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Power flow

(i) Review of power concepts,
(ii) Formulation of power flow,
(iii) Problem characteristics and solution,
(iv) Linearized power flow,
(v) Fixed voltage schedule,

(vi) Line flow,
(vii) Direct Current (DC) power flow,
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(viii) Example,
(ix) DC power flow circuit interpretation,
(x) Losses,

(xi) Contingency analysis,
(xii) Homework exercises.
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3.1 Review of power concepts
• Power is the rate of doing work, measured in W, kW, MW, or GW.
• Energy is the work accomplished over time, measured in Wh, kWh,

MWh, or GWh.
• When power varies over time, the energy is the integral over time of the

power.
• Figure3.1shows conceptually that generators inject power into the

transmission (and in some cases the distribution) system, while demand
withdraws power from the distribution (and in some cases the
transmission) system.
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Fig. 3.1. Injection
and withdrawal of
power.
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Review of power concepts, continued
• In principle, power could be generated, transmitted, and consumed using

eitherdirect current (DC) or alternating current (AC).
• Cost-effective and low loss transmission of bulk power relies on being

able to create high voltages:
– power is proportional to the product of current and voltage,so higher

voltages allow for higher power levels at a given current,
– for a given power, higher voltage means lower current, whichimplies

lower losses for a given resistance of conductor.
• Generation and consumption is more convenient at lower voltages:

– we will mostly focus on generation and transmission, modeling
consumption through aggregated net loads at distribution substations,

– step-down transformers at substations and on distributionfeeders allow
for consumption (and in some cases generation) at lower voltages.

• Other relevant issues include the probability of generation, transmission,
and distribution failures, which affect thequality of supply to end users:
– local effects on distribution system typically affect quality of supply

more noticeably than generation and transmission failures.
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Review of power concepts, continued
• Until the advent of power electronics, only AC power could easily be

transformed from one voltage to another:
– basic reason for ubiquity of AC power systems.

• AC transmission of power also involves the back-and-forth flow of power
between electric and magnetic fields:
– this back-and-forth flow is calledreactive power,
– to distinguish reactive power from the power that can actually be

consumed by a load, the latter is calledreal power,
– as we will see in Section3.2.6, complex poweris a complex number

defined by(real power)+(reactive power)
√
−1 and has convenient

properties for computation.
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Review of power concepts, continued
• The relationship between voltage and current in a circuit isdetermined by

the characteristics of the circuit elements andKirchhoff’s laws .
• Kirchhoff’s current law:

– due to conservation of charge passing a bus or node of circuit,
– analogous laws apply in othertransportation networks,
– implies that supply ofelectricpower always equals demand of electric

power plus losses,
– mis-match between mechanical and electrical power is smoothed by

inertia of system and results in frequency change,
– enforcing supply–demand balance between mechanical powerand

electrical power is different to enforcing supply–demand balance in
typical markets, such as a market for apartments to be described in
Section6.

• Kirchhoff’s voltage law:
– sum of voltages around loop is zero,
– electric transmission network behaves differently to mostother

transportation networks because of Kirchhoff’s voltage law.
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Review of power concepts, continued
• Kirchhoff’s laws implicitly determine the voltages and currents due to the

real and reactive power injections at the generators and thewithdrawals at
the loads.

• Using Kirchhoff’s laws to solve for the voltages and currents in a circuit
consisting of generators, the transmission and/or distribution system, and
loads is called thepower flow problem:
– assumes a particular operating condition,
– quasi-staticassumption that ignores dynamics and changes.

• The solution provides information about the flow of current and power on
the transmission and distribution lines.

• The lines have limited capacities, so calculation of power flow enables us
to decide whether or not a particular pattern of generation would result in
acceptable flows on lines:
– constraints on transmission operation implicitly determine limitations

on the patterns of injections and withdrawals,
– the locational marginal pricing market reflects these limitations into

prices that vary by bus (or node).
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3.2 Formulation of power flow
3.2.1 Variables
3.2.1.1 Phasors

• We can use complex numbers, calledphasors, to represent the magnitude
and angle of the AC voltages and currents at a fixed frequency.

• Themagnitude of the complex number represents the root-mean-square
magnitude of the voltage or current.

• Theangleof the complex number represents the angular displacement
between the sinusoidal voltage or current and a reference sinusoid.

3.2.1.2 Reference angle
• The angles of the voltages and currents in the system would all change if

we changed the angle of our reference sinusoid, but this would have no
effect on the physical system.

• We can therefore arbitrarily assign the angle at one of the buses to be zero
and measure all the other angles with respect to this angle.

• We call this bus thereference busor theangle reference bus, busρ, and
typically number the buses so thatρ = 0 or ρ = 1.
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3.2.1.3 Representation of complex numbers
• To represent a complex numberV ∈ C with real numbers requires two

real numbers, either:
– themagnitude |V| and theangle 6 V, so thatV = |V|exp( 6 V

√
−1), or

– thereal ℜ{V} andimaginary ℑ{V} parts, so that
V = ℜ{V}+ℑ{V}

√
−1.

• Since we need to compare voltage magnitudes to limits to check
satisfaction of voltage limit constraints, we will represent voltages as
magnitudes and angles:
– Some recent developments in power flow have used the real and

imaginary parts representation.
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3.2.1.4 Scaling and “per unit”
• There are voltage transformers throughout a typical power system:

– “step-up” voltage at a generator to transmission voltages to enable
transfer from generator to transmission system,

– transform from one transmission voltage to another,
– “step-down” voltage at a distribution substation and in distribution

feeder for convenient use by load.
• The nominal voltage magnitude varies considerably across the system by

several orders of magnitude.
• We scale the voltage magnitude so that an actual value of 121 kV in the

110 kV part of the system would be represented by a scaled value of:

121 kV
110 kV

= 1.1,

• while an actual value of 688.5 kV in the 765 kV part of the system would
be represented by a scaled value of:

688.5 kV
765 kV

= 0.9.
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3.2.2 Symmetry
3.2.2.1 Three-phase circuits

• Generation-transmission systems are usually operated as balanced
three-phase systems, with generators, lines, and (roughly) distribution
system loads arranged as symmetric triplets.
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Fig. 3.2. An example
balanced three-phase
system.
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3.2.2.2 Per-phase equivalent
• The quasi-static behavior of a balanced three-phase circuit can be

completely determined from the behavior of aper-phase equivalent
circuit .

• Figure3.3shows the a-phase equivalent circuit of the three-phase circuit
of Figure3.2.

generator
transmission

line load

neutral
✚✙
✛✘

a

∼

Zp

ZL

Fig. 3.3. Per-phase
equivalent circuit for
the three-phase circuit
in Figure3.2.
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3.2.3 Transmission lines
• Transmission lines are physically extended objects, so theboxes in

Figures3.2and3.3representing transmission lines are actually
distributed parameter circuits ,

• We can represent the terminal behavior of such distributed parameter
circuits with aπ-equivalent circuit.

• In the model, there are twoshunt componentsconnected from the
terminals to neutral and aseries componentbridging the terminals.

• Each component of theπ-equivalent has an impedance (or, equivalently,
anadmittance) determined by the characteristics of the line.

neutral

ℓ k
✉

✉

s
h
u
n
t

series ✉

✉

s
h
u
n
t

Fig. 3.4. Equivalent
π circuit of per-phase
equivalent of transmis-
sion line.
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3.2.4 Bus admittance matrix
• Consider the per-phase equivalent of a three bus, three linetransmission

system as illustrated in Figure3.5.
• For each busℓ= 1,2,3, the pair of shuntπ elements joining nodeℓ to

neutral can be combined together to form a single shunt element.
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Fig. 3.5. Per-phase
equivalent circuit model
for three bus, three line
system.
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Bus admittance matrix, continued
• This yields a circuit with:

– one element corresponding to each of the busesℓ= 1,2,3, joining node
ℓ to neutral, and

– one element corresponding to each line,
• as illustrated in Figure3.6.
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Fig. 3.6. Per-phase
equivalent circuit model
for three bus, three line
system with parallel
components combined.
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Bus admittance matrix, continued
• As shown in Figure3.6, let us writeYℓ for the admittance of the element

joining nodeℓ to neutral, and
• Yℓk for the admittance of the series element corresponding to a line

joining busesℓ andk.
• The series element is most easily characterized in terms of its impedance.
• For a series impedanceZℓk = Rℓk+Xℓk

√
−1 between busesℓ andk, the

corresponding admittanceYℓk is given by:

Yℓk =
1

Zℓk
,

=
1

Rℓk+Xℓk
√
−1

=
1

Rℓk+Xℓk
√
−1

× Rℓk−Xℓk
√
−1

Rℓk−Xℓk
√
−1

=
Rℓk−Xℓk

√
−1

(Rℓk)2+(Xℓk)2. (3.1)

• If Zℓk = 0.1+
√
−1, what isYℓk = 1/Zℓk?
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Bus admittance matrix, continued
• Let V ∈ CnV be the vector of phasor voltages at all thenV buses in the

system and letI ∈ CnV be the vector of phasor current injections into the
transmission network at all of the buses in the system.

• Using Kirchhoff’s laws, we can obtain a relationship of the form AV = I
between current and voltage, whereA∈ CnV×nV :

∀ℓ,k,Aℓk =







Yℓ+∑k′∈J(ℓ)Yℓk′, if ℓ= k,
−Yℓk, if k∈ J(ℓ) or ℓ ∈ J(k),

0, otherwise,
(3.2)

• whereJ(ℓ) is the set of buses joined directly by a transmission line to bus
ℓ.

• The linear simultaneous equationsAV = I represent conservation of
current at each of the buses.

• A is called thebus admittance matrix:
– theℓ-th diagonal entry is the sum of the admittances connected tobusℓ,
– theℓk-th off-diagonal entry is minus the admittance connecting busℓ

andk.
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Bus admittance matrix, continued
• The bus admittance matrix can be thought of as being “built up” as the

sum of matrices due to individual series and shunt elements.
• For example, if a line joins busℓ to busk and its series element has

admittanceYℓk then the contribution to the bus admittance matrix is
Yℓkwseries(wseries)

† ∈ CnV×nV ,
• wherewseries∈ RnV is a vector with a one in theℓ-th entry, a minus one in

thek-th entry, and zeros elsewhere, so:

Yℓkw
series(wseries)

†

= Yℓk











ℓ-th column
︷︸︸︷

k-th column
︷︸︸︷

1 −1 } ℓ-th row

−1 1 } k-th row











=











ℓ-th column
︷︸︸︷

k-th column
︷︸︸︷

Yℓk −Yℓk } ℓ-th row

−Yℓk Yℓk } k-th row











.
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Bus admittance matrix, continued
• If the shunt element at busℓ has admittanceYℓ then the contribution to

bus admittance matrix isYℓwshunt(wshunt)
† ∈ CnV×nV ,

• wherewshunt∈ RnV is a vector with a one in theℓ-th entry and zeros
elsewhere, so:

Yℓw
shunt(wshunt)

†
= Yℓ







ℓ-th column
︷︸︸︷

1 } ℓ-th row






=







ℓ-th column
︷︸︸︷

Yℓ } ℓ-th row






.

• Summing these terms orstampscorresponding to each series and shunt
element results in the bus admittance matrixA with entries as defined
in (3.2).
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Bus admittance matrix, continued
• With this characterization, we can writeA=WY W†, where:

– the matrixY is a diagonal matrix with entries corresponding to the
admittances of the series and shunt elements in the line models, and

– the matrixW is the bus-to-element incidence matrix whose columns are
of the formwseriesor wshunt.

