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Power flow

(i) Review of power concepts,
(i) Formulation of power flow,
(iif) Problem characteristics and solution,
(iv) Linearized power flow,
(v) Fixed voltage schedule,
(vi) Line flow,
(vii) Direct Current (DC) power flow,



(viii) Example,
(ix) DC power flow circuit interpretation,
(X) Losses,
(xi) Contingency analysis,

(xii) Homework exercises.



3.1 Review of power concepts

e Poweris the rate of doing work, measured in W, kW, MW, or GW.

e Energy is the work accomplished over time, measured in Wh, kWh,
MWh, or GWh.

e When power varies over time, the energy is the integral ouez of the
power.

e Figure3.1shows conceptually that generators inject power into the
transmission (and in some cases the distribution) systdmte wemand
withdraws power from the distribution (and in some cases the
transmission) system.
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Review of power concepts, continued

e In principle, power could be generated, transmitted, amsgmed using
eitherdirect current (DC) oralternating current (AC).

e Cost-effective and low loss transmission of bulk poweragbn being
able to create high voltages:

— power is proportional to the product of current and voltagehigher
voltages allow for higher power levels at a given current,

— for a given power, higher voltage means lower current, wingblies
lower losses for a given resistance of conductor.

e Generation and consumption is more convenient at loweageH:

— we will mostly focus on generation and transmission, madgli
consumption through aggregated net loads at distributibstations,
— step-down transformers at substations and on distribé¢ieders allow

for consumption (and in some cases generation) at lowesyedt.

e Other relevant issues include the probability of genenatiansmission,
and distribution failures, which affect tlipiality of supply to end users:

— local effects on distribution system typically affect gtyabf supply
more noticeably than generation and transmission failures



Review of power concepts, continued

e Until the advent of power electronics, only AC power coulgigabe
transformed from one voltage to another:

— basic reason for ubiquity of AC power systems.

e AC transmission of power also involves the back-and-fotvfbf power
between electric and magnetic fields:

— this back-and-forth flow is callegbactive power,

— to distinguish reactive power from the power that can abumrd
consumed by a load, the latter is calledl power,

— as we will see in Sectio.2.6 complex poweris a complex number
defined by(real powej + (reactive power,/—1 and has convenient
properties for computation.



Review of power concepts, continued

e The relationship between voltage and current in a circudetermined by
the characteristics of the circuit elements &athhoff’s laws.
e Kirchhoff’s current law:

— due to conservation of charge passing a bus or node of gircuit

— analogous laws apply in oth&lansportation networks,

— implies that supply oélectricpower always equals demand of electric
power plus losses,

— mis-match between mechanical and electrical power is Smeddby
inertia of system and results in frequency change,

— enforcing supply—demand balance between mechanical paovaer
electrical power is different to enforcing supply—demaathhce in
typical markets, such as a market for apartments to be testcim
Section6.

¢ Kirchhoff’s voltage law:

— sum of voltages around loop is zero,
— electric transmission network behaves differently to nodlséer
transportation networks because of Kirchhoff’s voltage la



Review of power concepts, continued

¢ Kirchhoff’s laws implicitly determine the voltages and cemts due to the
real and reactive power injections at the generators andithdrawals at
the loads.

e Using Kirchhoff’s laws to solve for the voltages and curgseinta circuit
consisting of generators, the transmission and/or digtah system, and
loads is called theower flow problem:

— assumes a particular operating condition,
— quasi-staticassumption that ignores dynamics and changes.

e The solution provides information about the flow of curremd @ower on
the transmission and distribution lines.

e The lines have limited capacities, so calculation of powesx #nables us
to decide whether or not a particular pattern of generationlevresult in
acceptable flows on lines:

— constraints on transmission operation implicitly deterelimitations
on the patterns of injections and withdrawals,

— the locational marginal pricing market reflects these ltngins into
prices that vary by bus (or node).



3.2 Formulation of power flow
3.2.1 Variables
3.2.1.1 Phasors

e \We can use complex numbers, calf@thsors to represent the magnitude
and angle of the AC voltages and currents at a fixed frequency.

e Themagnitude of the complex number represents the root-mean-square
magnitude of the voltage or current.

e Theangleof the complex number represents the angular displacement
between the sinusoidal voltage or current and a referencsaid.

3.2.1.2 Reference angle

e The angles of the voltages and currents in the system woluitiahge if
we changed the angle of our reference sinusoid, but thisduoare no
effect on the physical system.

e \We can therefore arbitrarily assign the angle at one of tisedto be zero
and measure all the other angles with respect to this angle.

e We call this bus theeference busor theangle reference busbusp, and
typically number the buses so that 0 orp = 1.



