:

min
x∈Rn

f (x) such thatg(x) = 0, (λ).
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4.2.3 Dual function
• Associated with the Lagrangian, we make:

Definition 4.13Consider the functionD : Rm×Rr → R∪{−∞} defined
by:

∀

[

λ
µ

]

∈ R
m+r ,D(λ,µ) = inf

x∈Rn
L(x,λ,µ). (4.20)

The functionD is called thedual function. If there are no equality
constraints or there are no inequality constraints, respectively, then the dual
functionD : Rr → R∪{−∞} or D : Rm→ R∪{−∞} is defined in terms of
the corresponding Lagrangian. The set of points on which thedual function
takes on real values is called theeffective domainE of the dual function:

E=

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

D(λ,µ)>−∞
}

.

The restriction ofD toE is a real-valued functionD : E→ R. ✷
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Discussion

• Recall Definition4.8of a concave function.
• The usefulness of the dual function stems in part from the following:

Theorem 4.4Let f : Rn → R,g : Rn → R
m, and h: Rn → R

r . Consider
the corresponding Lagrangian defined in (4.19), the dual function
defined in (4.20), and the effective domainE of the dual function. The
effective domainE of the dual function is a convex set. The dual
function is concave onE. ✷

• The convexity of the effective domain and the concavity of the dual
function on the effective domain does not depend on any property of the
objective nor of the constraint functions.
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4.2.4 Dual problem

Theorem 4.5Let f : Rn → R,g : Rn → R
m, and h: Rn → R

r . Letλ ∈ R
m

and µ∈ Rr
+ and suppose that̂x∈ {x∈ Rn|g(x) = 0,h(x)≤ 0}. That is,x̂

is feasible for Problem (4.16). Then:

f (x̂)≥ D(λ,µ), (4.21)

whereD : Rm×Rr → R∪{−∞} is the dual function defined in (4.20).

Proof By definition ofD,

D(λ,µ) = inf
x∈Rn

L(x,λ,µ),

= inf
x∈Rn

{ f (x)+λ†g(x)+µ†h(x)}, by definition ofL ,

≤ f (x̂)+λ†g(x̂)+µ†h(x̂),by definition of inf,
≤ f (x̂),

sinceg(x̂) = 0, h(x̂)≤ 0, andµ≥ 0. ✷
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Discussion

• Theorem4.5enables us to gauge whether we are close to a minimum of
Problem (4.16).

• For any value ofλ ∈ Rm andµ∈ Rr
+, we know that the minimum of

Problem (4.16) is no smaller thanD(λ,µ), which is a lower bound for the
problem.

• We can also take thepartial dual with respect to only some of the
constraints leaving the remaining constraints explicit inthe definition of
the dual function.
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Corollary 4.6 Let f : Rn → R,g : Rn → R
m, and h: Rn → R

r . Then:

inf
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0} ≥ sup
[λµ]∈Rm+r

{D(λ,µ)|µ≥ 0},

= sup
[λµ]∈E

{D(λ,µ)|µ≥ 0},

whereE is the effective domain ofD. Moreover, if the problem on the
left-hand side has a minimum then:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0} ≥ sup
[λµ]∈E

{D(λ,µ)|µ≥ 0}. (4.22)

✷

• Note thatD is an extended real function since it can take on the value−∞.
• We define the value of the right-hand side of (4.22) to be−∞ if E= /0.
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Discussion

• This result is calledweak duality.
• The right-hand side of (4.22) is called thedual problem and the

constraints in the original problem are said to have beendualized.
• In this context, the original problem is sometimes called theprimal

problem.
• By Theorem4.4, maximizing the dual problem is equivalent to

minimizing a convex problem.
• The inequalities in (4.21) and (4.22) can be strict, in which case the

difference between the left and right-hand sides is called theduality gap.
• If the left- and right-hand sides are the same, we say that there is no

duality gap or that the duality gap is zero.
• Evaluating the right-hand side of (4.22) requires:

– evaluating the dependence of the infimum of theinner problem
infx∈Rn L(x,λ,µ) in the definition ofD as a function ofλ andµ,

– finding the supremum of theouter problem sup[λµ]∈E{D(λ,µ)|µ≥ 0}.
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Discussion, continued

• In some circumstances, the inequality in (4.22) can be replaced by
equality and the sup and inf can be replaced by max and min, so that the
right-hand side of (4.22) equals the minimum of Problem (4.16) and the
right-hand side becomes:

max
[λµ]∈E

{D(λ,µ)|µ≥ 0}= max
[λµ]∈E

{

min
x∈Rn

{ f (x)+λ†g(x)+µ†h(x)}

∣

∣

∣

∣

µ≥ 0
}

,

(4.23)
• having an inner minimization problem embedded in an outer

maximization problem.
• The requirements for these conditions to hold depend on the convexity of

the primal problem and on other technical conditions on the functions.
• In the next section, we will consider an example where such conditions

happen to hold, and we will discuss sufficient conditions later.
• In the dual problem, the equality and inequality constraints have been

transformed into terms in the Lagrangian, which is the objective of the
inner minimization problem.
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4.2.5 Example
• Consider the problem minx∈R{ f (x)|g(x) = 0} where f : R→ R and

whereg : R→ R are defined by:

∀x∈ R, f (x) = (x)2,

∀x∈ R,g(x) = 3−x.

• We take the dual with respect to the equality constraint 3−x= 0.
• Since there are no inequality constraints, we will omit the argumentµ of

L and ofD.
• We consider the dual functionD : R→ R∪{−∞} defined by:

∀λ ∈ R,D(λ) = inf
x∈R

L(x,λ),

= inf
x∈R

{(x)2+λ(3−x)},

= inf
x∈R

{

(

x−
λ
2

)2

+3λ−
(λ)2

4

}

,

= 3λ−
(λ)2

4
.
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Example, continued
• Therefore,E= R and sinceD is quadratic and strictly concave, the dual

problem has a maximum and:

max
λ∈E

{D(λ)} = max
λ∈R

{

3λ−
(λ)2

4

}

,

= max
λ∈R

{

−

(

λ
2
−3

)2

+9

}

,

= 9, with maximizerλ⋆ = 6.

• The minimizer ofL(•,λ⋆) is x⋆ = λ⋆
2 = 3, which is the minimizer of the

equality-constrained problem.
• We have solved the primal equality-constrained problem by solving the

dual problem.
• Since minx∈Rn{ f (x)|g(x) = 0}= maxλ∈E{D(λ)}, there is no duality gap.
• The valueλ⋆ = 6 is called theLagrange multiplier for this problem:

– we will carefully define and generalize the notion of Lagrange
multipliers in Section4.4.1and subsequently.

Title Page ◭◭ ◮◮ ◭ ◮ 65 of 165 Go Back Full Screen Close Quit



4.2.6 Economic interpretation
• We can interpret this example in an economic context relating, for

example, toeconomic dispatch.
• Suppose thatf is the operating cost of a generator.
• Suppose that 3−x= 0 or, equivalently, the demand is 3 and we want to

meet the demand with production (or supply)x.
• We consider paying a priceπ for productionx:

– revenueis π×x, and
– production costs aref (x).

• We must model the decision-making process of the generator in response
to the prices:
– revenue minus production costs is calledoperating profit , Π,
– we model the generator as anoperating profit maximizer ,
– that is, it seeks to maximize revenue minus production costs, or

equivalently minimize production costs minus revenues,
– operating profit does not include the cost of equipment or anyother

costs that are not affected by operating decisions.
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Economic interpretation, continued
• We claim that setting the priceπ equal to the Lagrange multiplierλ⋆

induces a generator trying to maximize its operating profitΠ to meet the
demand:

Operating profit= Π = revenue−production cost,
= (λ⋆×x)− f (x).

• Note thatL(x,λ⋆) = f (x)+λ⋆(3−x) is minus the operating profitΠ plus
a term that is independent ofx:

L(x,λ⋆) =−Π+(λ⋆×3).

• To maximize(λ⋆×x)− f (x) =−L(x,λ⋆)+(λ⋆×3) over values ofx, we
can equivalently minimizeL(x,λ⋆) over values ofx.