• If Y = G +
√
−1B thenA= G+

√
−1B, where

G = WGW†, (3.3)

B = WBW†. (3.4)
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3.2.5 Changes in bus admittance matrix
• Using the characterizationA=WY W†, we can consider the effect of

adding or removing a line from the system.
• For example, if we incorporate an additional line into the system between

busesℓ andk having series element with admittanceGℓk+
√
−1Bℓk, then

the admittance matrix is modified fromA to
A+(Gℓk+

√
−1Bℓk)wseries(wseries)

†
, with a similar observation for shunt

elements.
• Conversely, if we remove a line joining busesℓ andk from the system

then the admittance matrix is modified fromA to
A− (Gℓk+

√
−1Bℓk)wseries(wseries)

†
, with a similar observation for shunt

elements.
• Removing the line changes the real and imaginary parts of theadmittance

matrix to: G−Gℓkwseries(wseries)
†

andB−Bℓkwseries(wseries)
†
,

respectively.
• We will consider how suchoutagesof lines affects the system in

Section3.12.
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3.2.6 Generators and loads
• When electricity is bought and sold, the (real) power and energy are the

quantities that are usually priced, not the voltage or current.
• However, real power does not completely describe the interaction

between generators or loads and the system.
• We also have to characterize the injected reactive power.
• We can combine the real and reactive powers into thecomplex power,

which is the sum of:
the real power, and√
−1 times the reactive power.
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Generators and loads, continued
• The usefulness of this representation is that, for example,the net complex

powerSℓ injected at nodeℓ into the network is given by:

Sℓ =VℓI
∗
ℓ ,

• where the superscript∗ indicatescomplex conjugate:
– note difference between complex conjugate, denoted superscript ∗, and

optimal or desired value, denoted superscript⋆.
• The currentIℓ equals the sum of:

the current flowing into the shunt elementYℓ, and
the sum of the currents flowing into each line connectingℓ to a bus

k∈ J(ℓ) through admittanceYℓk.
• We can substitute for the currents to obtain:

Sℓ = Vℓ[AℓℓVℓ+ ∑
k∈J(ℓ)

AℓkVk]
∗,

= |Vℓ|2A∗
ℓℓ+ ∑

k∈J(ℓ)
A∗
ℓkVℓV

∗
k . (3.5)
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Generators and loads, continued
• Let Aℓk = Gℓk+Bℓk

√
−1,∀ℓ,k, where we note that by (3.1) and (3.2):

– we have thatGℓk < 0 andBℓk > 0 for ℓ 6= k, and
– we have thatGℓℓ > 0 and the sign ofBℓℓ is indeterminate but typically

less than zero;
• let Sℓ = Pℓ+Qℓ

√
−1,∀ℓ, with:

– for generator buses,Pℓ > 0 andQℓ is typically positive,
– for load buses,Pℓ < 0 andQℓ < 0;

• and letVℓ = vℓexp(θℓ
√
−1),∀ℓ, with:

– the voltage magnitudevℓ ≈ 1 in scaled units to satisfy voltage limits,
– the voltage angleθℓ typically between−π/4 andπ/4 radians.

• Sometimes we will explicitly distinguish the real power injected by a
generator from the real power consumed by a load, by writingDℓ for the
real power load at busℓ:
– the net real power injection at a bus with generationPℓ and loadDℓ is

thenPℓ−Dℓ, with bothPℓ andDℓ typically positive.
– Similarly, we will write Eℓ for the reactive power load at busℓ, so that

the net reactive power injection isQℓ−Eℓ.
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Generators and loads, continued
• For notational convenience in the following development, we will write

Pℓ andQℓ for the net real and reactive injections:
– later cases where we explicitly distinguish generation from load will be

clear from context.
• We can separate (3.5) into real and imaginary parts:

Pℓ = ∑
k∈J(ℓ)∪{ℓ}

vℓvk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)], (3.6)

Qℓ = ∑
k∈J(ℓ)∪{ℓ}

vℓvk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]. (3.7)

• The equations (3.6) and (3.7), which are called thepower flow equality
constraints, must be satisfied at each busℓ.

• That is, there are two constraints that must be satisfied at each bus.
• For a 5000 bus system, how many power flow equality constraints must

be satisfied?
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3.2.7 The power flow problem
• The power flow problem is to find values of voltage angles and

magnitudes that satisfy the power flow equality constraints.

3.2.7.1 Real and reactive power balance
• For convenience, we will sayPQbus for a bus where the real and reactive

power injection is specified.
• We specify:

– the real and reactive generations at thePQgenerator buses according to
the generator control settings, and

– the (typically negative) real and reactive net power injections at thePQ
load buses according to supplied data.

• At each such bus, we have two specified parameters (the real and reactive
power injection) and two unknowns that are entries in the decision vector
(the voltage magnitude and angle).

• However, we cannot arbitrarily specify the real and reactive power at all
the buses since this would typically violate the first law of
thermodynamics!
– Not all the buses can bePQ buses.
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3.2.7.2 Slack bus
• A traditional, butad hocapproach to finding a solution to the equations is

to single out aslack bus, busσ.
• At this slack bus, instead of specifying injected real and reactive power,

there is assumed to be a generator that produces whatever is needed to
“balance” the real and reactive power for the rest of the system, assuming
that such a solution exists.

• Typically, the slack bus is the same as the reference bus:
– in this case, we will typically number the buses so thatσ = ρ = 0 or

σ = ρ = 1,
– however, the slack bus and reference bus can be different, and the slack

can even be (conceptually) “distributed” across multiple buses.
• In optimal power flow (Section9.1), we can in principle avoid this issue

and not define a slack bus.
• For reasons that will become clear in the context of locational marginal

pricing, we also call the slack bus theprice reference bus.
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Slack bus, continued
• We re-interpret the real and reactive power generation at the slack bus,Pσ

andQσ, to be decision variables in our power flow formulation.
• We will find values ofPσ andQσ that satisfy the overall real and reactive

power balance in the system as implied by the first law of
thermodynamics:
– for reasons that will become clear in the next section, we will not have

to representPσ andQσ explicitly in the decision vectorx when solving
power flow,

– we can simply evaluatePσ andQσ at the end of the calculation by
evaluating an expression,

– in Section5 in the context ofeconomic dispatchwhere we are
considering the choice of generation at all the buses, we will also
consider the real and reactive generations to be decision variables and
soPσ andQσ together with all the other real and reactive generations
will be explicitly in the decision vectorx,

– example of where the definition ofx will depend on context.
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Slack bus, continued
• The generator at the slack bus supplies whatever power is necessary for

real and reactive power balance.
• To keep the number of unknowns equal to the number of equations, the

voltage magnitude at the slack bus is specified as any particular value:
– in Section9 in the context ofoptimal power flow we will re-interpret

the voltage magnitude at the slack bus to also be part of the decision
vector.

• If the reference bus and the slack bus are the same bus, then wecan call it
aVθ bus, since both the voltage magnitude and angle are specified.

• At theVθ bus, we still have two specified parameters (the voltage
magnitude and angle) and two unknowns (the real and reactivepower
injections).

• For most of the rest of the development of power flow, we will typically
assume that the reference bus and the slack bus are the same and typically
number the buses so that the reference/slack bus is bus 1:
– we will sketch how to consider the case where the reference and slack

buses are different.
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3.2.8 Non-linear equations
• We havenPQ PQbuses, including both thePQgenerators and the loads.
• Let n= 2nPQ and define a decision vectorx∈Rn consisting of the voltage

magnitudes and angles at thePQbuses:
– unknown realPσ and reactiveQσ generation at the slack bus will be

evaluated in terms ofx and so are not represented explicitly in the
decision vector.

• For every busℓ (that is, including the slack bus as well as thePQbuses)
define functionspℓ : Rn → R andqℓ : Rn → R by:

∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
vℓvk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)], (3.8)

∀x∈ R
n,qℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
vℓvk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]. (3.9)

• The functionspℓ andqℓ represent the real and reactive power flow,
respectively, from busℓ into the lines in the rest of the system.

• Kirchhoff’s laws require that the net real and reactive flow out of a bus
must be zero, so thatpℓ(x)−Pℓ = 0 andqℓ(x)−Qℓ = 0 at every busℓ.
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Non-linear equations, continued
• Consider the special caseρ = σ = 1 and define a vector function

g : Rn → Rn with entries given bypℓ−Pℓ andqℓ−Qℓ for all thePQ

buses:∀x∈ Rn,g(x) =











p2(x)−P2
p3(x)−P3

...
q2(x)−Q2
q3(x)−Q3

...











.

• If we solve the non-linear simultaneous equations:

g(x) = 0, (3.10)

• for x⋆ and then set:

P1 = p1(x
⋆),

Q1 = q1(x
⋆),

• then we will have satisfied the power flow equality constraints at all buses
including the slack busσ = 1.
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Non-linear equations, continued
• In the general case where the reference busρ may not be bus 1, and where

the slack busσ may not be bus 1:
– the decision vectorx consists of all of the voltage magnitudes and

angles except at the reference busρ, and
– the vector functiong : Rn → Rn has entries given bypℓ−Pℓ andqℓ−Qℓ

for all ℓ 6= σ.
• Again, if we solve the non-linear simultaneous equations (3.10), g(x) = 0,

for x⋆ and then set:

Pσ = pσ(x
⋆),

Qσ = qσ(x
⋆),

• then we will have satisfied the power flow equality constraints at all buses
including the slack busσ.

• Note that we simply evaluatedPσ andQσ by evaluating the expressions
pσ(x⋆) andqσ(x⋆).
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Non-linear equations, continued
• We have formulated the power flow problem as the solution of non-linear

simultaneous equations:

g(x) = 0.

• The vectorg includes real and reactive power entries for each bus except
the slack bus:
– we will calculate the real and reactive power injection at the slack bus

after we have solvedg(x) = 0.
• The vectorx includes voltage angles and magnitudes for each bus except

the reference bus:
– the voltage angle and magnitude for the reference/slack busare

specified.
• Note that as we develop other problems, we will re-definex andg as

needed for the formulation.
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Non-linear equations, continued
• For future notational convenience:

– Let θ, v, p, q, P, andQ be vectors consisting, respectively, of the entries
θℓ, vℓ, pℓ, qℓ, Pℓ, andQℓ for all the buses.

• We will often need to refer to a sub-vector with a particular entry omitted:
– let subscript−k on a vector denote that vector with the entryk omitted,
– soθ−k, v−k, p−k, q−k, P−k, andQ−k are, respectively, the sub-vectors ofθ,

v, p, q, P, andQ with the entriesθk, vk, pk, qk, Pk, andQk omitted.
• We will maintain these definitions ofθ, v, p, q, P, andQ throughout the

course:
– recall that we will change the definition ofx andg depending on the

particular problem being formulated.
• Also, let subscript−k on a matrix denote that matrix with rowk omitted:

– soA−k is the admittance matrixA with thek-th row omitted.
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Non-linear equations, continued
• With ρ = σ = 1 the reference/slack bus then:

x =

[
θ−1

v−1

]

,

g =

[

(p−1)−P−1
(q−1)−Q−1

]

.

• With this notation, the simultaneous equationsg(x) = 0 can also be
expressed in the equivalent form:

p−1(x) = p−1

([
θ−1

v−1

])

= P−1,

q−1(x) = q−1

([
θ−1

v−1

])

= Q−1.

• For a 5000 bus system, how many entries are inθ, v, p andq? How about
in θ−1, v−1, p−1, q−1, x, andg?
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Non-linear equations, continued
• In the general case where the reference busρ may not be bus 1, and where

the slack busσ may not be bus 1:

x =

[
θ−ρ

v−ρ

]

,

g =

[

(p−σ)−P−σ
(q−σ)−Q−σ

]

.

• The simultaneous equationsg(x) = 0 can also be expressed in the
equivalent form:

p−σ(x) = p−σ

([
θ−ρ

v−ρ

])

= P−σ,

q−σ(x) = q−σ

([
θ−ρ

v−ρ

])

= Q−σ.
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Non-linear equations, continued
• In summary, to solve Kirchhoff’s equations for the electricpower

network, we:
(i) solve (3.10), g(x) = 0, which is a system of non-linear

simultaneous equations, and
(ii) substitute the solutionx⋆ into (3.6) and (3.7) for the slack bus

ℓ= σ to find the real and reactive power generated at the slack bus.
• The real power generation at the slack bus isPσ = pσ(x⋆), sox⋆ also

satisfiesp(x⋆) = P and, moreover:

1†P= 1†p(x⋆).

• This expression evaluates the total losses in the system, since it sums the
total net real power injected into the transmission lines.

• Line currents and real and reactive power flows can also be calculated
oncex is known:
– see in Section3.7.
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3.2.9 Example
• Consider the three bus system shown in Figure3.7with busesℓ= 1,2,3

and with busρ = σ = 1 the reference/slack bus.
• Net generation ofPℓ, ℓ= 1,2,3, is shown at each bus and transmission

lines are represented by the lines joining the buses.
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Fig. 3.7. Three bus,
three line network.
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Example, continued
• The entries ofx∈ R4 andg : R4 → R4 are:

x=

[
θ−1

v−1

]

=







θ2
θ3

v2

v3






,

∀x∈ R
4,g(x) =

[
p−1(x)−P−1
q−1(x)−Q−1

]

=






p2(x)−P2
p3(x)−P3
q2(x)−Q2
q3(x)−Q3




 ,

• whereP2 is the net generation (generation minus demand) at bus 2, and
similarly for other buses and for the reactive power at the buses.
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Example, continued
• If we solveg(x) = 0, we can then use the resulting solutionx⋆ to evaluate

the real power and reactive power that must be produced at the
reference/slack bus to satisfy real and reactive power balance at every bus:

P1 = p1(x
⋆),

Q1 = q1(x
⋆).

• Losses in the system are given by:

1†p(x⋆) = P1+P2+P3.

• If the reference bus isρ = 2 and the slack bus isσ = 3, what are the
entries inx andg?

• If the slack bus isσ = 3, what are the expressions to evaluate the real and
reactive power injection at the slack bus?
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3.3 Problem characteristics and solution
3.3.1 Number of variables and equations

• There are the same number of variables as equations in (3.10).
• For a 5000 bus system, with oneVθ bus and the restPQbuses, how many

variables and equations are there?