3.2.1.3 Representation of complex numbers

e To represent a complex numbére C with real numbers requires two
real numbers, either:
— themagnitude |V| and theangle /V, so thatv = |V|exp(/V /-1), or
— thereal 0{V} andimaginary [{V} parts, so that
V=0{V}+O{V}v/-1L
e Since we need to compare voltage magnitudes to limits tokchec
satisfaction of voltage limit constraints, we will reprasgoltages as
magnitudes and angles:
— Some recent developments in power flow have used the real and
imaginary parts representation.



3.2.1.4 Scaling and “per unit”
e There are voltage transformers throughout a typical poysem:

— “step-up” voltage at a generator to transmission voltageable
transfer from generator to transmission system,
— transform from one transmission voltage to another,
— “step-down” voltage at a distribution substation and irtrebsition
feeder for convenient use by load.
e The nominal voltage magnitude varies considerably actassystem by
several orders of magnitude.
e \We scale the voltage magnitude so that an actual value of Y24 the
110 kV part of the system would be represented by a scaleé wdlu

121 kV
110 kV

e While an actual value of 688.5 kV in the 765 kV part of the sgsteould
be represented by a scaled value of:

6885 kV
765 kV

—11

0.9.



3.2.2 Symmetry
3.2.2.1 Three-phase circuits

e Generation-transmission systems are usually operateal@asded
three-phase systemswith generators, lines, and (roughly) distribution
system loads arranged as symmetric triplets.

s

- n
transmission
generator | line | load
Zp

aE
O O
| Z
n neutral =
b | | | Fig. 3.2. An example
Zp balanced  three-phase
L o system.



3.2.2.2 Per-phase equivalent

e The quasi-static behavior of a balanced three-phase taoanibe
completely determined from the behavior gb@r-phase equivalent

circuit .
e Figure3.3shows the a-phase equivalent circuit of the three-phaseitir

of Figure3.2
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3.2.3 Transmission lines

e Transmission lines are physically extended objects, sbdkes in
Figures3.2and3.3representing transmission lines are actually
distributed parameter circuits,

e \We can represent the terminal behavior of such distribuéedrpeter
circuits with ar-equivalent circuit.

¢ In the model, there are twshunt componentsconnected from the
terminals to neutral andseries componenbridging the terminals.

e Each component of the-equivalent has an impedance (or, equivalently,
anadmittance) determined by the characteristics of the line.

E—T—sene: T "
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h h : :
u u Fig. 3.4. Equivalent
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l neutral l equivalent of transmis-

sion line.



3.2.4 Bus admittance matrix
e Consider the per-phase equivalent of a three bus, thre&gdéinsmission

system as illustrated in Figu@e5.

e For each bug = 1,2, 3, the pair of shunttelements joining nodéto
neutral can be combined together to form a single shunt eéleme

T [izi] 2

ol ]
[;neutral [I] [i

Fig. 3.5. Per-phase
equivalent circuit model
for three bus, three line
system.



Bus admittance matrix, continued

e This yields a circuit with:
— one element corresponding to each of the biéseq, 2, 3, joining node

¢ to neutral, and
— one element corresponding to each line,

e as illustrated in Figur8.6.

1 [ 9121
[ 913] Fig. 3.6. Per-phase
equivalent circuit model
for three bus, three line
neutral system with parallel

components combined.




Bus admittance matrix, continued

e As shown in Figures.6, let us write?); for the admittance of the element
joining node’ to neutral, and
e 9 for the admittance of the series element correspondingiteea |
joining buse¥y andk.
e The series element is most easily characterized in ternis whpedance.
e For a series impedancgy = Rk + Xikyv/ —1 between buseéandk, the
corresponding admittanc®y is given by:
1
%k - =
Zyk
1
Rex+ X/ =1
1 " Rk — Xov/ —1
Rk + Xokv' =1 Rk — Xewv/—1
Rk — Xekv' —1

T (Ra)2+ (Xw)? (3:1)

o If Zy=0.14++/-1, whatisyx =1/ Zy?