• The minimizer ofL(x,λ⋆) is x⋆ = 3.
• The minimum (or infimum) ofL(x,λ) is D(λ), soD(λ⋆) = L(x⋆,λ⋆).
• In this case, the value ofλ that maximizesD is also the price that induces

a profit-maximizing generator to supplyx⋆ = 3, which meets the demand.
• Generalizations of this interpretation will be very important in our

discussion ofpricing rules for electricity markets.
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4.3 Continuous unconstrained problems
• We will analyze particular types of optimization problems in detail with

the ultimate goal of treating all the significant types of problems that arise
in electricity markets, including problems with:
– equality and inequality constraints, and
– continuous and discrete variables.

• To build up to the problems we need to treat, we will first consider
continuous unconstrained optimization problems of the form:

min
x∈Rn

f (x),

• wherex∈ Rn and f : Rn → R.
• In some cases, our objectives will only be piece-wise partially

differentiable; however, for convenience here we will assume that the
objective is partially differentiable with continuous partial derivatives.

• The extensions for objectives with “kinks” will be discussed as they arise.
• We consideroptimality conditions that help us to characterize when we

have found a minimizer of a problem.
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4.3.1 Optimality conditions

Theorem 4.7Let f : Rn → R be partially differentiable with continuous
partial derivatives. If x⋆ is a local minimizer of f then∇f (x⋆) = 0. ✷

• A point that satisfies∇f (x⋆) = 0 is called acritical point .
• A critical point may be a minimizer, a maximizer, or an inflection point of

a function.
• With additional information, we can guarantee that a critical point is a

minimizer:

Theorem 4.8Let f : Rn → R be convex and partially differentiable with
continuous partial derivatives onRn and let x⋆ ∈ Rn. If ∇f (x⋆) = 0 then
f (x⋆) is the global minimum and x⋆ is a global minimizer of f .✷

Title Page ◭◭ ◮◮ ◭ ◮ 69 of 165 Go Back Full Screen Close Quit



4.3.2 Example
• Consider the objective function defined in (4.4) f : R2 → R defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2.

• and illustrated in Figures4.2and4.3.

• From Figure4.3, the minimizer off is x⋆ =

[

1
3

]

.
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Example, continued
• Note that:

∀x∈ R
2,∇f (x) =

[

2(x1−1)
2(x2−3)

]

,

∀x∈ R
2,∇2f (x) =

[

2 0
0 2

]

,

• which is positive definite.
• Note that∇f (x⋆) = 0 and, by Theorem4.3, since∇2f is positive definite,

f is convex.

• Therefore, by Theorem4.8, x⋆ =

[

1
3

]

is a global minimizer off .
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4.4 Continuous equality-constrained problems
• Next, we will consider continuous equality-constrained optimization

problems of the form:

min
x∈Rn

{ f (x)|Ax= b}, (4.24)

• where f : Rn → R, A∈ Rm×n, andb∈ Rm.
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4.4.1 Optimality conditions

Theorem 4.9Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ Rm×n, and b∈ Rm. If x⋆ ∈ Rn is a
local minimizer of the problem:

min
x∈Rn

{ f (x)|Ax= b},

then:

∃λ⋆ ∈ R
m such that∇f (x⋆)+A†λ⋆ = 0, (4.25)

Ax⋆ = b. (4.26)

✷

• A vectorλ⋆ satisfying (4.25), given anx⋆ that also satisfies (4.26), is
called a vector ofLagrange multipliers for the problem.

• The conditions (4.25)–(4.26) are called thefirst-order necessary
conditions (or FONC) for Problem (4.24).
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4.4.2 Example
• Recall the example equality-constrained Problem (4.5):

min
x∈R2

{ f (x)|Ax= b},

where:∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] .

• The (unique) local minimizer is atx⋆ =

[

2
2

]

with minimum f ⋆ = 2.

• We note that:

∇f (x⋆)+A†[−2] =

[

2
−2

]

+

[

1
−1

]

[−2],

= 0,

• which is consistent with Theorem4.9for λ⋆ = [−2].
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4.4.3 Economic interpretation
• Recall Definition4.12of theLagrangian.
• For a problem with objectivef : Rn → R and equality constraintsAx= b,

with A∈ R
m×n andb∈ R

m the LagrangianL : Rn×R
m→ R is defined

by:

∀x∈ R
n,∀λ ∈ R

m,L(x,λ) = f (x)+λ†(Ax−b), (4.27)

whereλ is called the vector ofdual variables for the problem.
• We also define the gradients ofL with respect tox andλ by, respectively,

∇xL =

[

∂L

∂x

]†

and∇λL =

[

∂L

∂λ

]†

.

• That is:

∇xL(x,λ) = ∇f (x)+A†λ,
∇λL(x,λ) = Ax−b.

• We can interpret the first-order necessary conditions (4.25)–(4.26) using
the LagrangianL .
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Economic interpretation, continued
• The first-order necessary conditions imply thatx⋆ is a critical point of the

functionL(•,λ⋆) that also satisfies the constraintsAx= b.
• A minimizer of the equality-constrained problem is also the

unconstrained minimizer ofL(•,λ⋆):
– If L(•,λ⋆) is convex then a pointx⋆ satisfying∇xL(x⋆,λ⋆) = 0 will be

an unconstrained minimizer ofL(•,λ⋆).
– If we know λ⋆ then we can solve the equality-constrained problem

without explicitly considering the equality constraints!
– As in the example in Section4.2.5.

• The vector of Lagrange multipliersλ⋆ “adjusts” the unconstrained
optimality conditions byA†λ⋆ to “balance” the minimization of the
objective against satisfaction of the constraints.
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Economic, interpretation, continued
• As in Section4.2.6, again interpretingL(•,λ⋆) as minus the operating

profit (plus a constant) to a firm:
– finding the minimizer ofL(•,λ⋆) is equivalent to finding the maximizer

of operating profit,Π,
– the priceπ = λ⋆ provides the compensation for operating costs incurred

by the firm so that unconstrained maximization of operating profits Π is
consistent with minimizing the operating costs subject to the equality
constraints.
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4.4.4 Example
• Continuing with the previous equality-constrained Problem (4.5), the

LagrangianL : R2×R→ R is defined by:

∀x∈ R
2,∀λ ∈ R,L(x,λ) = (x1−1)2+(x2−3)2+λ(x1−x2). (4.28)

• Setting the value of the dual variable in the Lagrangian equal to the
Lagrange multiplier,λ⋆ = [−2], we have:

∀x∈ R
2,L(x,λ⋆) = (x1−1)2+(x2−3)2+(−2)(x1−x2).

• The first-order necessary conditions for minimizingL(x,λ⋆) with respect
to x is that:

∇xL(x,λ⋆) =

[

2(x1−1)−2
2(x2−3)+2

]

,

= 0,

• which yields a solution ofx⋆ =

[

2
2

]

.
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Example, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Fig. 4.16. Contour sets
for LagrangianL(•,λ⋆)
evaluated at the La-
grange multipliersλ⋆ =
[−2].
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Example, continued
• For other values of the dual variablesλ not equal to the Lagrange

multipliersλ⋆, the corresponding minimizer ofL(•,λ) will differ from
the minimizer of Problem (4.5).

• For λ̃ = [−5], the contour sets ofL(•, λ̃) are illustrated in Figure4.17.

• The unconstrained minimizer of this function is at ˜x=

[

3.5
0.5

]

, illustrated

with a◦ in Figure4.17, which differs fromx⋆.
• In the context of our profit interpretation, note that the “wrong” priceλ̃

will induce the wrong behavior by a profit maximizing firm.
– the resulting value ˜x is not feasible,
– it does not minimize the original equality-constrained problem.
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Example, continued
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Fig. 4.17. Contour sets
for LagrangianL(•, λ̃)
evaluated at value of
dual variables̃λ = [−5]
not equal to Lagrange
multiplers.
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4.4.5 Duality
• The discussion in Section4.4.3suggests that if we knew the vector of

Lagrange multipliersλ⋆ we could avoid explicit consideration of the
equality constraints iff was convex.

• Here we discuss how to characterize the Lagrange multipliers using
duality.
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4.4.5.1 Dual function
Analysis

• As we discussed in Section4.2, we can define a dual problem where the
role of variables and constraints is partly or fully swapped.