3.3.2 Non-existence of direct algorithms
• Because the equations are non-linear, there is no direct algorithm, such as

factorization, to solve for the solutionx⋆ for arbitrary systems.
• The Newton–Raphson algorithm from Section2.5can be applied to this

problem, requiring:

– an initial guessx(0),

– evaluation of partial derivative terms in the Jacobian,
∂g
∂x , and

– solution of the Newton–Raphson update (2.10)–(2.11) at each iteration.
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3.3.3 Number of solutions
• There may be no solutions, one solution, or even multiple solutions

to (3.10).
• However, power systems are usually designed and operated sothat the

voltage magnitudes are near to nominal and the voltage angles are
relatively close to 0◦.

• If we restrict our attention to solutions such that voltage magnitudes are
all close to 1 (and make some other assumptions) then we can find
conditions for the there to be at most one solution.

• How many solutions are there to 2+sin(θ) = 0?
• How many solutions are there to 0.1+sin(θ) = 0?
• How many solutions are there to 0.1+sin(θ) = 0 with−π/4≤ θ ≤ π/4?
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3.3.4 Admittance matrix
3.3.4.1 Symmetry

• The admittance matrixA is symmetric.

3.3.4.2 Sparsity
• The matrixA is only sparsely populated with non-zero entries and each

component ofg depends on only a few components ofx.
• Sparsity is the key to practical solution of problems with large numbers of

buses.
• For a 5000 bus system having 5000 lines, how many non-zero entries are

there in the admittance matrixA?
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3.3.4.3 Values
• A typical line impedance has positive real and imaginary parts.
• The corresponding line admittanceYℓk therefore has positive real part and

negative imaginary part.
• If there is a line between busesℓ andk then the entries

Aℓk = Gℓk+
√
−1Bℓk in the admittance matrix satisfyGℓk < 0,Bℓk > 0.

• The diagonal entriesAℓℓ = Gℓℓ+
√
−1Bℓℓ in the admittance satisfy

Gℓℓ > 0 and, typically,Bℓℓ < 0.
• The resistanceRℓk of transmission lines is relatively small compared to

the inductive reactanceXℓk.
• Furthermore, the shunt elements are often also negligible compared to the

inductive reactance.
• This means that for transmission lines:

∀ℓ,∀k∈ J(ℓ)∪{ℓ}, |Gℓk| ≪ |Bℓk|.
• Note that distribution lines may have relatively higher resistance to

inductive reactance ratios than transmission:
– approximations described in following sections are less accurate for

distribution systems.
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3.4 Linearized power flow
3.4.1 Base-case

• Suppose that we are given values of real and reactive generation
P(0) ∈ RnPQ+1 andQ(0) ∈ RnPQ+1 that specify abase-case.
– For example, the base-case real and reactive generations could be the

current operating conditions.
– As another example,P(0) = 0 is the (unrealistic) condition of zero net

real power injection.

• Also suppose that we have a solutionx(0) =

[

θ(0)−1

v(0)−1

]

to the base-case

equations, so thatg(x(0)) = 0, or equivalently:

p−1(x
(0)) = P(0)

−1 ,

q−1(x
(0)) = Q(0)

−1 ,

• whereP(0)
−1 andQ(0)

−1 are the sub-vectors ofP(0) andQ(0), respectively, that
omit the reference/slack bus, whereρ = σ = 1.
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3.4.2 Change-case
• Now suppose that the real and reactive power generations change:

– from P(0) andQ(0),
– to P= P(0)+∆P andQ= Q(0)+∆Q, respectively.

• Similarly, we suppose that the value ofx changes fromx(0) to x(0)+∆x to
re-establish satisfaction of the power flow equationsg(x) = 0.

• That is, thechange-casepower flow equations are given by:

p−1(x
(0)+∆x) = P(0)

−1 +∆P−1,

q−1(x
(0)+∆x) = Q(0)

−1 +∆Q−1,

• where∆P−1 and∆Q−1 are the sub-vectors of∆P and∆Q, respectively, that
omit the reference/slack bus.

• The equations are non-linear equations in∆x.
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Change-case, continued
• Note the change in net generation at the reference/slack busis required to

be consistent with the change∆x.
• So, we also have that:

p1(x
(0)+∆x) = P(0)

1 +∆P1,

q1(x
(0)+∆x) = Q(0)

1 +∆Q1.

• That is, the change in generation at the reference/slack buscan be
calculated (or estimated) once∆x is known or estimated.
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3.4.3 First-order Taylor approximation
• To find an approximate solution to the change-case equations, we form

first-order Taylor approximations to p−1 andq−1:

p−1(x
(0)+∆x) ≈ p−1(x

(0))+
∂p−1
∂x (x(0))∆x,

q−1(x
(0)+∆x) ≈ q−1(x

(0))+
∂q−1
∂x (x(0))∆x.

• For future reference, note that the matrices
∂p−1
∂x (x) and

∂q−1
∂x (x) form the

Jacobian of the system of equationsp−1(x) = P−1,q−1(x) = Q−1:





∂p−1
∂x (x)

∂q−1
∂x (x)




 .
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3.4.4 Linearization of change-case equations
• Substituting the first-order Taylor approximations into the change-case

equations, we obtain:

p−1(x
(0))+

∂p−1
∂x (x(0))∆x ≈ P(0)

−1 +∆P−1,

q−1(x
(0))+

∂q−1
∂x (x(0))∆x ≈ Q(0)

−1 +∆Q−1.

• From the base-case solution, we havep−1(x(0)) = P(0)
−1 and

q−1(x(0)) = Q(0)
−1 .

• Ignoring the error in the first-order Taylor approximation,we have:

∂p−1
∂x (x(0))∆x = ∆P−1,

∂q−1
∂x (x(0))∆x = ∆Q−1.
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Linearization of change-case equations, continued

• Typically, the Jacobian






∂p−1
∂x (x(0))

∂q−1
∂x (x(0))




 is non-singular.

• That is, we can solve:





∂p−1
∂x (x(0))

∂q−1
∂x (x(0))




∆x=

[

∆P−1
∆Q−1

]

,

• for ∆x.
• These aresparselinear equations, which can be solved efficiently for∆x.
• This approximation to the solution of the change-case powerflow

equations is equivalent to performing one iteration of the
Newton–Raphson method, starting at the base-case specifiedby x(0).

• For a 5000 bus system, what is the size of the coefficient matrix of the
linear equations?
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Linearization of change-case equations, continued
• Moreover, the change in real and reactive power at the slack bus will

approximately satisfy:

∆P1 =
∂p1
∂x (x(0))∆x,

∆Q1 =
∂q1
∂x (x(0))∆x.
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3.4.5 Jacobian
3.4.5.1 Terms

• Recall that the entries inp : Rn → RnPQ+1 are defined by:

∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
vℓvk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)].

• The entries inq : Rn → RnPQ+1 are defined by:qℓ : Rn → R:

∀x∈ R
n,qℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
vℓvk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)].

• The entries in the vectorx are either of the formθk or of the formvk.
• To examine the terms in the Jacobian, partitionx so that all the voltage

angles appear first in a sub-vectorθ−1 followed by all the voltage
magnitudes in a sub-vectorv−1, so that:

x=

[
θ−1

v−1

]

.
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Terms, continued
• There are four qualitative types of partial derivative terms corresponding

to each combination:

∀x∈ R
n,

∂pℓ
∂θk

(x)

=







∑
j∈J(ℓ)

vℓv j [−Gℓ j sin(θℓ−θ j)+Bℓ j cos(θℓ−θ j)], if k= ℓ,

vℓvk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)], if k∈ J(ℓ),
0, otherwise,

∀x∈ R
n,

∂pℓ
∂vk

(x)

=







2vℓGℓℓ+ ∑
j∈J(ℓ)

v j [Gℓ j cos(θℓ−θ j)+Bℓ j sin(θℓ−θ j)], if k= ℓ,

vℓ[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)], if k∈ J(ℓ),
0, otherwise,
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Terms, continued

∀x∈ R
n,

∂qℓ
∂θk

(x)

=







∑
j∈J(ℓ)

vℓv j [Gℓ j cos(θℓ−θ j)+Bℓ j sin(θℓ−θ j)], if k= ℓ,

vℓvk[−Gℓkcos(θℓ−θk)−Bℓksin(θℓ−θk)], if k∈ J(ℓ),
0, otherwise,

∀x∈ R
n,

∂qℓ
∂vk

(x)

=







−2vℓBℓℓ+ ∑
j∈J(ℓ)

v j [Gℓ j sin(θℓ−θ j)−Bℓ j cos(θℓ−θ j)], if k= ℓ,

vℓ[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)], if k∈ J(ℓ),
0, otherwise.
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3.4.5.2 Partitioning by types of terms
• Based on the partitioning ofx, we can partition the Jacobian into four

blocks:





∂p−1
∂θ−1

(x)
∂p−1
∂v−1

(x)

∂q−1
∂θ−1

(x)
∂q−1
∂v−1

(x)




 .

• For a 5000 bus system, with 5000 lines, how many non-zero entries are
there in each of these blocks? Assume that there are exactly two lines
connected to the slack bus.
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3.4.6 Decoupled equations
• Recall that for typical lines∀ℓ,∀k∈ J(ℓ)∪{ℓ}, |Gℓk| ≪ |Bℓk|.
• Also note that for typical linesℓk, |θℓ−θk| ≪ π/2.

• This implies that the terms in the matrices
∂p−1
∂v−1

and
∂q−1
∂θ−1

are small

compared to the terms in the matrices
∂p−1
∂θ−1

and
∂q−1
∂v−1

.

• If we neglect all the terms in
∂p−1
∂v−1

and
∂q−1
∂θ−1

, then we can then

approximate the Jacobian by






∂p−1
∂θ−1

(x) 0

0
∂q−1
∂v−1

(x)




 .
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Decoupled equations, continued

• Letting ∆x=

[

∆θ−1
∆v−1

]

, this allows decoupling of the linearized equations

into:

∂p−1
∂θ−1

(x(0))∆θ−1 = ∆P−1,

∂q−1
∂v−1

(x(0))∆v−1 = ∆Q−1,

• The first set of equations relate real power and angles, whilethe second
set of equations relate reactive power and voltage magnitudes.

• These decoupled equations require less computation than solving the full
system.

• For a 5000 bus system, what is the size of the coefficient matrix of each of
the the decoupled linear equations?
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3.5 Fixed voltage schedule
• If real power generations and flows are our main concern and there is

adequatevoltage support in the form of controllable reactive sources
then we may be justified in assuming that the voltage magnitudes can be
held fixed by controlling reactive power:
– instead of assuming that each bus except the reference/slack bus is aPQ

bus, we assume that each such bus has a specified real power and
voltage magnitude.

– These are calledPV buses.
– A typical assumption is that all voltage magnitudes are 1 perunit, v= 1.
– More generally, any fixed voltage schedulev(0) can be used.
– We can evaluate the reactive power injections atPV buses at the end of

the calculation by evaluating an expression:
◦ This is similar to the situation for real and reactive power at the slack

bus.
◦ At a PV bus, we do not need to solve for the voltage magnitude, since

it is specified.
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Fixed voltage schedule, continued
• Assuming all buses, except the reference/slack bus, arePV buses:

– The unknowns are: the voltage angles at all the buses except the
reference/slack bus; the real power generation at the reference/slack
bus; and the reactive power generations at all buses.

– We first solvep−1

([
θ−1

v(0)−1

])

= P−1 for θ−1, given the fixed voltage

schedulev(0), and call the solutionθ⋆−1.
– To complete the solution:

◦ real power at the reference/slack bus,P(0)
1 is chosen to satisfy

P(0)
1 = p1

([
θ⋆−1

v(0)−1

])

, and

◦ reactive generations at all buses, including the reference/slack bus,

Q(0) are chosen to satisfyQ(0) = q

([
θ⋆−1

v(0)−1

])

, in order to achieve the

voltage schedulev(0).
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3.6 DC power flow
• We combine the ideas of fixed voltage profile and linearization.

3.6.1 Fixed voltage schedule
• We again assume that there are controllable voltage sourcesavailable to

provide a fixed voltage schedulev(0).
• Based on the analysis in the previous section, we could first solve

p−1

([
θ−1

v(0)−1

])

= P−1 for θ−1 to obtain the solutionθ⋆−1 and then evaluate

P(0)
1 = p1

([
θ⋆−1

v(0)−1

])

.

• This again enables us to focus on real power generation and angles.

• However, instead of solvingp−1

([
θ−1

v(0)−1

])

= P−1 exactly forθ⋆−1, we

solve a linearized version of the equations that is linearized about a
base-case in order to estimate a change-case solution.
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3.6.2 Linearization

• We linearize about afixedbase-case solution,x(0) =

[

θ(0)−1

v(0)−1

]

.