Bus admittance matrix, continued

e LetV € C™V be the vector of phasor voltages at all thebuses in the
system and let € C™ be the vector of phasor current injections into the
transmission network at all of the buses in the system.

e Using Kirchhoff’s laws, we can obtain a relationship of them A/ = |
between current and voltage, whéxe C™V *"V:

Do+ Swerw) Y, 1 L=K,
VO K, Ay = — Yk, if ke J(¢) ort e J(k), (3.2)
0, otherwise,

e whereJ (/) is the set of buses joined directly by a transmission lineu® b
l.

e The linear simultaneous equatiofl¢ = | represent conservation of
current at each of the buses.

e Ais called thébus admittance matrix:

— the/-th diagonal entry is the sum of the admittances connectbdg,
— the /k-th off-diagonal entry is minus the admittance connecting®
andk.



Bus admittance matrix, continued

e The bus admittance matrix can be thought of as being “buflashe
sum of matrices due to individual series and shunt elements.

e For example, if a line joins busto busk and its series element has
admittance)yk then the contribution to the bus admittance matrix is
%kwserieS(Wseries)T cCWv xn\/’

e wherewse"eSc RV s a vector with a one in théth entry, a minus one in
thek-th entry, and zeros elsewhere, so:

% kWserieS(Wserie3 T
[ /-th column k-th column 7 ™ /th column k-th column ]
= = A~ e
— % k 1 -1 } f-throw = % k - %k } ¢-th row
a 1 1 } keth row o % k %k } k-th row




Bus admittance matrix, continued
e If the shunt element at bushas admittancé; then the contribution to

bus admittance matrix ifs’g\/\/sh“”‘(\/\F‘h“m)T e Cvxv,
e wherews"U"tc RV js g vector with a one in théth entry and zeros
elsewhere, so:

[ ¢-th column [~ ¢-th column

W'shun Wshun T _ —
% Y t) % 1 } (-th row % } (-th row

e Summing these terms stampscorresponding to each series and shunt
element results in the bus admittance ma#iwith entries as defined
in (3.2).



Bus admittance matrix, continued
e With this characterization, we can wrike=W9YW?", where:

— the matrix?9” is a diagonal matrix with entries corresponding to the
admittances of the series and shunt elements in the line|s)adel

— the matrixW is the bus-to-element incidence matrix whose columns are
of the formwseeSgr yshunt

o If Y =G+ /—-1BthenA= G+ /1B, where

G = WgwW', (3.3)
B = WaW". (3.4)



3.2.5 Changes in bus admittance matrix

e Using the characterizatioh=W9W?T, we can consider the effect of
adding or removing a line from the system.

e For example, if we incorporate an additional line into theteyn between
bused andk having series element with admittanGg + +/— 1B, then
the admittance matrix is modified frofto
A+ (G + v/ — 1By )WeeneIwseres ' with a similar observation for shunt
elements.

e Conversely, if we remove a line joining buséandk from the system
then the admittance matrix is.m?dified frokto
A— (G + /1By )WeneIwseres ' with a similar observation for shunt
elements.

e Removing the line changes the real and imaginary parts cddn@ttance
matrix to: G — ggkvvse“es(vvse“e%T andB — Q%lgkwse”es(m/se”ef,
respectively.

e We will consider how suclbutagesof lines affects the system in
Section3.12



3.2.6 Generators and loads

e When electricity is bought and sold, the (real) power andggnare the
guantities that are usually priced, not the voltage or curre

e However, real power does not completely describe the ictiera
between generators or loads and the system.

e \We also have to characterize the injected reactive power.

e We can combine the real and reactive powers intactmplex power,
which is the sum of:

the real power, and
v/ —1times the reactive power.



Generators and loads, continued

e The usefulness of this representation is that, for exanipéenet complex
powerS injected at nodé into the network is given by:

Sﬁ :V€|2k7

e Where the superscriptindicatescomplex conjugate

— note difference between complex conjugate, denoted stjars, and
optimal or desired value, denoted superscript

e The current, equals the sum of:

the current flowing into the shunt eleme)it and
the sum of the currents flowing into each line connecting a bus
k € J(¢) through admittanc€/x.

e \We can substitute for the currents to obtain:
S = ViAN+ Y AsMd,
kel (?)
= VIPAL+ Y ARV (3.5)
kel (¢)



Generators and loads, continued
o Let Ak = Gy + Bikv/—1, V24, k, where we note that by3(1) and @3.2):

— we have thaGy < 0 andBy > 0 for ¢ # k, and
— we have tha6,, > 0 and the sign 0B, is indeterminate but typically
less than zero;

o letS =P+ Qpv/—1,V/, with:
— for generator buse®, > 0 andQy is typically positive,
— for load busesk, < 0 andQ, < O;

e and letV, = vy,exp(8,1/—1), V¢, with:
— the voltage magnitude ~ 1 in scaled units to satisfy voltage limits,
— the voltage angl8, typically between-11/4 andrt/4 radians.

e Sometimes we will explicitly distinguish the real poweranjed by a
generator from the real power consumed by a load, by wribiptpr the
real power load at bu&

— the net real power injection at a bus with generaf#pand loadD, is
thenP, — D, with bothP, andD, typically positive.