• Recall Definition4.13of thedual function andeffective domain.
• For Problem (4.24), the dual functionD : Rm→ R∪{−∞} is defined by:

∀λ ∈ R
m,D(λ) = inf

x∈Rn
L(x,λ), (4.29)

• while the effective domain is:

E= {λ ∈ R
m|D(λ)>−∞},

• so that the restriction ofD to E is a functionD : E→ R.
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Example

∀x∈ R
2,∀λ ∈ R,L(x,λ) = (x1−1)2+(x2−3)2+λ(x1−x2),

∀λ ∈ R,D(λ) = inf
x∈R2

L(x,λ),

= inf
x∈R2

{(x1−1)2+(x2−3)2+λ(x1−x2)}.

• L(•,λ) is partially differentiable with continuous partial derivatives and
is strictly convex.

• By Corollary4.8 the first-order necessary conditions are sufficient for
global optimality:

∇xL(x,λ) =

[

2(x1−1)+λ
2(x2−3)−λ

]

,

= 0.
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Example, continued

• For any givenλ ∈ R, the unique solution isx(λ) =

[

1−λ/2
3+λ/2

]

.

∀λ ∈ R,D(λ) =

(

1−
λ
2
−1

)2

+

(

3+
λ
2
−3

)2

+λ
(

1−
λ
2
−3−

λ
2

)

,

= −
(λ)2

2
−2λ. (4.30)
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4.4.5.2 Dual problem
Analysis

• As we illustrated in Section4.2.5, under certain conditions, Lagrange
multipliersλ⋆ can be found as the maximizer, over the dual variablesλ, of
thedual problem:

max
λ∈E

D(λ). (4.31)

• Problem (4.31) is called thedual problem to Problem (4.24).
• Problem (4.24) is called theprimal problem .
• Moreover, under certain conditions, the corresponding minimizer x(λ

⋆) of
the inner problem minx∈Rn L(x,λ⋆) satisfies the equality constraints.
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Theorem 4.10Suppose that f: Rn → R is convex and partially
differentiable with continuous partial derivatives, A∈Rm×n, and
b∈ R

m. Consider primal problem, Problem (4.24):

min
x∈Rn

{ f (x)|Ax= b}.

Also, consider the dual problem, Problem (4.31). If the primal problem
possesses a minimum then the dual problem possesses a maximum and
the optima are equal. That is:

min
x∈Rn

{ f (x)|Ax= b}= max
λ∈E

D(λ). (4.32)

✷

• Recall from Theorem4.4 that the effective domainE of the dual function
is a convex set and that the dual function is concave onE.

• This facilitates finding a solution of the dual problem.
• Exercise4.2, however, shows cases where duality is not effective.
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Example

• Continuing with the previous equality-constrained Problem (4.5), the dual
functionD was specified in (4.30).

• The dual function is partially differentiable with continuous partial
derivatives on the whole ofR.

• Moreover, since the dual function is concave, the first-order necessary
conditions to maximizeD are also sufficient.

• Partially differentiatingD we obtain:

∇D(λ) = [−λ−2].

• Moreover,∇D(λ) = [0] for λ⋆ = [−2].
• Also, D(λ⋆) = 2, which is equal to the minimum of Problem (4.5) and

x(λ
⋆) =

[

2
2

]

, which is the minimizer of Problem (4.5).
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4.4.5.3 Separable objective
Analysis

• Suppose thatf : Rn → R is additively separable, so that:

∀x∈ R
n, f (x) =

n

∑
k=1

fk(xk),

• where fk : R→ R,k= 1, . . . ,n.
• We consider the dual.
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Analysis, continued

∀λ ∈ E,D(λ) = inf
x∈Rn

L(x,λ),

= min
x∈Rn

L(x,λ), assuming that the minimum exists,

= min
x∈Rn

f (x)+λ†(Ax−b), by definition ofL ,

= min
x∈Rn

{

n

∑
k=1

fk(xk)+λ†

(

n

∑
k=1

Akxk−b

)}

,

whereAk is thek-th column ofA,

= min
x∈Rn

{

n

∑
k=1

(

fk(xk)+λ†Akxk

)

}

−λ†b,

=
n

∑
k=1

min
xk∈R

{ fk(xk)+λ†Akxk}−λ†b. (4.33)
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Analysis, continued

• For each fixedλ ∈ Rm, the dual functionD(λ) is the sum of:
a constant(−λ†b), and
n one-dimensional optimization “sub-problems” that can each be

evaluated independently for eachk= 1, . . . ,n.
• We havedecomposedthe problem by exploiting the separability of the

objective.
• We can think of each of the decomposed problems as corresponding to

maximization of operating profitΠk for firm k given a price specified by
the value of the dual variables:
– again, as in Sections4.2.6and4.4.3, the priceπ = λ⋆ provides the

compensation for operating costs incurred by each firm so that
unconstrained maximization of operating profits for each firm is
consistent with minimizing the overall operating costs subject to the
equality constraints,

– typically, the equality constraints will be supply–demandbalance
constraints.
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Example

• Continuing with the previous equality-constrained Problem (4.5), note
that the objective is separable.

• The dual function is:

∀λ ∈ R,D(λ) = min
x∈R2

L(x,λ),

= min
x1∈R

{(x1−1)2+λx1}+ min
x2∈R

{(x2−3)2−λx2}.

(4.34)

• Each of the two convex sub-problems can be solved separatelyand the
result is the same as obtained previously, with the same value of Lagrange
multiplier λ⋆.

• If the the sub-problems correspond to operating profit maximization for
each firm:
– the priceπ = λ⋆ provides the compensation for operating costs incurred

by each firm so that unconstrained maximization of operatingprofits for
each firm is consistent with minimizing the overall operating costs
subject to the equality constraints.
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4.4.6 Sensitivity analysis

Theorem 4.11Consider Problem (4.24), a perturbation vectorγ ∈ Rm, and
a perturbed version of Problem (4.24) defined by:

min
x∈Rn

{ f (x)|Ax= b− γ}. (4.35)

Suppose that f: Rn → R is twice partially differentiable with continuous
second partial derivatives, A∈ Rm×n, and b∈ Rm, with the rows of A
linearly independent. Let x⋆ ∈ Rn andλ⋆ ∈Rm satisfy:

∇f (x⋆)+A†λ⋆ = 0,
Ax⋆ = b,

((A∆x= 0) and(∆x 6= 0)) ⇒ (∆x†∇2f (x⋆)∆x> 0).

Consider Problem (4.35). For values ofγ in a neighborhood of the
base-case value of the parametersγ = 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers for
Problem (4.35). Moreover, the local minimum, local minimizer, and
Lagrange multipliers are partially differentiable with respect toγ and
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have continuous partial derivatives in this neighborhood.The sensitivity
of the local minimum toγ, evaluated at the base-caseγ = 0, is equal to
[λ⋆]†. If f is convex then the minimizers and minima are global.✷

4.4.7 Discussion
• The sufficient conditions for the sensitivity theorem are not always

satisfied by the problems we study.
• Nevertheless, the sensitivity analysis can give us powerful economic

insights.
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Discussion, continued
• If we assume that the minimizer and minimum are well-defined functions

of γ and that they are partially differentiable with respect toγ, then the
following argument explains why the sensitivity is given bythe value of
the Lagrange multipliers.

• Consider Problem (4.35), a perturbationγ, and the corresponding change
∆x⋆ in the minimizer of the perturbed problem.

• The change in the minimum is:

f (x⋆+∆x⋆)− f (x⋆) ≈ ∇f (x⋆)†∆x⋆, with equality as∆x⋆ → 0,

= −[λ⋆]†A∆x⋆, by the first-order
necessary condition∇f (x⋆)+A†λ⋆ = 0,

= [λ⋆]†γ,

• sinceA(x⋆+∆x⋆) = b− γ, so that−A∆x⋆ = γ.
• But this is true for any such perturbationγ. In the limit asγ → 0, the

change in the minimum approaches[λ⋆]†γ.
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Discussion, continued
• We can interpret the Lagrange multipliers as the sensitivity of the

minimum to changes inγ.
• In many problems, the specification of constraints represents some

judgment about the availability of resources.
• Then we can use the Lagrange multipliers to help in trading off the

change in the optimal objective against the cost of the purchase of
additional resources.