• The change-case power flow equations are given by:

p−1

([

θ(0)−1 +∆θ−1

v(0)−1

])

= P(0)
−1 +∆P−1.

• To find an approximate solution to the change-case equations, we form a
first-order Taylor approximation top−1:

p−1

([

θ(0)−1 +∆θ−1

v(0)−1

])

≈ p−1

([

θ(0)−1

v(0)−1

])

+
∂p−1
∂θ−1

([

θ(0)−1

v(0)−1

])

∆θ−1,

= p−1(x
(0))+

∂p−1
∂θ−1

(x(0))∆θ−1.
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Linearization, continued
• Substituting the first-order Taylor approximations into the change-case

equations, we obtain:

p−1(x
(0))+

∂p−1
∂θ−1

(x(0))∆θ−1 ≈ P(0)
−1 +∆P−1.

• From the base-case solution, we havep−1(x(0)) = P(0)
−1 .

• Ignoring the error in the first-order Taylor approximation,we have:

∂p−1
∂θ−1

(x(0))∆θ−1 = ∆P−1,

• which can be solved for∆θ−1.
• The change in the real power generation at the slack bus is then

approximately:

∆P1 =
∂p1
∂θ−1

(x(0))∆θ−1.
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Linearization, continued
• The base-case power generationsP(0) that determine the base-case

solution are chosen to be convenient for calculations.
• A typical base-case involves:

– zero net real power generation at all buses, so thatP(0) = 0, and
– all voltage magnitudes 1 per unit, so thatv(0) = 1.

• If we make the realistic assumption that the transmission lines have zero
real values for their shunt elements thenθ(0) = 0 solves the base-case.

• x(0) =

[

θ(0)−1

v(0)−1

]

=

[

0
1

]

is called aflat start .

• At the flat start, the linearization yields the following equations:

∂p−1
∂θ−1

(x(0))∆θ−1 = ∆P−1.
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Linearization, continued
• To summarize, we have linearized about the flat start condition to

approximate the change-case solutionθ = θ(0)+∆θ = 0+∆θ = ∆θ
corresponding to injectionsP= P(0)+∆P= 0+∆P= ∆P.

• We now interpret:

P(0)+∆P= ∆P= P to be the power generation for the change-case we
are trying to solve, and

θ(0)+∆θ = ∆θ = θ to be the solution for the angles for the change-case
we are trying to solve.

• That is, we solve the linearized power flow equations forθ−1:

∂p−1
∂θ−1

([

0
1

])

θ−1 = P−1,

• where
∂p−1
∂θ−1

([

0
1

])

is a constant matrix,

• θ−1 is the vector of unknown angles at the change-case solution,and
• P−1 is the sub-vector ofP that omits the slack bus.
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Linearization, continued
• These equations are in the formJ−1θ−1 = P−1, where the coefficient

matrix is:

J−1 =
∂p−1
∂θ−1

([

0
1

])

.

• The coefficient matrixJ−1 relates real power and angles and is the

sub-matrix ofJ =
∂p
∂θ−1

([

0
1

])

obtained by deleting row 1.

• The subscript−1 onJ−1 is referring to bus 1 as the slack bus:
– for the general case of busσ as the slack bus, we will consider

J−σ =
∂p−σ
∂θ−1

([
0
1

])

,

– where the reference bus is still bus 1, butJ−σ has been obtained fromJ
by deleting rowσ.

– We will discuss changing both the slack bus and the referencebus in
Section3.6.9.

• The equationsJ−1θ−1 = P−1 (or J−σθ−1 = P−σ) are sparse linear equations,
which can be solved efficiently forθ−1.
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Linearization, continued
• Paralleling the earlier observation, this approximation to the solution of

the power flow equations for power generationP−1 is equivalent to
performing one iteration of the Newton–Raphson method, starting at a flat
start.

• Moreover, the real power at the slack bus for the change-casecan be
estimated by:

P1 =
∂p1
∂θ−1

([

0
1

])

θ−1, (3.11)

• or Pσ =
∂pσ
∂θ−1

([
0
1

])

θ−1 if bus σ is the slack bus.

• We will see in Section3.6.6that the estimation of the real power
generation at the slack bus can be written more directly in terms of the
generationsP−σ at the other buses.
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3.6.3 DC power flow equations

• CombiningJ−1θ−1 = P−1 andP1 =
∂p1
∂θ−1

([

0
1

])

θ−1, we obtain:

Jθ−1 = P, (3.12)

whereJ =
∂p
∂θ−1

([

0
1

])

.

• Equations (3.12) are called theDC power flow equations.
• Values ofθ−1 andP that satisfy the DC power flow equations (3.12) then

approximately satisfy the power flow equality constraints (3.6) for all
busesℓ.

• Recall that we have assumed thatQ is chosen to satisfy the power flow
equality constraints (3.7) for all busesℓ for the assumed voltage
magnitudesv(0) = 1.
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3.6.4 Interpretation
• We have interpreted the DC power flow approximation as equivalent to

performing one iteration of the Newton–Raphson method, starting at a
base-case specified by a flat start, or equivalently the powerflow
equations linearized about a flat start.

• This differs from the “traditional” interpretation that emphasizes:
– the small angle approximations for cos and sin,
– voltage magnitudes assumed to equal one per unit, and
– the solution of DC power flow being the same as the solution of an

analogous DC circuit with current sources specified by the power
injections and voltages specified by the angles.

• The traditional interpretation in terms of a DC circuit is useful for solving
small systems by hand:
– See in Section3.10and Exercise3.5.

• The traditional interpretation also allows for a more straightforward
derivation in the case of no shunt elements:
– See in Exercise3.6.
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Interpretation, continued
• Our interpretation in terms of linearization provides a clearer and more

general perspective on the conditions when the DC power flow provides a
good approximation:
– See in Exercise3.1.

• It also provides a connection todecompositionalgorithms:
– iteration between solution and linearization of the power flow equations,

and calculation of a desired generation operating point.
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3.6.5 Terms in Jacobian

• The entries ofJ =
∂p
∂θ−1

([

0
1

])

are:

∂pℓ
∂θk

([
0
1

])

=







∑
j∈J(ℓ)

Bℓ j, if k= ℓ,

−Bℓk, if k∈ J(ℓ),
0, otherwise,

(3.13)

=







∑
j∈J(ℓ)

(

minus the susceptance
joining busesℓ and j

)

, if k= ℓ,

−Bℓk, if k∈ J(ℓ),
0, otherwise,

=

{
−Bℓk, if k∈ J(ℓ)∪{ℓ},

0, otherwise,

{
if the shunt susceptances

are all equal to zero.

• Note that these entries correspond to the imaginary part of the admittance
matrix,B, whereA= G+B

√
−1, not to the inverse of the line inductive

reactances, as is often stated in derivations of the DC powerflow:
– these are different if the resistance is non-zero.
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Terms in Jacobian, continued

• In the next slides, we will consider entries ofJ =
∂p
∂θ−1

([

0
1

])

, which

includes the row consisting of the derivatives ofp1 corresponding to the
slack bus.

• If the shunt admittances are all equal to zero then:
J is minus the imaginary part of the admittance matrix, that is, −B, with

the column corresponding to the reference bus deleted,
J−1 is minus the imaginary part of the admittance matrix, that is, −B,

with the column corresponding to the reference bus deleted and the
row corresponding to the slack bus deleted, and

if the slack bus is busσ, thenJ−σ is minus the imaginary part of the
admittance matrix, that is,−B, with the column corresponding to
the reference bus deleted and the row corresponding to the slack bus
σ deleted.

• If the shunt admittances are non-zero then the entries ofJ corresponding
to diagonal entriesBℓℓ of B will differ from the entries of−B by the shunt
admittance connected to busℓ; J omits the shunt terms.
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Terms in Jacobian, continued

• Summing the entries in theℓ-th column of
∂p
∂θ−1

([

0
1

])

, we obtain:

∀k,∑
ℓ

∂pℓ
∂θk

([
0
1

])

=
∂pk
∂θk

([
0
1

])

+ ∑
ℓ 6=k

∂pℓ
∂θk

([
0
1

])

,

where the summation overℓ includes
the slack bus,

= ∑
j∈J(k)

Bk j − ∑
ℓ∈J(k)

Bℓk,general case from (3.13),

considering possibly non-zero shunt admittances,

= ∑
j∈J(k)

Bk j − ∑
ℓ∈J(k)

Bkℓ, sinceBℓk = Bkℓ,

= 0.

• That is, each column ofJ =
∂p
∂θ−1

([

0
1

])

sums to zero, so1†J = 0.
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3.6.6 Slack injection and losses
• Equivalently,

1†∂p
∂θ−1

([

0
1

])

= 0. (3.14)

• From (3.11), we can estimate the net injection at the slack bus as:

P1 =
∂p1
∂θ−1

([

0
1

])

θ−1,

= −1†∂p−1
∂θ−1

([

0
1

])

θ−1,

since1†∂p
∂θ−1

([

0
1

])

= 0 from (3.14),

= −1†P−1,

• given the DC power flow approximation.
• That is,1†P= 0 and there are zero losses, given the DC power flow

assumption of the flat start as base-case, and assuming that the real part of
the shunt admittances are zero.
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3.6.7 Solving for the angles

• The matrixJ−1 =
∂p−1
∂θ−1

([

0
1

])

is non-singular, so we can write

θ−1 = [J−1]
−1P−1, allowing us to solve for the anglesθ−1.

• As mentioned in Section2.2, in practice for large systems we would not
invert the matrixJ−1, but instead factorize it and use forwards and
backwards substitution.

• Given the lossless assumption and a specification ofP−1, we have already
evaluated the net generation at the reference/slack bus:P1 =−1†P−1,

• so that the slack bus exactly compensates for the net demand or
withdrawal summed across all other buses, since the approximation is
lossless.
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Solving for the angles, continued
• Summarizing, the DC power flow equationsJθ−1 = P are equivalent to:

P1 = −1†P−1,

θ−1 = [J−1]
−1P−1.

• See Exercise3.4for a formal demonstration of the equivalence of the DC
power flow equations to this representation, which we will also refer to as
the DC power flow equations.

• As mentioned in Section2.2, in practice for large systems we would not
invert the matrixJ−1, but instead factorize it and use forwards and
backwards substitution.
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3.6.8 Demand
• So far, the vectorP has represented the vector ofnet injections at the

buses.
• In some formulations, we want to consider demand and generation

separately.
• For example, if the net injection isP−D, where:

P is now the vector of generations, and
D is the vector of demands,

• then the DC power flow equations are equivalent to:

−1†P = −1†D,

θ−1 = [J−1]
−1(P−1−D−1),

• whereP−1 andD−1 are the sub-vectors ofP andD, respectively, that omit
the reference/slack bus.
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3.6.9 Slack bus and reference bus choices
• If the slack bus is busσ then the DC power flow equations are equivalent

to:

−1†P = −1†D,

θ−1 = [J−σ]
−1(P−σ −D−σ),

• whereP−σ andD−σ are the sub-vectors ofP andD, respectively, that omit
the slack bus, and

• where the reference bus is still assumed to be bus 1.
• If the slack bus is busσ and the reference bus is busρ then the DC power

flow equations are equivalent to:

−1†P = −1†D, (3.15)

θ−ρ =
[
J′−σ
]−1

(P−σ−D−σ), (3.16)

• whereJ′ =
∂p
∂θ−ρ

([

0
1

])

is the matrix of partial derivatives with the

reference bus assumed to be busρ and where the matrixJ′ differs fromJ
in one column.
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3.7 Line flow
• We typically use the results of power flow to evaluate whetherthe flow

along a line is within limits:
– this is most straightforward for flow limits expressed in terms of real

power flow,
– we can also consider flow limits expressed in terms of current

magnitude or the magnitude of complex power.
• There is typically a flow limit in each direction on the line.
• For a line joining busℓ to busk we can consider:

– real and reactive flowspℓk andqℓk along the line from busℓ in the
direction of busk, and

– real and reactive flowspkℓ andqkℓ along the line from busk in the
direction of busℓ.

• Without loss of generality, we explicitly consider onlypℓk andqℓk.
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Line flow, continued

• Ignoring shunt elements in the models, we have that the real and reactive
flows are given by:

∀x∈ R
n, pℓk(x) = vℓvk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]− (vℓ)

2Gℓk,

∀x∈ R
n,qℓk(x) = vℓvk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]+(vℓ)

2Bℓk.

• (The linearization analysis including shunt elements has the same result
that we will present, but is notationally inconvenient since we need to
define parameters for the shunt elements in each line.)

• We will approximate these expressions by again linearizingabout a
base-case:

– for convenience, we will again assumeρ = σ = 1 in the derivation and
then sketch the extensions to the general case.

• We linearize the expressions forpℓk andqℓk aboutθ(0)−1 .