— Similarly, we will write E; for the reactive power load at bésso that
the net reactive power injection @ — E;.



Generators and loads, continued

e For notational convenience in the following developmerd,will write
P, andQ, for the net real and reactive injections:

— later cases where we explicitly distinguish generatiomffoad will be
clear from context.

e \We can separat8(5) into real and imaginary parts:

Pr= 5 vM[Gucog6; —6k) +Bysin(6, — 8)], (3.6)
keJ(£)u{l}

Q= >  Vwi[Gwsin(B —8) —BucogB —8)]. (3.7)
keJ(£)u{l}

e The equations3.6) and @.7), which are called thpower flow equality
constraints, must be satisfied at each bls

e That is, there are two constraints that must be satisfiedcht lmas.

e For a 5000 bus system, how many power flow equality conssamist
be satisfied?



3.2.7 The power flow problem

e The power flow problem is to find values of voltage angles and
magnitudes that satisfy the power flow equality constraints

3.2.7.1 Real and reactive power balance

e For convenience, we will sayQ busfor a bus where the real and reactive
power injection is specified.
e \We specify:
— the real and reactive generations at@{@generator buses according to
the generator control settings, and
— the (typically negative) real and reactive net power ing@w at thePQ
load buses according to supplied data.

e At each such bus, we have two specified parameters (the reataative
power injection) and two unknowns that are entries in thesi@t vector
(the voltage magnitude and angle).

e However, we cannot arbitrarily specify the real and reagtiower at all
the buses since this would typically violate the first law of
thermodynamics!

— Not all the buses can Q buses.



3.2.7.2 Slack bus

e A traditional, butad hocapproach to finding a solution to the equations is
to single out aslack bus buso.

e At this slack bus, instead of specifying injected real arattiee power,
there is assumed to be a generator that produces whateesrdeahto
“balance” the real and reactive power for the rest of theesysassuming
that such a solution exists.

e Typically, the slack bus is the same as the reference bus:

— in this case, we will typically number the buses so thhat p = 0 or
o=p=1,

— however, the slack bus and reference bus can be differehtharslack
can even be (conceptually) “distributed” across multipleds.

e In optimal power flow (Sectiof.1), we can in principle avoid this issue
and not define a slack bus.

e For reasons that will become clear in the context of locatiomarginal
pricing, we also call the slack bus tpéce reference bus



Slack bus, continued

e We re-interpret the real and reactive power generationeastdck busP;
andQg, to be decision variables in our power flow formulation.

e We will find values ofP; andQg that satisfy the overall real and reactive
power balance in the system as implied by the first law of
thermodynamics:

— for reasons that will become clear in the next section, weneil have
to represenP; andQg explicitly in the decision vectax when solving
power flow,

— we can simply evaluaté; andQg at the end of the calculation by
evaluating an expression,

— in Section5 in the context oeconomic dispatchwhere we are
considering the choice of generation at all the buses, weaisi
consider the real and reactive generations to be decismables and
soPy; andQg together with all the other real and reactive generations
will be explicitly in the decision vectox,

— example of where the definition &fwill depend on context.



Slack bus, continued

e The generator at the slack bus supplies whatever power essay for
real and reactive power balance.

e To keep the number of unknowns equal to the number of equstiba
voltage magnitude at the slack bus is specified as any plarticalue:

— in Section9 in the context obptimal power flow we will re-interpret
the voltage magnitude at the slack bus to also be part of ttisida
vector.

e If the reference bus and the slack bus are the same bus, thesrveall it
aVe bus, since both the voltage magnitude and angle are specified

e At theV 0 bus, we still have two specified parameters (the voltage
magnitude and angle) and two unknowns (the real and regmbiver
Injections).

e For most of the rest of the development of power flow, we willically
assume that the reference bus and the slack bus are the saypiaally
number the buses so that the reference/slack bus is bus 1.:

— we will sketch how to consider the case where the referendeslaick
buses are different.