• In particular, if the equality constraint represents supply–demand balance
then the Lagrange multiplier provides information about the marginal cost
of meeting additional demand.
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4.4.8 Example
• Consider the equality-constrained Problem (4.5) from Section4.1.9:

min
x∈R2

{ f (x)|Ax= b},

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] .

• Suppose that the equality constraints changed fromAx= b to Ax= b− γ.
• Then, ifγ is small enough, the minimum of the perturbed problem differs

from the minimum of the original problem by approximately
λ⋆γ = (−2)γ.
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4.5 Continuous linear inequality-constrained problems
• Next, we consider inequality-constrained optimization problems of the

form:

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d}, (4.36)

• whereA∈ Rm×n, b∈ Rm, C∈ Rr×n, andd ∈ Rr are constants.
• We call the constraintsCx≤ d linear inequality constraints.
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4.5.1 Optimality conditions

Theorem 4.12Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ Rm×n,b∈ Rm,C∈ Rr×n,d ∈ Rr .
Consider Problem (4.36):

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d},

and a point x⋆ ∈ Rn. If x⋆ is a local minimizer of Problem (4.36) then:

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

r such that:∇f (x⋆)+A†λ⋆+C†µ⋆ = 0;
M⋆(Cx⋆−d) = 0;

Ax⋆ = b;
Cx⋆ ≤ d; and

µ⋆ ≥ 0, (4.37)

where M⋆ = diag{µ⋆ℓ} ∈ Rr×r .
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The vectorsλ⋆ and µ⋆ satisfying the conditions (4.37) are called the
vectors of Lagrange multipliers for the constraints Ax= b and Cx≤ d,
respectively. The conditions that M⋆(Cx⋆−d) = 0 are called the
complementary slackness conditions. They say that, for eachℓ, either
theℓ-th inequality constraint is binding or theℓ-th Lagrange multiplier is
equal to zero (or both).✷
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4.5.2 Example
• Recall the example quadratic program, Problem (4.10):

min
x∈R2

{ f (x)|Ax= b,Cx≤ d}.
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Fig. 4.18. Contour sets
of objective function
and feasible set for
Problem (4.10). The
heights of the contours
decrease towards the

point

[

1
3

]

. The feasible

set is the “half-line”
starting at the point
[

3
3

]

, which is also

the minimizer and is
illustrated with a•.
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Example, continued
• The objective and constraints are specified by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .

• Figure4.18shows that the solution of this problem isx⋆ =

[

3
3

]

.

• We claim thatx⋆ =

[

3
3

]

together withλ⋆ = [−4] andµ⋆ = [4]

satisfy (4.37) for Problem (4.10).
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Example, continued

∀x∈ R
2,∇f (x) =

[

2 0
0 2

]

x+

[

−2
−6

]

,

∇f (x⋆)+A†λ⋆+C†µ⋆

=

[

2 0
0 2

][

3
3

]

+

[

−2
−6

]

+

[

1
−1

]

[−4]+

[

0
−1

]

[4],

= 0;

µ⋆(Cx⋆−d) = [4]

(

[0 −1]

[

3
3

]

− [−3]

)

,

= [0];

Ax⋆ = [1 −1]

[

3
3

]

,

= [0],
= b;
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Example, continued

Cx⋆ = [0 −1]

[

3
3

]

,

= [−3],
≤ [−3],
= d; and

µ⋆ = [4],
≥ [0].
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4.5.3 Discussion
• The Lagrange multipliers again adjust the unconstrained optimality

conditions to balance the constraints against the objective:
– since the inequality constraints only need to be “enforced”in one

direction, the Lagrange multipliers on the inequality constraints are
restricted in sign.

• We will again refer to the equality and inequality constraints in (4.37) as
thefirst-order necessary conditions, although we recognize that the
first-order necessary conditions also include, strictly speaking, the other
items in the hypothesis of Theorem4.12.

• These conditions are called theKuhn–Tucker (KT) or the
Karush–Kuhn–Tucker (KKT) conditions and a point satisfying the
conditions is called aKKT point .
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4.5.4 Lagrangian
• Recall Definition4.12of theLagrangian.
• For Problem (4.36) the LagrangianL : Rn×Rm×Rr → R is defined by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,L(x,λ,µ) = f (x)+λ†(Ax−b)+µ†(Cx−d).

• As in the equality-constrained case, define the gradients ofL with respect

to x, λ, andµ by, respectively,∇xL =

[

∂L

∂x

]†

, ∇λL =

[

∂L

∂λ

]†

, and

∇µL =

[

∂L

∂µ

]†

.

• Evaluating the gradients with respect tox,λ, andµ, we have:

∇xL(x,λ,µ) = ∇f (x)+A†λ+C†µ,
∇λL(x,λ,µ) = Ax−b,
∇µL(x,λ,µ) = Cx−d.

• Setting the first two of these expressions equal to zero reproduces some of
the first-order necessary conditions for the problem.
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Lagrangian, continued
• As with equality-constrained problems, the Lagrangian provides a

convenient way to remember the optimality conditions.
• However, unlike the equality-constrained case, in order torecover the

first-order necessary conditions for Problem (4.36) we have to:
– add the complementary slackness conditions; that is,M⋆(Cx⋆−d) = 0,
– add the non-negativity constraints onµ, that is,µ≥ 0, and
– interpret the third expression on the previous slide as corresponding to

inequality constraints; that is,Cx≤ d.
• If the hypotheses of Theorem4.12are satisfied and, additionally,f is

convex thenx⋆ is a global minimizer ofL(•,λ⋆,µ⋆), whereλ⋆ andµ⋆ are
the Lagrange multipliers.
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Lagrangian, continued
• Paralleling earlier discussion, interpretingL(•,λ⋆,µ⋆) as minus the profit

(plus a constant) to a firm:
– finding the minimizer ofL(•,λ⋆,µ⋆) is equivalent to finding the

maximizer of profit,
– the pricesλ⋆ andµ⋆ provide the compensation for operating costs

incurred by the firm so that unconstrained maximization of profits is
consistent with minimizing the operating costs subject to the equality
and inequality constraints.
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4.5.5 Convex problems

Theorem 4.13Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ Rm×n,b∈ Rm,C∈ Rr×n,d ∈ Rr .
Consider Problem (4.36):

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d},

and points x⋆ ∈ Rn, λ⋆ ∈ Rm, and µ⋆ ∈ Rr . Let M⋆ = diag{µ⋆ℓ}. Suppose
that:

(i) f is convex on{x∈ Rn|Ax= b,Cx≤ d},
(ii) ∇f (x⋆)+A†λ⋆+C†µ⋆ = 0,

(iii) M⋆(Cx⋆−d) = 0,
(iv) Ax⋆ = b and Cx⋆ ≤ d, and
(v) µ⋆ ≥ 0.

Then x⋆ is a global minimizer of Problem (4.36). ✷

• In addition to the first-order necessary conditions, the first-order sufficient
conditions require thatf is convex on the feasible set.
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4.5.6 Example
• Again consider Problem (4.10) from Sections4.1.10and4.5.2.

• In Section4.5.2, we observed thatx⋆ =

[

3
3

]

, λ⋆ = [−4], andµ⋆ = [4]

satisfy the first-order necessary conditions for this problem.
• Moreover, f is twice continuously differentiable with continuous partial

derivatives and the Hessian is positive definite.
• Therefore,f is convex andx⋆ is the global minimizer of the problem.
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4.5.7 Duality
• As we discussed in Section4.2and as in the discussion of linear equality

constraints in Section4.4.5, we can define a dual problem where the role
of variables and constraints is partly or fully swapped.

• We again recall some of the discussion in Section4.2 in the following
sections.
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4.5.7.1 Dual function
• We have observed in Section4.5.4that if f is convex thenx⋆ is a global

minimizer ofL(•,λ⋆,µ⋆).
• Recall Definition4.13of thedual function andeffective domain.
• For Problem (4.36), the dual functionD : Rm×Rr → R∪{−∞} is

defined by:

∀

[

λ
µ

]

∈ R
m+r ,D(λ,µ) = inf

x∈Rn
L(x,λ,µ). (4.38)

• The effective domain ofD is:

E=

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

D(λ,µ)>−∞
}

.

• Recall that by Theorem4.4, E is convex andD is concave onE.
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Example

• We continue with Problem (4.10).
• The problem is:

min
x∈R2

{ f (x)|Ax= b,Cx≤ d},

• where:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .

• The LagrangianL : R2×R×R→ R for this problem is defined by:

∀x∈ R
2,∀λ ∈ R,∀µ∈ R,

L(x,λ,µ) = f (x)+λ†(Ax−b)+µ†(Cx−d),

= (x1−1)2+(x2−3)2+λ [1 −1]x+µ([0 −1]x+3) .
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Example, continued

• For any givenλ andµ, the LagrangianL(•,λ,µ) is strictly convex.
• By Corollary4.8, the first-order necessary conditions∇xL(x,λ,µ) = 0 are

sufficient for minimizingL(•,λ,µ).
• Moreover, a minimizer exists, so that the inf in the definition of D can be

replaced by min.
• Furthermore, there is a unique minimizerx(λ,µ) corresponding to each

value ofλ andµ:

∀x∈ R
2,∀λ ∈ R,∀µ∈ R,

∇xL(x,λ,µ) = ∇f (x)+A†λ+C†µ,

=

[

2 0
0 2

]

x+

[

−2
−6

]

+

[

1
−1

]

λ+
[

0
−1

]

µ,

∀λ ∈ R,∀µ∈ R,x(λ,µ) = −

[

2 0
0 2

]−1[[
−2
−6

]

+

[

1
−1

]

λ+
[

0
−1

]

µ

]

,

=

[

1
3

]

+

[

−0.5
0.5

]

λ+
[

0
0.5

]

µ. (4.39)
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Example, continued

• Consequently, the effective domain isE= R×R and the dual function
D : R×R→ R is given by:

∀

[

λ
µ

]

∈ R
2,D(λ,µ) = inf

x∈Rn
L(x,λ,µ),

= L(x(λ,µ),λ,µ), sincex(λ,µ) minimizesL(•,λ,µ),
= (x(λ,µ)1 −1)2+(x(λ,µ)2 −3)2

+λ [1 −1]x(λ,µ)+µ
(

[0 −1]x(λ,µ)+3
)

,

= −
1
2
(λ)2−

1
4
(µ)2−2λ−

1
2

µλ,

• on substituting from (4.39) for x(λ,µ).
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4.5.7.2 Dual problem
Analysis

• As in the equality-constrained case, if the objective is convex onRn then
the minimum of Problem (4.36) is equal toD(λ⋆,µ⋆), whereλ⋆ andµ⋆

are the Lagrange multipliers that satisfy the necessary conditions for
Problem (4.36).

• As in the equality-constrained case, under certain conditions, the
Lagrange multipliers can be found as the maximizer of thedual problem:

max
[λµ]∈E

{D(λ,µ)|µ≥ 0}, (4.40)

• whereD : E→ R is the dual function defined in (4.38).
• Again, Problem (4.36) is called theprimal problem to distinguish it from

Problem (4.40).
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Example

• Continuing with the dual of Problem (4.10), the effective domain is
E= R×R and the dual functionD : R×R→ R is:

∀

[

λ
µ

]

∈ R
2,D(λ,µ) =−

1
2
(λ)2−

1
4
(µ)2−2λ−

1
2

µλ,

• with unique minimizer of the Lagrangian specified by (4.39).
• The dual function is twice partially differentiable with continuous second

partial derivatives.
• In particular,

∀

[

λ
µ

]

∈ R
2,∇D(λ,µ) =

[

−2−λ−µ/2
−λ/2−µ/2

]

,

∀

[

λ
µ

]

∈ R
2,∇2

D(λ,µ) =

[

−1 −0.5
−0.5 −0.5

]

.

• We claim that

[

λ⋆

µ⋆

]

=

[

−4
4

]

maximizes the dual function overµ≥ [0].
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Example, continued

• In particular∇D(λ⋆,µ⋆) = 0, µ⋆ > [0], and∇2
D is negative definite.

• Consequently,

[

λ⋆

µ⋆

]

is the unique maximizer of dual Problem (4.40).
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4.5.8 Sensitivity analysis

Theorem 4.14Consider perturbationsγ ∈Rm andη ∈Rr and the problem:

min
x∈Rn

{ f (x)|Ax= b− γ,Cx≤ d−η}. (4.41)

Suppose that the function f: Rn → R is twice partially differentiable
with continuous second partial derivatives. Suppose that x⋆ ∈ Rn is a
local minimizer of Problem (4.41) for the base-case valuesγ = 0 and
η = 0, with associated Lagrange multipliersλ⋆ and µ⋆. Moreover,
suppose that the matrix̂A has linearly independent rows, whereÂ is the
matrix with rows consisting of:
• the m rows of A, and
• those rows Cℓ of C for whichℓ ∈ A(x⋆).
Furthermore, suppose that there are no inequality constraints that are
binding at the base-case solution with corresponding values of Lagrange
multipliers zero and that:

(

(Â∆x= 0) and(∆x 6= 0)
)

⇒ (∆x†∇2f (x⋆)∆x> 0).

Then, for values ofγ andη in a neighborhood of the base-case value of
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the parametersγ = 0 andη = 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers for
Problem (4.41). Moreover, the local minimum, local minimizer, and
Lagrange multipliers are partially differentiable with respect toγ andη
and have continuous partial derivatives. The sensitivities of the local
minimum toγ andη, evaluated at the base-caseγ = 0 andη = 0, are
equal to[λ⋆]† and [µ⋆]†, respectively.✷

Title Page ◭◭ ◮◮ ◭ ◮ 120 of 165 Go Back Full Screen Close Quit



4.5.9 Discussion
• The Lagrange multipliers yield the sensitivity of the objective to the

right-hand side of the equality constraints and inequalityconstraints.
• Again, the sufficient conditions for the sensitivity theorem are not always

satisfied by the problems we study.
• Theorem4.14does not apply directly to linear programming problems;

however, sensitivity analysis can also be applied to linearprogramming
and, as with linear programming in general, the linearity ofboth objective
and constraints leads to various special cases.

• Again, the Lagrange multipliers associated with the constraints can give
us powerful economic insights.

• Suppose that there are some inequality constraints that arebinding at the
base-case solution having corresponding values of Lagrange multipliers
zero. Why is the value of the Lagrange multiplier not a reliable indicator
of the sensitivity of the minimum to changes in the corresponding
right-hand side?
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4.5.10 Example
• Consider Problem (4.10) from Sections4.1.10and4.5.2, which has

objective f : R2 → R and constraintsAx= b andCx≤ d defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .

• Note that the binding constraint at the base-case solution has non-zero
Lagrange multiplier.

• The matrix:

Â=

[

A
C

]

=

[

1 −1
0 −1

]

,

• has linearly independent rows and∇2f is positive definite, so that
(∆x 6= 0)⇒ (∆x†∇2f (x⋆)∆x> 0).
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Example, continued
• Suppose that the inequality constraint was changed toCx≤ d−η.
• If η is small enough, then by Theorem4.14the minimum of the perturbed

problem differs from the minimum of the original problem by
approximatelyµ⋆η.
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4.6 Continuous non-linear inequality-constrained problems
• The final type of continuous problem we will consider is:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}, (4.42)

• whereg : Rn → Rm andh : Rn → Rr are non-linear.
• Generally, the optimality conditions available for non-linear problems are

local and not as strong as those for linear problems:
– motivates the practical emphasis on linear programming formulations of

electricity market designs.
• For example, to guarantee the existence of Lagrange multipliers

associated with the constraints of non-linear problems, wewill generally
need to make additional assumptions on the functions defining the
constraints:
– no additional assumptions are needed to guarantee the existence of

Lagrange multipliers for feasible linear programs.
• We will consider one suchconstraint qualification for non-linear

problems in the next section.
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4.6.1 Regular point

Definition 4.14 Let g : Rn → R
m andh : Rn → R

r . Then we say thatx⋆ is a
regular point of the constraintsg(x) = 0 andh(x)≤ 0 if:

(i) g(x⋆) = 0 andh(x⋆)≤ 0,
(ii) g andh are both partially differentiable with continuous partial

derivatives, and
(iii) the matrix Â has linearly independent rows, whereÂ is the matrix

with rows consisting of:

• them rows of the JacobianJ(x⋆) of g evaluated atx⋆, and
• those rowsKℓ(x⋆) of the JacobianK of h evaluated atx⋆ for which
ℓ ∈ A(x⋆).