• We continue to assume that the voltage magnitudes are fixed atv(0).
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3.7.1 Linearized line flow

pℓk

([

θ(0)−1 +∆θ−1

v(0)−1

])

≈ pℓk(x
(0))+

∂pℓk
∂θ−1

(x(0))∆θ−1,

= pℓk(x
(0))+v(0)ℓ v(0)k

[

−Gℓksin(θ(0)ℓ −θ(0)k )

+Bℓkcos(θ(0)ℓ −θ(0)k )

]

(∆θℓ−∆θk),

qℓk

([

θ(0)−1 +∆θ−1

v(0)−1

])

≈ qℓk(x
(0))+

∂qℓk
∂θ−1

(x(0))∆θ−1,

= qℓk(x
(0))+v(0)ℓ v(0)k

[

Gℓkcos(θ(0)ℓ −θ(0)k )

+Bℓksin(θ(0)ℓ −θ(0)k )

]

(∆θℓ−∆θk).
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Linearized Line flow, continued
• We focus on the real powerpℓk flowing along the line from busℓ in the

direction of busk.
• Define the row vectorK(ℓk) of partial derivatives by:

∀ j 6= 1,K(ℓk) j =







v(0)ℓ v(0)k [−Gℓksin(θ(0)ℓ −θ(0)k )+Bℓkcos(θ(0)ℓ −θ(0)k )],
if j = ℓ,

−v(0)ℓ v(0)k [−Gℓksin(θ(0)ℓ −θ(0)k )+Bℓkcos(θ(0)ℓ −θ(0)k )],
if j = k,

0, otherwise,

• That is,K(ℓk) j is the j-th entry in the row vectorK(ℓk), which has entries
for every bus except the reference bus.

• Then the linear approximation topℓk is given by:

pℓk

([

θ(0)−1 +∆θ−1

v(0)−1

])

≈ pℓk(x
(0))+K(ℓk)∆θ−1.
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3.7.2 Line flow constraints

• Suppose that we have line flow constraints of the formpℓk(x)≤ pℓk.
• Using the linear approximation, we obtain:

pℓk(x
(0))+K(ℓk)∆θ−1 ≤ pℓk.

• By defining a matrixK with rowsK(ℓk) and a vectord with entriesd(ℓk) of
the form:

d(ℓk) = pℓk− pℓk(x
(0)),

• we can approximate the collection of line flow constraints inthe form:

K∆θ−1 ≤ d.

• This form of the line flow constraints includes the angles explicitly.

Title Page ◭◭ ◮◮ ◭ ◮ 83 of 159 Go Back Full Screen Close Quit



3.7.3 DC power flow approximation to line flow constraints

• Using a flat startx(0) =

[

θ(0)−1

v(0)−1

]

=

[

0
1

]

as the base-case for the

linearization, we find:

pℓk

([
0

v(0)−1

])

= v(0)ℓ (v(0)k −v(0)ℓ )Gℓk,

pℓk

([
0
1

])

= 0,

K(ℓk) j =
∂pℓk
∂θ j

([
0

v(0)−1

])

=

{
vℓvkBℓk, if j = ℓ,

−vℓvkBℓk, if j = k,
0, otherwise,

K(ℓk) j =
∂pℓk
∂θ j

([
0
1

])

=

{
Bℓk, if j = ℓ,

−Bℓk, if j = k,
0, otherwise,

d(ℓk) = pℓk− pℓk

([
0
1

])

,

= pℓk.
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DC power flow approximation to line flow constraints, continued
• Summarizing, we can approximate the flows at the angle

θ−1 = θ(0)−1 +∆θ−1 = ∆θ−1 using the linearized equationsKθ−1 ≤ d, where:

∀(ℓk),∀ j 6= 1,K(ℓk) j =

{
Bℓk, if j = ℓ,

−Bℓk, if j = k,
0, otherwise,

∀(ℓk),d(ℓk) = pℓk.

• Again, this form of the constraints includes the angles explicitly and
approximates the power flow on a line joining busesℓ andk as being
proportional to the angle difference(θℓ−θk) across the line.

• The(ℓk) row of K has exactly two non-zero entries of equal magnitude
and opposite sign, unlessℓ or k is the reference bus, in which case the row
has one non-zero entry.
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DC power flow approximation to line flow constraints, continued
• If the reference bus changes to busρ then the linearized line flow

constraints would beK ′θ−ρ ≤ d, where:

∀(ℓk),∀ j 6= ρ,K ′
(ℓk) j =

{
Bℓk, if j = ℓ,

−Bℓk, if j = k,
0, otherwise,

∀(ℓk),d(ℓk) = pℓk.

• The matrixK ′ differs from the matrixK in one column.
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3.7.4 Eliminating the angles
• In some cases, it can be convenient to eliminate the angle variables by

expressing them in terms of the net power injections.
• We previously found that the DC power flow equations could be

expressed as:

−1†P = −1†D,

θ−1 = [J−σ]
−1(P−σ −D−σ),

• whereσ is the slack bus andρ = 1 is the reference bus.
• We use the second equation to substitute intoKθ−1 ≤ d to obtain the

equality and inequality constraints with the angles eliminated:

−1†P = −1†D, (3.17)

K[J−σ]
−1P−σ ≤ K[J−σ]

−1D−σ+d. (3.18)

• This approximation to the flows is not always good:
– it is used to represent transmission constraints in most day-ahead

electricity markets,
– will explore accuracy in homework exercise.
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3.7.5 Shift factor matrix
• The matrixK[J−σ]

−1 is the matrix of DCshift factors or power transfer
distribution factors .

• That is, entries in the matrix represent the fraction of flow along each line
for:
injection at the buses represented in the vectorP−σ, and
withdrawal at the slack busσ.

• We occasionally want to express line flows in terms of the vector P of all
net injections.

• First consider the case thatσ = 1.
• For σ = 1, define the augmented shift factor matrixĈ =

[

0 K[J−1]
−1].

• That is,Ĉ consists of the columns ofK[J−1]
−1 augmented by an additional

zero column corresponding toP1.
• Each entry ofĈk represents the fraction of the generation from generator

at busk that flows on the corresponding line.
• The flows are given bŷC(P−D).
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Shift factor matrix, continued
• The equality and inequality constraints with the angles eliminated are

then:

−1†P = −1†D, (3.19)
ĈP ≤ ĈD+d. (3.20)
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3.7.6 Shift factor matrix with other slack bus and referencebus choices
• Similarly, if the reference bus is some other busρ and the slack bus is

some other busσ, we can again define a corresponding augmented shift
factor matrixĈ′ such that the flows are given bŷC′(P−D), and the
equality and inequality constraints are then still of the form:

−1†P = −1†D,

Ĉ′P ≤ Ĉ′D+d.

• For any particular example, we will typically maintain a given choice of
reference busρ and slack busσ.

• Slightly abusing notation, we will henceforth typically refer to the
Jacobian asJ and the shift matrix asC or Ĉ, irrespective of the choice of
reference and slack bus.

• We will make clear the choice of reference and slack bus in each example
and occasionally use notation such asJ andJ′ when when we are
considering different choices of reference and/or slack bus.
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3.7.7 Line flow constraints at other operating points
• The derivation so far used the flat start condition as the base-case for

evaluating the shift factors and the line flow constraints.
• Other base-cases could be used, such as:

– another assumed operating point, or
– a measured or estimated operating point from astate estimator.

• The lossless assumption will typically not hold at other base-cases nor for
the estimated change-case.
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3.8 Example
• Consider the following one-line two-bus system with MW capacity and

per unit impedance (on a 1 MVA base) as shown.
• Let busρ = 1 be the angle reference bus, so the unknown angle isθ2.
• Let busσ = 2 be the slack bus.
• There are generators and demand at both buses 1 and 2.

P1 P2

1 2

D1 D2

0+0.001
√
−1

100 MW

✲ ✛

✛ ✲

✚✙
✛✘

✚✙
✛✘

✲

Fig. 3.8. One-line two-
bus network.
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3.8.1 Admittance matrix
• The line admittance is:

Y12 =
1

0+0.001
√
−1

,

= −1000
√
−1.

• The bus admittance matrix is:
[

Y12 −Y12
−Y12 Y12

]

=

[

−1000
√
−1 1000

√
−1

1000
√
−1 −1000

√
−1

]

,

=

[

B11
√
−1 B12

√
−1

B21
√
−1 B22

√
−1

]

.
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3.8.2 Jacobian
• Evaluating the sub-matrix of the Jacobian corresponding toreal power

and angles at the condition of flat start:

J =
∂p
∂θ−ρ

([

0
1

])

,

=
∂p
∂θ−1

([

0
1

])

,

=
∂p
∂θ2

([

0
1

])

,

=

[

−B12
B12

]

,

=

[

−1000
1000

]

.
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3.8.3 DC power flow
• The DC power flow constraints are:

Jθ−ρ = P−D,

=

[
P1−D1
P2−D2

]

.

• Substituting, we obtain:
[
−1000

1000

]

[θ2 ] =

[
P1−D1
P2−D2

]

.
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3.8.4 Eliminating angles
• We eliminateθ2 to obtain the following form:

−P1−P2 = −D1−D2,

[θ2] = [J−σ]
−1[P1−D1],

• where, to formJ−σ, we have deleted the second row ofJ corresponding to
the slack busσ = 2:

J−σ = [−1000],

[J−σ]
−1 = [−0.001].

• Note that theanglereference bus is busρ = 1, whereas the slack bus is
busσ = 2!
Example shows that the angle and slack buses can be differentbuses!
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Eliminating angles, continued
• The DC power flow equations are then:

−P1−P2 = −D1−D2,

θ2 = [−0.001][P1−D1].

• For positive values ofP1, we have thatθ2 < 0= θ1.
Power flows from “higher” to “lower” angles.
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3.8.5 Line flow constraints
• Assume that the real power line flow limit of 100 MW applies only in the

direction of the arrow in Figure3.8.
• Ignore the constraint on flow in the direction opposite to thearrow.
• The line flow constraint is then specified byKθ−ρ ≤ d, where:

d = [p(12)],

= [100] ,
K = [−B12],

= [−1000].

• Therefore:

(K[θ2]≤ d) ⇔ ([−1000][θ2]≤ [100]),
⇔ (θ2 ≥−0.1).

• For |θ2| ≤ 0.1 we have that sin(θ1−θ2) = sin(−θ2)≈−θ2, so that the
DC power flow approximation is reasonable.
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3.8.6 Shift factors
• The matrix of shift factors is:

K[J−σ]
−1 = [−1000][−0.001],

= [1].

• That is, ifP1 is the net injection at bus 1 and an equal power is withdrawn
at bus 2 then[1][P1] = P1 will flow on the line between bus 1 and bus 2.

• If P2 is the net injection at bus 2 and an equal power is withdrawn atbus 2
then no power will flow on the line between bus 1 and bus 2.

• That is, the augmented shift factor matrix is:

Ĉ =
[

K[J−σ]
−1 0

]
,

= [1 0] .
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3.8.7 Line flow constraints with angles eliminated
• The system equality and inequality constraints with angleseliminated are:

−1†P = −1†D,

ĈP ≤ ĈD+d.

• SinceĈ= [1 0], andd = [100], these constraints become:

−P1−P2 = −D1−D2,

P1 ≤ D1+100.

• We could see this from Figure3.8directly:
– Generation at buses 1 and 2 must meet demand at buses 1 and 2.
– For withdrawal at the price reference busσ = 2, all net injection
(P1−D1) at bus 1 flows on the line; therefore generation at bus 1 must
be within the capacity of the line plus the demand at bus 1.

– For withdrawal at the price reference busσ = 2, no net injection at bus 2
flows on the line.

• What would the constraints be ifσ = 1 were the price reference bus?
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3.9 Larger example
• Consider the following four-line four-bus system with MW capacities and

per unit impedances (on a 1 MVA base) as shown.
• Busσ = 0 is the slack bus and there are no shunt admittances.

• Busρ = 1 is reference bus, so the unknown angles areθ−1 =

[θ0
θ2
θ3

]

.
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Fig. 3.9. Four-line
four-bus network with
generators at buses 1, 2,
and 3, and demand at
bus 0.
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3.9.1 Admittance matrix
• The line admittances are:

Y01= Y10= Y12= Y21= Y03= Y30 =
1

0+0.001
√
−1

=−1000
√
−1,

Y23= Y32 =
1

0+0.002
√
−1

=−500
√
−1.
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Admittance matrix, continued
• The bus admittance matrix is:






Y01+Y03 −Y01 0 −Y03
−Y10 Y10+Y12 −Y12 0

0 −Y21 Y21+Y23 −Y23
−Y30 0 −Y32 Y30+Y32






=







−2000
√
−1 1000

√
−1 0 1000

√
−1

1000
√
−1 −2000

√
−1 1000

√
−1 0

0 1000
√
−1 −1500

√
−1 500

√
−1

1000
√
−1 0 500

√
−1 −1500

√
−1






,

=







B00
√
−1 B01

√
−1 0 B03

√
−1

B10
√
−1 B11

√
−1 B12

√
−1 0

0 B21
√
−1 B22

√
−1 B23

√
−1

B30
√
−1 0 B32

√
−1 B33

√
−1






.
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3.9.2 Jacobian

• Since there are no shunts,J =
∂p
∂θ−1

([

0
1

])

is minus the imaginary part

of the admittance matrix, that is,−B, with the column corresponding to
the reference bus deleted:

J =
∂p
∂θ−1

([

0
1

])

=






−B00 0 −B03
−B10 −B12 0

0 −B22 −B23
−B30 −B32 −B33




 ,

=






2000 0 −1000
−1000 −1000 0

0 1500 −500
−1000 −500 1500




 .