3.2.8 Non-linear equations

e \We havenpg PQ buses, including both thHeQ generators and the loads.
e Letn=2npg and define a decision vectore R" consisting of the voltage
magnitudes and angles at tR® buses:

— unknown reaPy; and reactive)y generation at the slack bus will be
evaluated in terms of and so are not represented explicitly in the
decision vector.

e For every bu¢ (that is, including the slack bus as well as @ buses)
define functiong, : R" — R andq, : R" — R by:

VXERY pu(x) = 5 ViW[Gucos(B; — Bk) + Bucsin(6, — )], (3.8)
keJ(0)u{l}

XERYN Q) = 5 Vev[Gasin(B; — Bk) — Buccog B — ). (3.9)
ke (TU{0}

e The functionsp, andg, represent the real and reactive power flow,
respectively, from buég into the lines in the rest of the system.

e Kirchhoff’s laws require that the net real and reactive flaw of a bus
must be zero, so that(x) — P, = 0 andg,(x) — Q, = 0 at every bug.



Non-linear equations, continued

e Consider the special cape= 0 = 1 and define a vector function
g:R" — R" with entries given byp, — P, andq, — Q, for all the PQ

p2(X) — P2
p3(X) — Ps
0 B :
buses¥x € R", g(X) = P(X) — Qs |-
a3(X) — Qs
e If we solve the non-linear simultaneous equations:
g(x) =0, (3.10)
e for x* and then set:
Pl - pl(x*)v
Ql — ql(x*)v

e then we will have satisfied the power flow equality constsaattall buses
including the slack bue = 1.



Non-linear equations, continued
¢ In the general case where the referencedosy not be bus 1, and where
the slack bug may not be bus 1:

— the decision vectax consists of all of the voltage magnitudes and
angles except at the reference lpyiand

— the vector functiory : R" — R" has entries given bp, — P, andq, — Q,
for all £ # o.

e Again, if we solve the non-linear simultaneous equati@@), g(x) =0,
for x* and then set:

PG - pG(X*)7
QG — QG(X*)7
e then we will have satisfied the power flow equality constsaattall buses

including the slack bus.
¢ Note that we simply evaluatd®; andQg by evaluating the expressions

Po(X*) andgg (x").



Non-linear equations, continued

e \We have formulated the power flow problem as the solution otlieear
simultaneous equations:

g(x) = 0.
e The vectorg includes real and reactive power entries for each bus except
the slack bus:

— we will calculate the real and reactive power injection &t $kack bus
after we have solved(x) = 0.

e The vectorx includes voltage angles and magnitudes for each bus except
the reference bus:

— the voltage angle and magnitude for the reference/slaclataus
specified.
e Note that as we develop other problems, we will re-defia@dg as
needed for the formulation.



Non-linear equations, continued
e For future notational convenience:

—Let9,v, p, g, P, andQ be vectors consisting, respectively, of the entries
O,, V¢, Pr, O, Py, andQy for all the buses.

e We will often need to refer to a sub-vector with a particulairg omitted:

— let subscript—k on a vector denote that vector with the erkrgmitted,
—S00_y, Vk, Pk, Ok, Pk, andQ_y are, respectively, the sub-vectorsthf
Vv, p, q, P, andQ with the entriey, vk, px, 0k, Pk, andQyx omitted.

e We will maintain these definitions &, v, p, g, P, andQ throughout the
course:

— recall that we will change the definition afandg depending on the
particular problem being formulated.

e Also, let subscript-k on a matrix denote that matrix with rokvomitted:
— S0A  is the admittance matri& with the k-th row omitted.



Non-linear equations, continued
e With p = 0 = 1 the reference/slack bus then:

X =

g:

i 91] |
| V-1

[ (P1) — P—l] .
| (0-1) — Q1

e With this notation, the simultaneous equatigfs) = O can also be
expressed in the equivalent form:

p0-ps([22]) = s

| V1]

0-1(X) =0r1<-6_1-> = Q1.

| V1

e For a 5000 bus system, how many entries ar@ v p andq? How about

in 61, V_1, p-1, 01, X, andg?



Non-linear equations, continued

¢ In the general case where the referencedosy not be bus 1, and where
the slack bug may not be bus 1:

X = _ep],
Vo
o= [§5°82)

e The simultaneous equatiogéx) = 0 can also be expressed in the
equivalent form:

pm(X)—pw(-ep:) = Py,

%(X)z%( ep:) = Qu.



Non-linear equations, continued
e In summary, to solve Kirchhoff’'s equations for the elecpraver
network, we:
(i) solve 3.10, g(x) = 0O, which is a system of non-linear
simultaneous equations, and

(ii) substitute the solutiow™ into (3.6) and @.7) for the slack bus
¢ = o to find the real and reactive power generated at the slack bus.

e The real power generation at the slack buB,is= pg(X*), Sox* also
satisfiesp(x*) = P and, moreover:

1P = 17p(x*).

e This expression evaluates the total losses in the systang gisums the
total net real power injected into the transmission lines.

e Line currents and real and reactive power flows can also loelledéd
oncex is known:

— see in SectioB.7.