The matrixÂ consists of the rows ofJ(x⋆) together with those rows
of K(x⋆) that correspond to the active constraints. If there are no
equality constraints then the matrixÂ consists of the rows ofK(x⋆)
corresponding to active constraints. If there are no binding
inequality constraints then̂A= J(x⋆). If there are no equality
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constraints and no binding inequality constraints then thematrix Â
has no rows and, by definition, it has linearly independent rows.

✷

• Requiring that a candidate minimizer be a regular point is anexample of a
constraint qualification for non-linear optimization.
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4.6.2 Optimality conditions

Theorem 4.15Suppose that the functions f: Rn → R, g : Rn → R
m, and

h : Rn → Rr are partially differentiable with continuous partial
derivatives. Let J: Rn → R

m×n and K : Rn → R
r×n be the Jacobians of g

and h, respectively. Consider Problem (4.42):

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}.

Suppose that x⋆ ∈ Rn is a regular point of the constraints g(x) = 0 and
h(x)≤ 0.
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If x⋆ is a local minimizer of Problem (4.42) then:

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

r such that:∇f (x⋆)+J(x⋆)†λ⋆+K(x⋆)†µ⋆ = 0;
M⋆h(x⋆) = 0;

g(x⋆) = 0;
h(x⋆) ≤ 0; and

µ⋆ ≥ 0,
(4.43)

where M⋆ = diag{µ⋆ℓ} ∈ Rr×r . The vectorsλ⋆ and µ⋆ satisfying the
conditions (4.43) are called the vectors of Lagrange multipliers for the
constraints g(x) = 0 and h(x)≤ 0, respectively. The conditions that
M⋆h(x⋆) = 0 are called thecomplementary slackness conditions. They
say that, for eachℓ, either theℓ-th inequality constraint is binding or the
ℓ-th Lagrange multiplier is equal to zero (or both).✷

• As previously, we refer to the equality and inequality constraints in (4.43)
as thefirst-order necessary conditions(or FONC) or the
Karush–Kuhn–Tucker conditions.
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4.6.3 Lagrangian
• Recall Definition4.12of theLagrangian.
• Analogously to the discussion in Section4.5.4, by defining the

LagrangianL : Rn×R
m×R

r → R by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,L(x,λ,µ) = f (x)+λ†g(x)+µ†h(x),

• we can again reproduce some of the first-order necessary conditions as:

∇xL(x⋆,λ⋆,µ⋆) = 0,
∇λL(x⋆,λ⋆,µ⋆) = 0,
∇µL(x⋆,λ⋆,µ⋆) ≤ 0.
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4.6.4 Example
• Recall the example non-linear program, Problem (4.11), from

Section4.1.10:

min
x∈R3

{ f (x)|g(x) = 0,h(x)≤ 0},

• where f : R3 → R, g : R3 → R
2, andh : R3 → R are defined by:

∀x∈ R
3, f (x) = (x1)

2+2(x2)
2,

∀x∈ R
3,g(x) =

[

2−x2−sin(x3)
−x1+sin(x3)

]

,

∀x∈ R
3,h(x) = [sin(x3)−0.5].

• We claim thatx⋆ =

[

0.5
1.5

π/6

]

, λ⋆ =

[

6
1

]

, andµ⋆ = [5] satisfy the first-order

necessary conditions in Theorem4.15.
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Example, continued
• First,x⋆ is feasible.

∀x∈ R
3,∇f (x) =

[

2x1
4x2
0

]

,

∀x∈ R
3,J(x) =

[

0 −1 −cos(x3)
−1 0 cos(x3)

]

,

J(x⋆) =

[

0 −1 −cos(π/6)
−1 0 cos(π/6)

]

,

∀x∈ R
3,K(x) = [0 0 cos(x3) ] ,

K(x⋆) = [0 0 cos(π/6) ] .

• Note thatÂ=

[

J(x⋆)
K(x⋆)

]

has linearly independent rows so thatx⋆ is a

regular point of the constraints.
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Example, continued

∇f (x⋆)+J(x⋆)†λ⋆+K(x⋆)†µ⋆

=

[

1
6
0

]

+

[

0 −1
−1 0

−cos(π/6) cos(π/6)

]

[

6
1

]

+

[

0
0

cos(π/6)

]

5,

= 0;
µ⋆h(x⋆) = [5]× [0],

= [0];
g(x⋆) = 0;
h(x⋆) = [0],

≤ [0]; and
µ⋆ = [5],

≥ [0].

• That is,x⋆,λ⋆, andµ⋆ satisfy the first-order necessary conditions.
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4.6.5 Sensitivity
• We can also develop sensitivity analysis.
• Again, the Lagrange multipliers provide information aboutsensitivity to

changes in the constraints.
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4.7 Integer problems
• In some formulations, the entries of the decision vector must be

integer-valued:
– the decision to have a generator on or off inunit commitment is

binary-valued,
– combined-cycle generating units typically have several discrete

operating modes, such as: off; one gas turbine operating; one gas
turbine and one steam turbine operating; two gas turbines operating;
two gas turbines and one steam turbine operating.

• We writeZ= {0,±1,±2, . . .} for the set of integers.
• An integer programming problem orinteger optimization problem

seeks the minimum and minimizer over choices of a decision variable that
lies in some subset ofZn.

• To emphasize that the variables are no longer continuous, wewill use the
symbolz for decision vectors with entries that are integer-valued.
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4.7.1 Example
• Suppose thatS⊆ Z2 is the set of pointsz such thatz1 ∈ {0,1} and

z2 ∈ {0,1}.
• Why is this set non-convex?

✲

✻

z2

z1
0 1

0

1

• •

• •

Fig. 4.19. Example
feasible setS for integer
program.
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4.7.2 Non-convexity of feasible set
• Integer programming problems have non-convex feasible sets:

– The feasible set in the example is non-convex since a line drawn
between any two points in the feasible set does not entirely lie in the set.

• Because of the non-convexity of the feasible set, iterativeimprovement
algorithms are usually insufficient to solve integer programming
problems:
– General-purpose algorithms for solving integer programming problems

can be extremely computationally intensive.
– Some particular integer programming problems can be solved

efficiently.
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4.7.3 Types of problems
• As with optimization problems involving continuous variables, we can

consider integer problems with feasible sets that are defined in terms of:
– equality constraints, and
– inequality constraints.

• Commercial software for integer programming is available for integer
linear programs:

min
z∈Zn

{c†z|Az= b,Cz≤ d},

• andinteger quadratic programs:

min
z∈Zn

{

1
2

x†Qx+c†z

∣

∣

∣

∣

Az= b,Cz≤ d

}

.
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4.7.4 Duality and Lagrangian relaxation
• We can consider dualizing constraints, such as the supply–demand

balance constraint, and solving the dual:
– maximizing a dual of a problem with integer variables is alsocalled

Lagrangian relaxation.
• Because of the non-convex feasible set, there is usually a duality gap

between primal and dual formulations of integer programming problems:
– In our profit maximization interpretation, this typically means that

pricesπ associated with the dual variables areinsufficientto induce a
profit maximizer to behave consistently with minimizing thecosts
subject to the constraints.

– In the context of electricity markets that include unit commitment, such
as USday-ahead markets, this means that we need more than prices on
energy supply–demand balance to induce generators to be committed
consistent with minimizing the costs.

– Side paymentsare typically used in such electricity markets to induce
behavior that is consistent with minimizing overall costs.

– See in Section10.
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4.8 Mixed-integer problems
• In many problems, only some of the entries of the decision vector must be

integer-valued, while the others are continuous:
– the decision to have a generator on or off inunit commitment is

binary-valued,
– the production level of the generator is continuous-valued.

• A mixed-integer programming (MIP) problem ormixed-integer
optimization problem seeks the minimum and minimizer over choices of
decision variables such that some entries have integer values and some
have continuous values.
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4.8.1 Example

• Suppose thatP⊆ R2 is the set of points

[

z
x

]

such thatz∈ {0,1} and

2z≤ x≤ 4z.
• Why is this set non-convex?