• Note that the rows ofJ are indexed by 0, 1, 2, 3, while the columns are
indexed by 0, 2, 3.
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3.9.3 DC power flow
• We can solve forθ−1 to obtain the following form for the DC power flow

equations:

−1†P = −1†D,

θ−1 = [J−0]
−1(P−0−D−0).

• whereJ−0 is J with the row corresponding toσ = 0 deleted, so that:

J−0 =

[−1000 −1000 −0
0 1500 −500

−1000 −500 1500

]

,

[J−0]
−1 =

[−0.0008 −0.0006 −0.0002
−0.0002 0.0006 0.0002
−0.0006 −0.0002 0.0006

]

.

• Note that the subscript−1 onθ−1 is referring toρ = 1, the reference bus,
with the entryθ1 omitted, (and columns ofJ also omit terms forθ1),

• whereas the subscript−0 onJ−0,P−0, andD−0 is referring toσ = 0, the

slack bus, with row
∂p0
∂θ−1

, and termsP0 andD0, respectively, omitted.
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DC power flow, continued
• So far, the development considered generation and demand atall buses.
• The example only has demand at bus 0 and has generation at buses 1, 2,

and 3.
• Since there is only demand at bus 0 then the DC power flow equations are:

−P1−P2−P3 = −D0,

θ−1 =

[−0.0008 −0.0006 −0.0002
−0.0002 0.0006 0.0002
−0.0006 −0.0002 0.0006

][
P1
P2
P3

]

.
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3.9.4 DC power flow approximation to line flow constraints
• In principle, there are limits on flow in both directions on each line.
• We will assume that the only binding limits are in the directions from

buses 1 to 0, 2 to 1, 2 to 3, and 3 to 0, respectively, as suggested by the
arrows in Figure3.9.

• These four line flow inequality constraints are then specified by
Kθ−1 ≤ d, where:

d =






p10
p21
p23
p30




=






3000
3000
300

3000




 ,

K =






−B10 0 0
0 B21 0
0 B23 −B23

−B30 0 B30




=






−1000 0 0
0 1000 0
0 500 −500

−1000 0 1000




 .

• Note that the rows ofK are indexed by(10),(21),(23),(30), while the
columns are indexed by 0, 2, 3.
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3.9.5 DC shift factors
• The matrix of DC shift factors is:

K[J−0]
−1 =






−1000 0 0
0 1000 0
0 500 −500

−1000 0 1000






[−0.0008 −0.0006 −0.0002
−0.0002 0.0006 0.0002
−0.0006 −0.0002 0.0006

]

,

=






0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8




 .

• The augmented shift factor matrix is:

Ĉ =
[

0 K[J−0]
−1] ,

=






0.0 0.8 0.6 0.2
0.0 −0.2 0.6 0.2
0.0 0.2 0.4 −0.2
0.0 0.2 0.4 0.8




 .
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DC shift factors, continued
• For example, for power injected at bus 1 and withdrawn at busσ = 0, the

shift factors to the lines 1 to 0, 2 to 1, 2 to 3, and 3 to 0 are, respectively
0.8,−0.2,0.2,0.2.

• Moreover, the flow on any particular line is the sum of the flowsdue to
individual injections at particular buses.

• For power injected at bus 0 and withdrawn at busσ = 0, what are the shift
factors to the lines from buses: 1 to 0; 2 to 1; 2 to 3; and 3 to 0?

• If 1 MW is injected at bus 1, 10 MW is injected at bus 2, and 100 MWis
injected at bus 3, with 111 MW withdrawn at busσ = 0, what is the flow
on the line from bus 1 to bus 0?
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3.9.6 Line flow constraints in terms of shift factors
• The flows on the lines are given bŷC(P−D) or, equivalently,

K[J−1]
−1(P−0−D−0).

• The equality and inequality constraints with angles eliminated are:

−1†P = −1†D,

K[J−0]
−1P−0 ≤ K[J−0]

−1D−0+d.

• Again note thatD−0 = 0 for this particular example.

• Also, d =






3000
3000
300

3000




, so these constraints become:

−P1−P2−P3 = −D0,





0.8 0.6 0.2
−0.2 0.6 0.2

0.2 0.4 −0.2
0.2 0.4 0.8






[
P1
P2
P3

]

≤






3000
3000
300

3000




 .
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Line flow constraints in terms of shift factors, continued
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Fig. 3.10. DC power flow approximation to line flow constraints for four-line
four-bus network.
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3.10 DC power flow circuit interpretation
• As mentioned in Section3.6.4, we can interpret the DC power flow

approximation in terms of an analogous linear DC circuit:
– the DC circuit interpretation is useful to solve small systems by hand.

• Recall that the power flow equations are in the formJθ−ρ = P, whereρ is
the reference bus.

• If the shunt admittances are zero thenJ is given by−B with the column
corresponding to the reference bus deleted.

• Consider the following analogy with a DC circuit:
– Busρ is the datum node in the circuit with DC voltage defined to be 0,
– Real power injectionsP are analogous to DC current injectionsi at all

buses,
– Anglesθ−ρ are analogous to DC voltagesv−ρ at all nodes except the

datum node,
– Entries inJ are analogous to the admittance matrix of a circuit having

resistors joining nodesℓ andk with “conductance”gℓk = |Bℓk|.
• The analogous linear DC circuit satisfiesJv−ρ = i:

– applies whether or not there are non-zero shunt admittances.
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DC power flow circuit interpretation, continued
• Current injections and flows in the DC circuit correspond topower

injections and flows in the power system.
• Recall that DC current is shared along parallel paths in proportion to the

conductance of each path:
– the current flowing in each parallel path due to a single injection and

withdrawal is proportional to the conductance along each path.
• Recall that currents in a linear DC circuit can be superposed:

– the current flowing in a branch due to multiple current injections and
withdrawals is equal to the sum of the currents flowing in thatbranch
due to each current injection and withdrawal considered separately.

• Therefore, we can:
– evaluate sharing ofpowerflow in the DC power flow approximation in

the same way as we evaluate sharing ofcurrent in a DC circuit, and
– superposepowerflow in the DC power flow approximation in the same

way as we superposecurrentflow in a DC circuit.
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DC power flow circuit interpretation, continued
• For example, suppose that the DC circuit has two nodes, 1 and 2, joined

by two conductances as shown in Figure3.11, which we view as two
“paths” between these nodes (possibly consisting of several branches in
series):
– From circuit theory, recall that if current is injected at one node and

withdrawn at another node then current is shared on the branches in
these paths in proportion to the path conductances.

– If the two conductances are equal then each will have one-half of the
total flow of current.

• If the two lines have equal admittance then power injected atbus 1 and
withdrawn at bus 2 will be shared equally between the two lines.

1 2

Fig. 3.11. Two-line
two-bus network.
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DC power flow circuit interpretation, continued
• Moreover, if there is current injected at multiple nodes andwithdrawn at

another node or nodes then the resulting total current in anybranch is
equal to the superposition of the currents in that branch dueto the
individual current injections and withdrawals.
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DC power flow circuit interpretation, continued
• Recall the example from Figure3.9, repeated in Figure3.12.
• We will illustrate the DC circuit using this example.
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Fig. 3.12. Four-line
four-bus network re-
peated from Figure3.9.
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DC power flow circuit interpretation, continued
• Suppose current is injected at node 1 in the analogous DC circuit and

withdrawn at the nodeσ = 0.
• Note that the actual impedance directly joining buses 1 and 0in the power

system is 0+0.001
√
−1:

– analogous “conductance” of this path isg10= |B10|= 1000,
– current on this analogous conductance is proportional to 1000.

• We can also think of the lines from buses 1 to 2, 2 to 3, and 3 to 0 as
another impedance joining buses 1 and 0 in the power system:
– total impedance in this path is:

0+0.001
√
−1+0+0.002

√
−1+0+0.001

√
−1= 0.004

√
−1,

– analogous “conductance” of path isg1230= 250,
– current on this analogous conductance due to the lines 1 to 2,2 to 3, and

3 to 0 is proportional to 250.
• Current injected at node 1 and withdrawn at node 0 is shared between the

analogous conductances in the paths in the proportion
1000 : 250= 0.8 : 0.2.
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DC power flow circuit interpretation, continued
• In the power system, the DC power flow approximation means that power

injected at bus 1 and withdrawn at the slack busσ = 0 will be shared in
the ratio 0.8:0.2 between:
– the path consisting of the line directly joining buses 1 and 0, and
– the lines forming the path from buses 1 to 2, 2 to 3, 3 to 0.

• That is, the shift factors, for injection at bus 1 and withdrawal at bus 0, to
the lines from buses 1 to 0, 2 to 1, 2 to 3, and 3 to 0 are, respectively
0.8,−0.2,0.2,0.2, exactly as calculated in the previous section.

• By superposition, we can approximate the total power flow on aline as
the sum of the power flows due to individual power injections.
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3.11 Losses
3.11.1 Losses under DC power flow approximation

• In Section3.6.6, we found that losses under the DC power flow
approximation are zero.

• This can be understood in terms of the linearization interpretation of DC
power flow:
– DC power flow involves a first-order Taylor approximation of injections

as a function of angles, evaluated at a flat start, corresponding to zero
net real power injections,

– the condition of zero net real power injection corresponds to zero losses,
while

– linearizing about the flat start results in the derivative oflosses with
respect to injections being zero,

– so a first-order Taylor expansion of losses has zero constantterm and
zero linear term!

• In the following sections we find a more accurate approximation by
considering a second-order Taylor expansion of the exact expression for
losses.
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3.11.2 Exact loss expression
• Recall from Section3.2.8that the functionpℓ : Rn → R that evaluates the

real power flow out of busℓ into the lines connected to it is given by (3.8),
which we repeat here:

∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
vℓvk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)].

• Focusing on just the real power flowpℓk : Rn → R from busℓ into the line
joining busℓ to a busk∈ J(ℓ), ignoring shunts, but including the terms in
the power flow fork= ℓ that involveGℓk, we obtain:

∀x∈ R
n, pℓk(x) = vℓvk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]− (vℓ)

2Gℓk.

• Similarly, the real power flowpkℓ : Rn → R from busk into this same line
from its other end is:

∀x∈ R
n, pkℓ(x) = vℓvk[Gℓkcos(θℓ−θk)−Bℓksin(θℓ−θk)]− (vk)

2Gℓk.
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Exact loss expression, continued
• The lossesLℓk : Rn → R on the line is the sum of the power injected from

busk and busℓ:

∀x∈ R
n,Lℓk(x) = pℓk(x)+ pkℓ(x),

= 2vℓvkGℓkcos(θℓ−θk)− [(vℓ)
2+(vk)

2]Gℓk.

(3.21)

• The total losses in the system,L : Rn → R is the sum of the losses over
the lines:

∀x∈ R
n,L(x) = ∑

ℓ,k∈J(ℓ),k>ℓ

Lℓk(x).

• The total losses can also be evaluated asL = 1†p, wherep : Rn → RnPQ+1

is the vector of flows from the buses into the rest of the system.
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3.11.3 Quadratic loss expression
• We approximateLℓk andL through a second-order Taylor approximation

about a flat start, again assuming a fixed voltage schedule, sothat we only
explicitly consider the dependence on angle:

Lℓk(x) ≈ Lℓk

([

0
1

])

++
∂Lℓk
∂θ−ρ

([

0
1

])

θ−ρ +
1
2
[θ−ρ]

†∂2Lℓk

∂θ−ρ
2

([

0
1

])

θ−ρ,

= 0+0†θ−ρ +(−Gℓk)(θℓ−θk)
2, (3.22)

• on evaluating the terms.
• As mentioned above, there is a zero constant term and a zero linear term

in the Taylor expansion of losses.
• The quadratic term is non-zero and has coefficient(−Gℓk).
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Quadratic loss approximation, continued
• Note that the loss approximation is proportional to the square of the angle

difference across the line.
• Recall from Section3.7.3that, under the DC power flow approximation,

the angle difference is approximately proportional to the real power flow.
• That is, losses are approximately proportional to the square of the power

flow.
• Note thatGℓk ≤ 0, so that the loss function is therefore approximately a

convex quadratic function of the power flow.
• Using the DC power flow approximation, the power flows are

approximately linear in the real power injections.
• Therefore, the losses in each line are approximately a convex quadratic

function of the real power injections.
• Summing losses over lines, the total losses in the system,

L = ∑ℓ,k∈J(ℓ),k>ℓLℓk, is approximately a convex quadratic function of the
real power injections.