3.2.9 Example

e Consider the three bus system shown in Fiddiiwith buses = 1,2,3
and with bugp = o = 1 the reference/slack bus.

e Net generation oP,,/ = 1,2, 3, is shown at each bus and transmission
lines are represented by the lines joining the buses.

@

P, Q1

P3, Q3

/.

P2 Q2 Fig. 3.7. Three  bus,

O three line network.




Example, continued
e The entries ok € R* andg: R* — R* are:

0,
0_1 63
X= [V_]_] = Vo |
| V3
wopi] [ R
_{paX)—Pa| _ | p3(x)—
vx € R%,g(x) = [q_ll(x)—Q_ﬂ - 323&%—82 ’
|3\ T3

e WhereP, is the net generation (generation minus demand) at bus 2, and
similarly for other buses and for the reactive power at theelsu



Example, continued

e If we solveg(x) = 0, we can then use the resulting solutidrto evaluate
the real power and reactive power that must be produced at the
reference/slack bus to satisfy real and reactive powenbalat every bus:

Pl — pl(X*)a
Q1 = qu(X").
e Losses in the system are given by:
1"p(x*) = PL+ P, +Ps.

e If the reference bus is = 2 and the slack bus = 3, what are the
entries inx andg?

e If the slack bus iss = 3, what are the expressions to evaluate the real and
reactive power injection at the slack bus?



3.3 Problem characteristics and solution
3.3.1 Number of variables and equations

e There are the same number of variables as equatior3s1if) (
e For a 5000 bus system, with oN@® bus and the ref2Q buses, how many
variables and equations are there?

3.3.2 Non-existence of direct algorithms

e Because the equations are non-linear, there is no direatithlgn, such as
factorization, to solve for the solutiott for arbitrary systems.

e The Newton—Raphson algorithm from Sectb can be applied to this
problem, requiring:

— an initial guesx(9,
— evaluation of partial derivative terms in the Jacob%%, and
— solution of the Newton—Raphson upda2e1()—(2.11) at each iteration.



3.3.3 Number of solutions

e There may be no solutions, one solution, or even multipletswis
to (3.10.

e However, power systems are usually designed and operatedisihe
voltage magnitudes are near to nominal and the voltage siagée
relatively close to 6.

e If we restrict our attention to solutions such that voltagggmitudes are
all close to 1 (and make some other assumptions) then we ahn fin
conditions for the there to be at most one solution.

e How many solutions are there totXin(6) = 0?

e How many solutions are there tolGt sin(6) = 0?

e How many solutions are there tol0+ sin(0) = 0 with —11/4 < 0 < 11/4?



3.3.4 Admittance matrix
3.3.4.1 Symmetry
e The admittance matriA is symmetric.

3.3.4.2 Sparsity

e The matrixA is only sparsely populated with non-zero entries and each
component ofj depends on only a few componentsxof

e Sparsity is the key to practical solution of problems witty&anumbers of
buses.

e For a 5000 bus system having 5000 lines, how many non-zeriegare
there in the admittance matr?



3.3.4.3 Values

e Atypical line impedance has positive real and imaginarysar

e The corresponding line admittangg therefore has positive real part and
negative imaginary part.

e If there is a line between busésandk then the entries
Ay = Gy ++/—1By in the admittance matrix satisfg, < 0, By > 0.

e The diagonal entried,, = Gy, + +/—1By in the admittance satisfy
Gy, > 0 and, typicallyB,, < 0.

e The resistanc&y of transmission lines is relatively small compared to
the inductive reactancyy.

e Furthermore, the shunt elements are often also negligdsigared to the
inductive reactance.

e This means that for transmission lines:

Ve, Vke J(0) UL}, |Gul < [Bu-

e Note that distribution lines may have relatively highenstace to
inductive reactance ratios than transmission:

— approximations described in following sections are lessigte for
distribution systems.



3.4 Linearized power flow
3.4.1 Base-case

e Suppose that we are given values of real and reactive gemerat
PO ¢ R"™et! andQ© ¢ Rt that specify dase-case
— For example, the base-case real and reactive generatialtslmothe
current operating conditions.
— As another examplé(© = 0 s the (unrealistic) condition of zero net
real power injection.