✲

✻

x

z
0 1

0

2

4

•

Fig. 4.20. Example
feasible set P for
mixed-integer program.
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4.8.2 Discussion
• The feasible setP in Figure4.20illustrates typical generator production

constraints including generatorunit commitment:
z= 1 corresponds to the generator being off, while
z= 1 corresponding to the generator being on and able to produceover a

continuous range betweenx= 2 andx= 4 units of output.
• Again, because of the non-convexity of the feasible set, general purpose

algorithms are very computationally intensive.
• Commercial software for mixed-integer programming is available for

mixed-integer linear programs (MILP or simply MIP):

min
z∈Znz,x∈Rnx

{

c†
[

z
x

]∣

∣

∣

∣

A

[

z
x

]

= b,C

[

z
x

]

≤ d

}

, (4.44)

for mixed-integer quadratic programs, and for some other types of
problems with integer and continuous variables.

• As with integer programming problems, there is usually a duality gap
with mixed-integer programming problems.
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4.8.3 Example of duality gap

• Consider the problem min[zx]∈P

{

f

([

z
x

])∣

∣

∣

∣

g

([

z
x

])

= 0

}

, where

P⊆ R2, f : R2 → R, andg : R2 → R are defined by:

P =

{[

z
x

]

∈ R
2
∣

∣

∣

∣

z∈ {0,1},2z≤ x≤ 4z

}

,

so thatP is the example feasible set in Figure4.20,

∀x∈ P, f

([

z
x

])

=











0, if z= 0 andx= 0,
(with the generator “off”),

4+x, if z= 1 and 2≤ x≤ 4,
(with the generator “on” and producingx),

∀x∈ R,g

([

z
x

])

= 3−x, so if g

([

z
x

])

= 0 then supplyx equals demand 3.

• Note that the generator has two variables associated with its operation:
– a “unit commitment” variablez, and
– a “production” variablex.
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Example of duality gap, continued
• The setP specifies the feasible operating points for the generator
• We can write this problem as a mixed-integer linear program as follows:

min
z∈Z,x∈R

{4z+x|−x=−3,0≤ z≤ 1,2z≤ x≤ 4z}. (4.45)

• We can solve this simple problem by inspection:
– To meed demand of 3, the generator must be on, so thatz⋆ = 1, and the

generator must have productionx⋆ = 3.
– That is, the only feasible point, and therefore the minimizer of this

problem, isz⋆ = 1 andx⋆ = 3.

– The minimum isf

([

z⋆

x⋆

])

= 4+x⋆ = 7.

• General MILPs aremuchharder to solve than this example.
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Example of duality gap, continued
• We consider the dual functionD : R→ R∪{−∞} with respect to the

equality constraint, defined by:

∀λ ∈ R,D(λ) = inf
[zx]∈P

L

([

z
x

]

,λ
)

,

= inf
[zx]∈P

{

f

([

z
x

])

+λ(3−x)

}

.

• To minimize the Lagrangian over

[

z
x

]

∈ P, we will need to consider the

values ofλ.
• First note that:

f

([

z
x

])

+λ(3−x) =

{

3λ, if z= 0 andx= 0,
3λ+4+(1−λ)x, if z= 1 and 2≤ x≤ 4,

=

{

3λ, if z= 0 andx= 0,
3λ+4− (λ−1)x, if z= 1 and 2≤ x≤ 4.
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Example of duality gap, continued

• To minimizeL

([

z
x

]

,λ
)

= f

([

z
x

])

+λ(3−x), we must compare 3λ

to values of 3λ+4− (λ−1)x with 2≤ x≤ 4.
• We consider various cases forλ.

if λ ≤ 1

3λ < 3λ+4,
≤ 3λ+4+(1−λ)x, for 2≤ x≤ 4.

• So, the Lagrangian is minimized forz⋆⋆ = 0,x⋆⋆ = 0.
• D(λ) = 3λ.

if 1< λ < 2
• Then(λ−1)x< 4 for 2≤ x≤ 4.

3λ < 3λ+4− (λ−1)x, for 2≤ x≤ 4.

• So, the Lagrangian is again minimized forz⋆⋆ = 0,x⋆⋆ = 0.
• D(λ) = 3λ.
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Example of duality gap, continued
if λ = 2

• Then 3λ < 3λ+4− (λ−1)x for 2≤ x< 4.
• Also, 3λ = 3λ+4− (λ−1)x for x= 4.
• So, the Lagrangian has two minimizers:

z⋆⋆ = 0,x⋆⋆ = 0, and
z⋆⋆ = 1,x⋆⋆ = 4.

• D(λ) = 3λ.
if λ > 2

3λ > 3λ+4− (λ−1)x, for x= 4.

• Moreover, the right-hand side decreases with increasingx, so it is
minimized over 2≤ x≤ 4 by x= 4.

• So, the Lagrangian is minimized forz⋆⋆ = 1,x⋆⋆ = 4.
• D(λ) = 3λ+4− (λ−1)4 = 8−λ.
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Example of duality gap, continued
• The figure shows that the maximum of the dual occurs atλ⋆ = 2 with

D(λ⋆) = 6.
• However, the corresponding value ofx⋆⋆ does not meet demand.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

λ

D(λ),x⋆⋆

λ⋆

Fig. 4.21. Dual func-
tion D(λ) (shown solid)
and the corresponding
value of x⋆⋆ (shown
dotted) versus λ for
example mixed-integer
problem.
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Example of duality gap, continued
• In this problem there is a duality gap, since:

f

([

z⋆

x⋆

])

= 7> 6= D(λ⋆).

• Calculation of the dual maximizer was laborious in this caseand is
challenging in general for mixed-integer problems.

• For future reference in the discussion of unit commitment inSection10,
note that the calculation can be simplified in cases where theobjective is
linear and theconvex hullof the generator production constraint set can
be evaluated conveniently:
– the convex hull of a setP is the smallest convex set that containsP,
– for some specific formulations, the convex hull can be obtained by

relaxing the integer variables to being continuous,
– see Exercise4.9.
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4.8.4 Economic interpretation of duality gap
• In an economic context, consider paying the generator a price π for its

energy.
• No priceπ for production will equate supply to the demand of 3:

– For π < 2, a profit maximizing firm will produce nothing.
– For π = 2, a profit maximizing firm is indifferent between producing

nothing and producing 4 units. It prefers these alternatives to producing
at any other level.

– For π > 2, a profit maximizing firm will want to produce 4 units,
exceeding demand.

• As mentioned in Section4.7.4, whenever there is a duality gap, there are
no prices on the corresponding dualized constraints that will induce profit
maximizing firms to satisfy the constraints:
– side paymentsthat are separate from the prices on the dualized

constraints will be used as part of the pricing rule to inducebehavior
that is consistent with minimizing overall costs (see Section10).
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4.9 Uncertainty
• In many practical problems there isuncertatinty :

– generators may fail randomly,
– renewable resources vary in production, and
– demand levels differ from forecasts.

• Stochastic optimizationis a formal approach to optimizing the expected
value of the objective of a optimization problem that is subject to
uncertainty:
– typically requires explicit representation of probability distributions of

random events,
– has large computational effort when there are multiple dimensions of

uncertainty.
• Robust optimization is a formal approach to optimizing the worst case

of the objective of an optimization problem that is subject to uncertainty:
– worst case focus can result in pessimistic results comparedto “typical

case” conditions.
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Uncertainty, continued
• Although there are proposals for inclusion of stochastic orrobust

formulations in electricity markets, they are typically not used currently.
• Electricity market formulations usually focus on optimizing:

– an objective that represents the typical case conditions,
– but include constraints that set aside generation capacityas “reserves”

to cope with variations from typical conditions.
• See in Section8.12.1.
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4.10 Summary
• In this chapter we have defined optimization problems.
• We illustrated particular types of problems with elementary examples.
• We defined the notion of convexity.
• We defined local and global and strict and non-strict minima and

minimizers of optimization problems.
• Continuous, integer and mixed-integer problems were defined.
• Duality and optimality conditions for continuous problemswere

presented.
• Integer and mixed-integer problems were defined.
• Implications of dualizing non-convex problems was explored.
• Uncertainty was briefly discussed.
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Homework exercises

4.1Consider the functionf : R2 → R defined by:

∀x∈ R
2, f (x) = (x1)

2+(x2)
2+2x2−3.