• If the losses are small then they can be estimated by substituting from the
flows given by the DC power flow approximation.
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Quadratic loss approximation, continued
• We can write approximate the total losses by:

∀x∈ R
n,L(x) = ∑

ℓ,k∈J(ℓ),k>ℓ

Lℓk(x),

≈ ∑
ℓ,k∈J(ℓ),k>ℓ

(−Gℓk)(θℓ−θk)
2,

= θ†WGW†θ,
= [θ−ρ]

†W−ρG(W−ρ)
†θ−ρ.

• by (3.3), where:
– the matrixG is a diagonal matrix with entries corresponding to the

conductances of the series elements of the lines,
– the matrixW is the bus-to-series element incidence matrix; and,
– the matrixW−ρ is the bus-to-series element incidence matrix with rowρ

removed.
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Quadratic loss approximation, continued
• By the DC power flow approximation in Section3.6.9, usingJ for the

Jacobian with reference busρ,

θ−ρ = [J−σ]
−1(P−σ−D−σ),

• by (3.16) whereJ =
∂p
∂θ−ρ

([

0
1

])

.

• Defining L̂ : RnPQ−1 → R to be the losses expressed in terms of the
generationP−σ, we have that the losses are:

∀P−σ ∈ R
nPQ−1, L̂(P−σ)

≈ (P−σ−D−σ)
†[[J−σ]

−1]
†
W−ρG(W−ρ)

†[J−σ]
−1(P−σ−D−σ).

• That is, losses are a convex function ofP−σ and losses are strictly convex
if the conductances of all series elements are non-zero.
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3.11.4 Example
• Consider a modified version of the one-line two-bus system from

Section3.8as shown in in Figure3.13.
• Busρ = 1 is the angle reference bus, so the unknown angle isθ2.
• Busσ = 2 is the slack bus.
• There is generation and demand at both buses 1 and 2.
• The admittance of the series element is modified to:

Y12= 100−1000
√
−1.

P1 P2

1 2

D1 D2

Y12 =

100−1000
√
−1

✲ ✛

✲✛

✚✙
✛✘

✚✙
✛✘

✲

Fig. 3.13. One-line
two-bus network.

Title Page ◭◭ ◮◮ ◭ ◮ 126 of 159 Go Back Full Screen Close Quit



3.11.4.1 Admittance matrix
• The bus admittance matrix is:

WY W† =

[
Y12 −Y12

−Y12 Y12

]

,

=

[

100−1000
√
−1 −100+1000

√
−1

−100+1000
√
−1 100−1000

√
−1

]

,

=

[

G11+B11
√
−1 G12+B12

√
−1

G21+B21
√
−1 G22+B22

√
−1

]

.

• That is, we have:

WGW† =

[

G11 G12
G21 G22

]

,

=

[

100 −100
−100 100

]

,

W−ρG(W−ρ)
† = [100].
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3.11.4.2 Power flow equations and Jacobian
• We assume that the voltage magnitudes are maintained equal to one per

unit, so thatv(0) = 1=

[

1
1

]

.

• Noting that the imaginary part of the admittance matrix has not changed
compared to the example in Section3.8, we have that the power flow
equations are:

−P1−P2 = −D1−D2,

[θ2] = [J−σ]
−1[P1−D1],

• where:

J−σ = [−1000],

[J−σ]
−1 = [−0.001].
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3.11.5 Quadratic loss approximation
• The exact loss expression (3.21) for this system is:

∀x∈ R
n,L12(x) = 2v1v2G12cos(θ1−θ2)− [(vℓ)

2+(vk)
2]Gℓk,

= 200(1−cos(θ2)), (3.23)

• sincev1 = v2 = 1, G12=−100, and assuming that the angle reference is
θ1 = 0.

• A quadratic approximation to this function yields:

∀x∈ R
n,L12(x)≈ 100(θ2)

2. (3.24)
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Quadratic loss approximation, continued
• The quadratic loss approximation in terms of power injection is

L̂ : R→ R:

∀P1 ∈ R, L̂(P1)

≈ (P−σ −D−σ)
†[[J−σ]

−1]
†
W−ρG(W−ρ)

†[J−σ]
−1(P−σ−D−σ),

= (P1−D1)
†[−0.001][100][−0.001](P1−D1),

= (0.0001)(P1−D1)
2.

• For example, if(P1−D1) = 100 MW, so that line is at capacity, then
losses are(0.0001)(100)2 = 1 MW, and there are 1% losses in the line
under these conditions.
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3.11.6 Errors with quadratic loss approximation
• If the losses are large then the approach can be erroneous.
• Consider the simple three bus, three line system shown in Figure3.14.
• Assume that the slack and reference bus is bus one, so thatρ = σ = 1.
• Note that the DC shift factors for injection at bus 3 and flow toeach of the

lines are both equal to one. (See Exercise3.3.)
– the DC approximation models all power injected at bus 3 flowing on

both of the lines,
– does not model any losses occurring “on” these lines,
– the loss approximation effectively models all of the lossesas occurring

“at” the slack bus.

Bus 3 Bus 2 Bus 1

Fig. 3.14. Three bus,
two line radial network.
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Errors with quadratic loss approximation, continued
• If the losses on the line joining buses 3 and 2 are significant,then a

significant amount of the injection at bus 3 will by lost on this line and
will not flow on the line from bus 2 to bus 1:
– the DC power flow approximation will ignore this issue, over-estimating

the contribution of injection at bus 3 to flow on the line joining bus 2 to
bus 1,

– substituting from the DC power flow into the loss expression (3.22) for
the line joining bus 2 to bus 1 will over-estimate the effect of injection
at bus 3 on losses on this line.

• Will tend to over-estimate the contribution of remote generation to losses.
• This issue is treated in different ways in different market implementations.
• Despite this issue, losses are still approximately a convexquadratic

function of power injections.
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3.12 Contingency analysis
• Power flow analysis evaluates the angles, voltage magnitudes, and line

power flows on a given system.
• We will see in Section9 that we must dispatch generation so that, among

other things, the flow on each line in the system does not exceed its
capacity:
– we will consider optimization formulations that seek dispatch to keep

flows within normal orlong-term ratings of transmission lines.
• In addition, we must consider the fact that lines may be outaged

occasionally:
– typical cause is due to lightning strike causing short-circuit.
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Contingency analysis, continued
• Standard practice is to operate power systems so that even inthe event of

any given single outage, the resulting flows on the lines remain within
limits:
– because most outages are temporary, we generally useshort-term or

emergencyratings to evaluate whether flows in each contingency are
acceptable,

– we will also include thesecontingency constraintsin the optimization
formulation.

• In this section, we will utilize the DC power flow approximation to
approximately evaluate the flow under a contingency.

• For a system having 5000 lines, how many line contingencies are
possible?
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3.12.1 Pre-contingency flows
• We first consider the DC power flow approximations for the original

pre-contingencysystem.
• Suppose that the reference bus is busρ, while the slack bus is busσ.
• From Section3.6.9the DC power flow equations are equivalent to:

−1†P = −1†D,

θ−ρ = [J−σ]
−1(P−σ −D−σ),

• whereP−σ andD−σ are the sub-vectors ofP andD, respectively, that omit
the slack bus, andJ−σ is minus the imaginary part of the admittance
matrix, that is,−B, with the column corresponding to the reference busρ
deleted and the row corresponding to the slack busσ deleted.

• As in Section3.7.3, we can evaluate the pre-contingency line flows as
Kθ−ρ, where each row ofK corresponds to a line and has exactly two
non-zero elements, with the non-zero values given by plus and minus the
susceptance of the series element of the corresponding line.

• The matrixK[J−σ]
−1 is the pre-contingency DCshift factors.
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3.12.2 Post-contingency system
• As discussed in Section3.2.5, we can consider removing a line from the

system and we will also use the DC power flow approximation forthis
post-contingencysystem:
– in principle, we need to consider the effect of removing eachline in the

system on the flows in the remaining system,
– in practice, we may only select some contingencies for analysis,
– even selecting only some contingencies, there will still typically be

many to be considered, so computational effort is still significant.
• Consider the effect of removing a line joining busℓ to busk, where the

series element of the line model has imaginary partBℓk,
• Let w∈ RnV be a vector with a one in theℓ-th entry, a minus one in the

k-th entry, and zeros elsewhere.
• If the line is removed, the imaginary part of the admittance matrix

changes fromB to (B−Bℓkww†).
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3.12.3 Post-contingency flows
• Removing the line means that the DC power flow equations for the

system will change to:

−1†P = −1†D,

θ′−ρ =
[
J′−σ
]−1

(P−σ−D−σ),

• whereJ′−σ is minus the imaginary part of the changed admittance matrix,
that is,(−B+Bℓkww†), with the column corresponding to the reference
busρ deleted and the row corresponding to the slack busσ deleted.

• That is,J′−σ = J−σ+Bℓkw−σ(w−ρ)
†, wherew−σ andw−ρ are, respectively,

the vectorw with theσ-th andρ-th entries, respectively, deleted.
• As mentioned in Section2.2, in practice we will not invert the matrixJ′−σ.
• Instead of invertingJ′−σ, we could factorize it and use forwards and

backwards substitution to solve forθ′−ρ.
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Post-contingency flows, continued
• If we have already factorizedJ−σ, which corresponds to the

pre-contingency system, we can reduce the effort to factorizeJ′−σ or use
the Sherman-Morrison formula.

• In particular, we can evaluate:

θ′−ρ = (J′−σ)
−1
(P−σ−D−σ) = (J−σ+Bℓkw−σ(w−ρ)

†)
−1
(P−σ−D−σ),

using the following:
(i) solveJ−σθ⋆−ρ = (P−σ−D−σ) andJ−σθ⋆⋆−ρ = w−σ, so thatθ⋆−ρ are the

angles in the pre-contingency or base-case system andθ⋆⋆−ρ are the
angles that would occur in a system with unit injection of power at
busℓ and unit withdrawal at busk (and no other injections or
withdrawals),

(ii) define∆P−σ =− Bℓkw−σ(w−ρ)
†

1+Bℓk(w−ρ)
†θ⋆⋆−ρ

θ⋆−ρ, and

(iii) solve J−σ∆θ′−ρ = ∆P−σ and setθ′−ρ = θ⋆−ρ+∆θ′−ρ.
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Post-contingency flows, continued
• Note that all of these calculations involve forward and backwards

substitution using the factors ofJ−σ, which corresponds to the
pre-contingency system.

• We do not need to factorizeJ′−σ, which is desirable since we must
evaluate the effect of outages of multiple lines in the system.
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Post-contingency flows, continued
• We can interpret the solution of the post-contingency system as being a

perturbation on the solutionθ⋆−ρ of the pre-contingency system that is due
to the flow on the line joining busesℓ andk being redistributed to all of
the other lines in the system.

• The vector of injections∆P−σ =− Bℓkw−σ(w−ρ)
†

1+Bℓk(w−ρ)
†θ⋆⋆−ρ

θ⋆−ρ is used as an

intermediate step to evaluate how the flow is distributed into the rest of
the system:

– since∆P−σ = αw−σ, whereα =− Bℓk(w−ρ)
†

1+Bℓk(w−ρ)
†θ⋆⋆−ρ

θ⋆−ρ ∈ R, we note that

∆P−σ has exactly two non-zero entries,∆Pℓ = α and∆Pk =−α,
– that is,∆P−σ defines a matched injection and withdrawal at busesℓ andk

of powerα.
– These injections are equal to the pre-contingency flow on theline

Bℓk(w−ρ)
†θ⋆−ρ, scaled by the factor− 1

1+Bℓk(w−ρ)
†θ⋆⋆−ρ

,

– The injections have the effect of creating a flow on the line that makes
the flows in the rest of the system the same as an outage of the line.
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Post-contingency flows, continued
• To understand the choice ofα, consider Figure3.15, which shows busesℓ

andk, the line joining them, and lines from these two buses to other buses
in the system that are denoted by arrows.

• Let γ be the base-case flow on the line from busℓ to busk:

γ = (−Bℓk)(w−ρ)
†θ⋆−ρ.

busℓ busk

γ

Other lines in the system
✻ ✻ ✻ ✻

✲

Fig. 3.15. Two buses,
ℓ and k, in network.
Source: This figure is
adapted from figure
11.16 of Wood and
Wollenberg (1996).
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Post-contingency flows, continued
• Consider a matched injection and withdrawal at busesℓ andk, assuming

that there are no other injections and withdrawals in the system:
– Let β be the flow on the line from busℓ to busk if there were a unit

injection of power at busℓ and unit withdrawal at busk (and no other
injections or withdrawals):

β = (−Bℓk)(w−ρ)
†θ⋆⋆−ρ.