()
1

e

e Also suppose that we have a solutidf = [
1

] to the base-case
equations, so thaj(x?)) = 0, or equivalently:

p1(x?) = P,

q—l(X(O)) — Q(_(;_)7

o whereP'Y andQ'9 are the sub-vectors &© andQ(®, respectively, that
omit the reference/slack bus, whegre- 0 = 1.



3.4.2 Change-case
e Now suppose that the real and reactive power generatiomgjeha
— from P(©® andQ(©),
—to P =P + AP andQ = Q@ + AQ, respectively.
e Similarly, we suppose that the valuexothanges fronx(9 to x(9) + Ax to

re-establish satisfaction of the power flow equatighg = O.
e That is, thechange-casg@ower flow equations are given by:

(x4 = P94 AP,

1(x9 +ax) = Q(_Ol) +0Q,

e whereAP ; andAQ_1 are the sub-vectors &P andAQ, respectively, that
omit the reference/slack bus.
e The equations are non-linear equation&in



Change-case, continued

e Note the change in net generation at the reference/slacis beguired to
be consistent with the chang.
e S0, we also have that:

pl(X(O) + AX) = Pio) + APy,

u(x9+m) = QY +AQ;.

e That is, the change in generation at the reference/slackaube
calculated (or estimated) oné® is known or estimated.



3.4.3 First-order Taylor approximation

¢ To find an approximate solution to the change-case equatignform
first-order Taylor approximations to p_; andq_i:

0
pa(X?+0) ~ pa(X®)+522 (),

010 +89 ~ qa(x)+FH (1O

e For future reference, note that the matrigé?%( X) andgorl( x) form the

Jacobian of the system of equatigms (X) = P-1,0-1(X) = Q-1:

op_
—a)? 1(X)

0
a)?_ L ()



3.4.4 Linearization of change-case equations

e Substituting the first-order Taylor approximations inte tthange-case
equations, we obtain:

0
pa(x?)+ 5P (xO)ax ~ PY 4Py,

0
01(x9) + 5 )¢ ~ QY +aQ .

e From the base-case solution, we have(x(?) = Pg) and

g-1(x\Y) = Qq)-
e Ignoring the error in the first-order Taylor approximatiave have:

ap
SO = apy,

d
o - O)x = 80y



Linearization of change-case equations, continued
01 o (0)
ax X7

e Typically, the Jacobia IS non-singular.
X

e Thatis, we can solve:
op_
% (X(O))
0q_
ax %)

AP

5= |63

o for Ax.

e These arsparselinear equations, which can be solved efficiently Azr

e This approximation to the solution of the change-case pdaer
equations is equivalent to performing one iteration of the
Newton—Raphson method, starting at the base-case spemjfiéd.

e For a 5000 bus system, what is the size of the coefficient matttihe
linear equations?



Linearization of change-case equations, continued
e Moreover, the change in real and reactive power at the slas kil
approximately satisfy:

0
AP — anl(X(o))AX,

0
A1 = aqu (xO)x.



3.4.5 Jacobian
3.45.1 Terms
e Recall that the entries ip: R" — R"PQ*1 are defined by:

XERY, pu(X) = > Vvi[Guccos(6; — Bi) + Buicsin(B, — B)].
keJ(£)u{l}
e The entries iy : R" — R™Q*! are defined byq, : R" — R:
XeRMLQ(¥) = 5 Viw[Gusin(6, — k) — Bucog6, — Bi)].
keJ(OU{e}

e The entries in the vectorare either of the forn@y or of the formw.

e To examine the terms in the Jacobian, partitt@o that all the voltage
angles appear first in a sub-vectby followed by all the voltage
magnitudes in a sub-vectar;, so that:

S



Terms, continued

e There are four qualitative types of partial derivative terworresponding
to each combination:

vx € R" apg( X)

’ 00k
z Vng[—ng Sin(eg—ej)—l—ng cog0,—9 )] if k=1/,
_ JeI(0)
- VoV [Gyk sin(By — Bk) — Bicog 6, — Gk)] if ke J(0),
0, otherwise,
0
VX € R”,avpg( X)
2V Gy + Z Vi [ng COieg—ej)—l—ng Sin(eg— ] if k=1/,

i)

J€I(0)
[ngCOieg — Gk) + ngsm(Gg — Gk)] if ke J(ﬁ),
0, otherwise,



Terms, continued

vXeR“,ggﬁ( X)

z VoV [ng COieg—ej)—i—ngSin(eg— )] ifk=1/¢,
jed(?)
Vng[—ngCOieg — ek) ngSIn(eg — ek)] if ke J(f),
0, otherwise,
n 0Qy
vxeR ’avk( X)
—2VyByy + Z Vj [ng sin(By — ej) — Byj cog 0, — )
jed(o)
- Vg[ngSin(eg — ek) ngCOieg — ek)] if ke J(f),
0, otherwise.

|, ifk=¢,



3.4.5.2 Partitioning by types of terms

e Based on the partitioning of we can partition the Jacobian into four
blocks:

00 5200

00_1 oV_1
0 0
300 g2

e For a 5000 bus system, with 5000 lines, how many non-zerdesrdre
there in each of these blocks? Assume that there are exactlytes
connected to the slack bus.