(i) Sketch the contour setsC f ( f̃ ) for f̃ = 0,1,2,3.
(ii) Sketch on the same graph the set of points satisfyingg(x) = 0 where

g : R2 → R is defined by:

∀x∈ R
2,g(x) = x1+2x2−3.

(iii) Use your sketch to find the minimumf ⋆ and the minimizerx⋆ of
min
x∈R2

{ f (x)|g(x) = 0}.

(iv) Find a value of the Lagrange multiplierλ⋆ that satisfies the first-order
necessary conditions in Theorem4.9. (Hint: Theorem4.9only considers
the case of linear constraints, but the constraints in this problem are
actually linear.)
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4.2 In this exercise we consider the left- and right-hand sides of (4.22) for the
case where the feasible set of the primal problem isS= {x∈ Rn|g(x) = 0}. That
is, we only have equality constraints and we can neglect the dual variablesµ
corresponding to the inequality constraints.

(i) Consider the primal problem minx∈R2{ f (x)|g(x) = 0} where the
functions f : R2 → R andg : R2 → R are defined as:

∀x∈ R
2, f (x) = −2(x1−x2)

2+(x1+x2)
2,

∀x∈ R
2,g(x) = x1−x2,

Evaluate the left- and right-hand sides of (4.22) for this f andg. That is,
evaluate minx∈R2{ f (x)|g(x) = 0} and supλ∈ED(λ). Be careful that you
actually find an infimum of the inner problem. Is there a duality gap?

(ii) Repeat the previous part but re-definef to be:

∀x∈ R
2, f (x) = (x1+x2)

2.

(iii) Repeat the previous part but re-definef to be:

∀x∈ R
2, f (x) = (x1+x2)

2+(x1−x2)
2.
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4.3Consider the functionf : R→ R defined by:

∀x∈ R, f (x) = exp(−x).

(i) Calculate∇f .
(ii) Calculate∇2f .

(iii) Show that f is convex.
(iv) Show that nox exists satisfying∇f (x) = 0.
(v) Show that there is no minimizer of minx∈R f (x).
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4.4 In this exercise we use GAMS or MATLAB to minimize two functions.
(i) Use GAMS or use the MATLAB function fminunc to minimize

f : R2 → R defined by
∀x∈ R2, f (x) = (x1−1)2+(x2−3)2−1.8(x1−1)(x2−3).
If you use MATLAB , you should write a MATLAB M-file to evaluate both
f and∇f . Specify that you are supplying the gradient∇f by setting the
GradObj option toon . Set theLargeScale option tooff . Use

initial guessx(0) =

[

3
−5

]

. Report the number of iterations required.

(ii) Repeat the first part, but minimize the functionf : R4 → R defined by:

∀x∈ R
4, f (x) = (x1−1)2+2(x2−3)2+2(x3−1)2+(x4−3)2

−1.8(x1−1)(x2−3)−1.8(x2−3)(x3−1)−1.8(x3−1)(x4−3),

using initial guessx(0) =







3
−5

3
−5






. Report the number of iterations

required.
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4.5Consider the problem minx∈R2{ f (x)|Ax= b} where f : R2 → R is defined
by:

∀x∈ R
2, f (x) =

1
2

x†Qx+c†x,

with:

Q=

[

2 −1
−1 2

]

,c=

[

4
3

]

,

and the coefficient matrix and right-hand side of the constraints is specified by:

A= [1 −1] ,b= [0].

(i) Solve the problem by solving the first-order necessary conditions.
(ii) Use GAMS or use the MATLAB functionquadprog to solve the

problem. Use initial guessx(0) =

[

3
−5

]

.
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4.6Consider Problem (4.5) from Section4.1.9:

min
x∈R2

{ f (x)|Ax= b},

where f : R2 → R, A∈ R1×2, andb∈ R1 were defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] .

Suppose that the equality constraints changed fromAx= b to Ax= b− γ.
(i) Calculate the sensitivity of the minimum toγ, evaluated atγ = [0].
(ii) Solve the changed problem explicitly forγ = [0.1] and compare to the

estimate provided by the sensitivity analysis.
(iii) Repeat the previous part forγ = [1].
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4.7Consider Problem (4.10):

min
x∈R2

{ f (x)|Ax= b,Cx≤ d},

where

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .

(i) Use GAMS or use the MATLAB functionquadprog to find the
minimizer and minimum of the problem. Use as initial guess
x(0)1 = 5,x(0)2 = 5.

(ii) Form the dual of the problem.
(iii) Use GAMS or use the MATLAB functionquadprog to find the

maximum of the dual problem. Use as initial guess
µ(0) = [0.25],λ(0) = [0].
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4.8Consider Problem (4.10), which has objectivef : R2 → R and equality
constraintAx= b defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] .

However, suppose that the inequality constraint was changed toCx≤ d−η, with
C∈ R1×2 andd ∈ R1 defined by:

C = [0 −1] ,
d = [−3] .

Let η = [0.1].
(i) Use Theorem4.14to estimate the change in the minimum due to the

change in the inequality constraint.
(ii) Solve the change-case problem explicitly and compare the result to that

obtained by sensitivity analysis.
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4.9Consider the example mixed-integer linear program (4.45) from
Section4.8.3:

min
z∈Z,x∈R

{4z+x|−x=−3,0≤ z≤ 1,2z≤ x≤ 4z}.

(i) Solve this problem. (Hint: What is the value ofx⋆ to satisfy the equality
constraint? What is the value ofz⋆ to be consistent with this value ofx⋆?)
Report the minimizing valuesz⋆ andx⋆.

(ii) Solve the following continuous problem that is obtained from the
mixed-integer linear program by setting the integer variable equal toz⋆

obtained in the previous part:

min
x∈R

{4z⋆+x|−x=−3,2z⋆ ≤ x≤ 4z⋆}.

Report the minimizing valuex⋆ and Lagrange multiplierλ⋆ on the
constraint−x=−3.

(iii) Sketch the convex hull of the generator production constraint setP that is
illustrated in Figure4.20. That is, sketch the convex hull of:

{[

z
x

]

∈ Z×R

∣

∣

∣

∣

0≤ z≤ 1,2z≤ x≤ 4z

}

.
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(iv) Compare the convex hull in the previous part to the set obtained by
relaxing the integer variable to being continuous:

{[

z
x

]

∈ R
2

∣

∣

∣

∣

0≤ z≤ 1,2z≤ x≤ 4z

}

.

(v) Solve the continuous relaxation of the mixed-integer linear program.
That is, solve the following problem:

min
z∈R,x∈R

{4z+x|−x=−3,0≤ z≤ 1,2z≤ x≤ 4z}.

Report the Lagrange multiplierλ⋆ on the constraint−x=−3. Compare
to the value of the dual maximizer obtained in Section4.8.3.
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4.10In this exercise, we will solve a mixed-integer linear program using
MATLAB andyalmip , which is a modeling and optimization toolbox. To get
started, you need to have MATLAB andyalmip installed. For a tutorial on how
to obtain, install, and use them, see:
www.ece.utexas.edu/ ˜ baldick/classes/394V/Matlab_mip.pdf .
The problem is still small enough that you could solve it by enumerating cases;
however, we will need to solve larger problems in Section10 that cannot be
reasonably solved by enumeration, so we will use MATLAB andyalmip for
this exercise to gain experience for the later exercises.
We will consider the following mixed-integer linear problem:

min
z∈Z2,x∈R2

{

4z1+x1+z2+2x2

∣

∣

∣

∣

−x1−x2 =−D,0≤ z1 ≤ 1,2z1 ≤ x1 ≤ 4z1,
0≤ z2 ≤ 1,0.5z2 ≤ x2 ≤ 4z2

}

,

for varying values ofD. This problem is similar to the problem solved in
Exercise4.9, but now has two binary and two continuous variables,
corresponding to the commitment and dispatch variables of two generating units.

(i) Suppose thatD = 1. Solve the problem. Explain why the solution
obtained is the only feasible solution.

(ii) Suppose thatD = 2. Solve the problem. Explain why the solution
obtained is qualitatively different to that obtained in Exercise4.9.
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(iii) Suppose thatD = 3. Solve the problem. Are there any alternative
solutions?

(iv) Suppose thatD = 4. Solve the problem. Why has the solution changed
qualitatively compared to the case thatD = 2?
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