– Now suppose that, instead of a unit injection, there is an injection ofα
at busℓ and withdrawal at busk.

– Then the flow from busℓ to busk due to this injection would be scaled
to αβ.
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Post-contingency flows, continued
• Now consider the case that there is both the base-case flow andthe flows

due to the injection ofα at busℓ and withdrawal ofα at busk:
– Summing both the base-case flow and the injection ofα, we would

obtain a net flow on the line ofαβ+ γ.
• Consider the conditions onα so that the flows from busesℓ andk into the

rest of the system are zero:
– at busℓ, this would require that the injectionα equals the net flow

αβ+ γ into the lineℓ,
– at busk, this would require that the withdrawalα equals the net flow

αβ+ γ out of the line at busk.
• If we conceptually “split” the bus, we can think of the flows into the rest

of the system as being flows “across” the bus.
• If this flow across the bus is made equal to zero, as shown in Figure3.16,

then the effect of the injections and withdrawals at busesℓ andk and the
effect of the base-case flow on the line are cancelled.
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Post-contingency flows, continued
• Summarizing, to achieve flow of zero across the bus, we require that the

net injectionα balances the flowsαβ+ γ.

• Re-arranging, we obtainα =− Bℓk(w−ρ)
†

1+Bℓk(w−ρ)
†θ⋆⋆−ρ

θ⋆−ρ.

✲ ✲α α

✻ ✻Flow across bus 0 Flow across bus 0

busℓ busk

α = αβ+ γ

✻ ✻ ✻ ✻

✲ Fig. 3.16. Conditions
for zero net flow into
rest of network.
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Post-contingency flows, continued
• The line has been effectively removed from the system through the

superposition of the original flows together with the matched injection at
busℓ and withdrawal at busk.

• The zero flow across the buses is equivalent to the buses beingsplit, and
the line removed from the rest of the system, as shown in Figure 3.17.

✲ ✲α α

busℓ busk

α = αβ+ γ

✻ ✻ ✻ ✻

✲
Fig. 3.17. Splitting
buses.
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3.12.4 Outage shift factors
• The flows on the lines in the rest of the system can be evaluatedasK ′θ′−ρ,

whereK ′ is obtained fromK by deleting the row corresponding to the line
joining busesℓ andk.

• Similarly, post-contingency oroutageshift factors can be evaluated as
K ′(J′−σ)

−1.
• It is sometimes more convenient to think of the outage shift factors as

being the sum of the pre-contingency shift factors plus terms that
represent:
– the effect of injections on the pre-contingency flow on the line joining

busℓ to busk, and
– the effect of redistributing the flow on this line to the otherlines due to

the contingency.
• This is useful for large-scale implementations.

Title Page ◭◭ ◮◮ ◭ ◮ 146 of 159 Go Back Full Screen Close Quit



3.13 Summary
• In this chapter we formulated the power flow problem, and considered:

– linearization of power flow,
– fixed voltage profiles,
– DC power flow,
– losses, and
– contingency analysis.

This chapter is based on:

• Sections 8.2 and 9.2 ofApplied Optimization: Formulation and
Algorithms for Engineering Systems,Cambridge University Press 2006.

• Ross Baldick, “Variation of Distribution Factors with Loading,” IEEE
Transactions on Power Systems, 18(4):1316–1323, November 2003.

• Brian Stott, Jorge Jardim, and Ongun Alsaç, “DC Power Flow Revisited,”
IEEE Transactions on Power Systems, 24(3):1290–1300, August 2009.

• Allen J. Wood and Bruce F. Wollenberg,Power Generation, Operation,
and Control, Second Edition, Wiley, New York, 1996.
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Homework exercises

3.1Consider a power system consisting of two buses and one transmission line:

• bus 1 (the reference/slack bus), where there is a generator,and
• bus 2, where there is load.

Suppose that the reference/slack bus voltage is specified tobeV1 = 16 0◦ and that
real power flow from bus 2 into the line is given by:

∀v2 ∈ R+,∀θ2 ∈ R, p2(θ2,v2) = v2sinθ2.

(That is, we assume thatG22 = G12 = 0 andB12 = 1.) Supposev2 = 1.0.

(i) What is the largest value of demandD2 at bus 2 for which there is a
solution to the equationp2(θ2,1.0)+D2 = 0? What is the corresponding
value ofθ2 with π ≥ θ2 ≥−π? We will write θ2 for this value ofθ2.

(ii) What happens ifθ2 becomes smaller thanθ2?
(iii) Show that there are two solutions to the equationp2(θ2,1.0)+D2 = 0

with 0≥ θ2 >−2π if D2 = 0.5. What are the corresponding values ofθ2?
(iv) Use DC power flow to approximate the relationship between θ2 andD2.
(v) When do you expect the DC power flow to be a poor approximation to

the exact solution?
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3.2Consider the example in Section3.9, but suppose that bus 0 is both the
reference and the slack bus, so thatρ = σ = 0.

(i) What is vector of unknown anglesθ−0?

(ii) EvaluateJ′ =
∂p
∂θ−0

([

0
1

])

.

(iii) Evaluate[J′−0]
−1.

(iv) Write down the DC power flow equations in terms of generation at buses
1, 2, and 3, and demand at bus 0.

(v) Evaluate the matrixK′ in the linearized representation of line flow
inequality constraintsK′∆θ−0 ≤ d.

(vi) Evaluate the shift factor matrixK′[J′−0]
−1.

(vii) Write down the line flow inequality constraints in terms of the shift
factors.

(viii) What do you notice about the line flow inequality constraints? Did the
choice of reference bus change the form of the line flow constraints?

(ix) Repeat the previous parts, but with bus 1 both the reference and the slack
bus, so thatρ = σ = 1.
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3.3Consider the three bus, two line system shown in Figure3.18and suppose
that bus 1 is both the reference and the slack bus, so thatρ = σ = 1. The line
capacities are shown. Assume that the susceptance joining bus 2 to bus 1 and the
susceptance joining bus 3 to bus 2 are both non-zero.

Bus 3 Bus 2 Bus 1

Line Capacity
100 MW

Line Capacity
1000 MW

Fig. 3.18. Three bus,
two line radial network.

(i) What is vector of unknown anglesθ−1?

(ii) EvaluateJ =
∂p
∂θ−1

([
0
1

])

. (Hint: See (3.13).)

(iii) Write down the DC power flow equations in terms of generation and
demand at buses 2 and 3.
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(iv) Evaluate[J−1]
−1.

(v) Assume that the only flow constraints are from bus 2 to bus 1, and from
bus 3 to bus 2. Evaluate the matrixK in the linearized representation of
real power line flow limit inequality constraintsK∆θ−1 ≤ d.

(vi) Evaluate the shift factor matrixK[J−1]
−1.

(vii) Write down the real power line flow limit inequality constraints in terms
of the shift factors as in (3.18).

(viii) Interpret these inequality constraints in terms of the figure.
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3.4Assuming thatJ−1 is invertible, show that the DC power flow equations
Jθ−1 = P are equivalent to:

P1 = −1†P−1,

θ−1 = [J−1]
−1P−1.

That is, show thatθ−1 satisfiesJθ−1 = P if and only if θ−1 satisfies
θ−1 = [J−1]

−1P−1 andP1 =−1†P−1. (Hint: See discussion in Section3.6.5or

consider the invertible matrixM =

[

1 1†

0 I

]

.)
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3.5Consider the three bus system shown in Figure3.19with busesℓ= 1,2,3
and with busρ = σ = 1 the reference/slack bus. Assume all three lines have the
same admittance. Using the analysis in Section3.10, calculate the matrix of shift
factors for this system to flows on the lines from buses 2 to 1, 3to 1, and 2 to 3.

❅
❅
❅

�
�
�

❅
❅
❅

❅
❅
❅

�
�
�

❅
❅
❅

�
�
�

❅
❅
❅

�
�
�

❅
❅
❅

�
�
�

✲

✲

❅
❅P3,Q3

P1,Q1

P2,Q2

�
��✠

❅
❅✚✙

✛✘
✚✙
✛✘

✚✙
✛✘

★
★
★
★
★★

❝
❝
❝
❝
❝❝

Fig. 3.19. Three-bus,
three-line network.
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3.6As mentioned in Section3.6.4, when there are no shunts, we can follow the
“traditional” approach to analyzing DC power flow assuming:

• the small angle approximations for cos and sin, and
• voltage magnitudes assumed to equal one per unit,

in order to derive the DC power equations in a more straightforward manner
than the more general sensitivity analysis used in Sections3.6and3.7.
In particular, again adopting the fixed voltage schedule assumption of
Section3.5with all busesPV buses, we assume that:

vℓ ≈ 1,∀ℓ,
and can therefore ignore the reactive power equality constraints (3.7) since they
will be satisfied by controlled reactive injection at each bus. Moreover, assuming
that angle differences are small we obtain that:

∀ℓ,∀k∈ J(ℓ)∪{ℓ},sin(θℓ−θk) ≈ (θℓ−θk),

sin(θℓ−θk) ≈ (θℓ−θk).
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Substituting into the real power equality constraints (3.6), we obtain:

Pℓ = ∑
k∈J(ℓ)∪{ℓ}

Bℓk(θℓ−θk),∀ℓ.

Suppose there are no shunt elements in the system. Then, the real power flow on
a line joining busesℓ andk is given by:

Pℓk = Bℓk(θℓ−θk).

For the rest of the question, we will continue to assume that there are no shunt
elements in the system. Similarly to the analysis in Section3.2.4, define the
following matrices:

• let B be the diagonal matrix with diagonal elements equal to the
susceptances of the series elements in the system, and

• the bus-to-line incidence matrixW, with columns ordered corresponding
to the rows and columns ofB, and with each column having a single 1
and−1 entry at the locations of the buses joined by the corresponding
series element inB.
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With these definitions, evaluate the following.
(i) Find an expression for the vector of real power flows,P , on the lines in

the system in terms ofB,W, andθ.
(ii) Find an expression for the vector of real power injections,P, at the buses

in the system in terms ofB,W, andθ.
(iii) The matrix in the last part is singular; however, by deleting a row

corresponding to the slack busσ and a column corresponding to the
reference busρ, a non-singular matrix can be obtained. Given a choice of
slack busσ and choice of reference busρ, express the vector of real
power injections everywhere except the slack bus,P−σ in terms ofB,
W−σ, W−ρ, andθρ, whereW−σ is the matrixW with row σ deleted,W−ρ is
the matrixW with row ρ deleted, andθρ is the vectorθ with the entryρ
deleted.

(iv) Find an analogous expression forP in terms ofB, W−ρ, andθρ.
(v) Evaluate the matrix,C, of shift factors that evaluates flowP in terms of

injectionsPσ at all buses except the slack bus.
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3.7Consider again the modified one-line two-bus system in Section3.11.4as
shown in in Figure3.13, and repeated as Figure3.20, with busρ = 1 is the angle
reference bus, and admittance of the series elementY12= 100−1000

√
−1.

Evaluate the exact loss expression (3.23) and the quadratic approximation (3.24)
for each of the following anglesθ2 (in radians).

(i) θ2 = 0.01,
(ii) θ2 = 0.05,

(iii) θ2 = 0.1,
(iv) θ2 = 0.5.

P1 P2

1 2

D1 D2

Y12 =

100−1000
√
−1

✲ ✛

✲✛

✚✙
✛✘

✚✙
✛✘

✲

Fig. 3.20. One-line
two-bus network.
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3.8Consider again the four-bus four-line example shown in Figures3.9
and3.12, and repeated in Figure3.21. Section3.10used the DC power flow
circuit interpretation to evaluate the shift factors to allthe lines for injection at
bus 1, withdrawal at bus 0. In this question, we will evaluatethe shift factors for
injections at the other buses. Evaluating by inspection is sufficient in all cases.
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Fig. 3.21. Four-line
four-bus network re-
peated from Figures3.9
and3.12.
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(i) Evaluate the shift factors to all the lines for injectionat bus 2 and
withdrawal at bus 0.

(ii) Evaluate the shift factors to all the lines for injection at bus 3 and
withdrawal at bus 0.

(iii) Consider a contingency on the line joining bus 1 to bus 0.
(a) Evaluate the shift factors to all the remaining lines forinjection at

bus 1 and withdrawal at bus 0.
(b) Evaluate the shift factors to all the remaining lines forinjection at

bus 2 and withdrawal at bus 0.
(c) Evaluate the shift factors to all the remaining lines forinjection at

bus 3 and withdrawal at bus 0.
(iv) Consider a contingency on the line joining bus 1 to bus 2.

(a) Evaluate the shift factors to all the remaining lines forinjection at
bus 1 and withdrawal at bus 0.

(b) Evaluate the shift factors to all the remaining lines forinjection at
bus 2 and withdrawal at bus 0.

(c) Evaluate the shift factors to all the remaining lines forinjection at
bus 3 and withdrawal at bus 0.
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