3.4.6 Decoupled equations
e Recall that for typical line§'?,Vk € J(¢) U{¢}, |G| < |Bk|-
e Also note that for typical linegk, |6, — 8y| < 11/2.

e This implies that the terms in the matric%% andggrl are small

compared to the terms in the matn% andx—— aorl

ov_ 1
e If we neglect all the terms |5— andggrl then we can then

Wiy o

approximate the Jacobian y66_1 aq_l



Decoupled equations, continued

e LettingAx = [A9_1] , this allows decoupling of the linearized equations

AV
into:
op_
%(Xm))m—l = AP,
0
OV;E(X(O))AV—l = AQq,

e The first set of equations relate real power and angles, wielsecond
set of equations relate reactive power and voltage magsstud

e These decoupled equations require less computation tiangthe full
system.

e For a 5000 bus system, what is the size of the coefficient mateach of
the the decoupled linear equations?



3.5 Fixed voltage schedule
e If real power generations and flows are our main concern and there is
adequatevoltage supportin the form of controllable reactive sources
then we may be justified in assuming that the voltage magestedn be
held fixed by controlling reactive power:
— instead of assuming that each bus except the referendelslads aPQ
bus, we assume that each such bus has a specified real power and
voltage magnitude.

— These are calleBV buses.
— A typical assumption is that all voltage magnitudes are lupér v = 1.

— More generally, any fixed voltage schedul® can be used.
— We can evaluate the reactive power injectionB\atbuses at the end of

the calculation by evaluating an expression:
o This is similar to the situation for real and reactive powetha slack

bus.
o At aPV bus, we do not need to solve for the voltage magnitude, since

it is specified.



Fixed voltage schedule, continued
e Assuming all buses, except the reference/slack bus;\afeuses:

— The unknowns are: the voltage angles at all the buses exeept t
reference/slack bus; the real power generation at thearsferslack
bus; and the reactive power generations at all buses.

0_1
— We first solvep 3 ( [ (0)] > = P_1 for 6_1, given the fixed voltage
vV
schedule/?, and call the solutio®”;.
— To complete the solution:

o real power at the reference/slack bB%O,)

o,
-1

o reactive generations at all buses, including the refevstamk bus,
0x
Q(© are chosen to satisfp(¥ = q ( [ (01)] ) , in order to achieve the
V1

IS chosen to satisfy

voltage schedulg(©.



3.6 DC power flow
e \WWe combine the ideas of fixed voltage profile and linearizatio

3.6.1 Fixed voltage schedule

¢ \We again assume that there are controllable voltage soavedable to
provide a fixed voltage schedul&.
e Based on the analysis in the previous section, we could tiees

01
P_1 ( [ 0) = P_4 for 6_ to obtain the solutio®*; and then evaluate
V

e*

(0) -

Pl7=p1{ | (0

Vi

e This again enables us to focus on real power generation agidsan
01

e However, instead of solving 1 0) = P_; exactly for0*,;, we

Y

solve a linearized version of the equations that is lineariabout a
base-case in order to estimate a change-case solution.



3.6.2 Linearization

e \We linearize about &xedbase-case solution(,o)

I
1
RO LS
1

e The change-case power flow equations are given by:
09+ 0
p—l( LA ) P()+AP1

v
¢ To find an approximate solution to the change-case equatisnform a

-1

first-order Taylor approximation tp_;:

(1)) (1097 e ([89] )

—1 —1 TN -1,
)L

0p_1

(0)
= pa(x®) + gH (X0)08

Q

Vi,



Linearization, continued

e Substituting the first-order Taylor approximations inte tthange-case
equations, we obtain:

p.1(x) +39L:1 (x84 ~ P9 4 4P ;.

o From the base-case solution, we havg(x(©) = P9,
e Ignoring the error in the first-order Taylor approximatiave have:

op_
% (X(O))Ae_l = AP_]_,

e which can be solved fal9_;.
e The change in the real power generation at the slack busns the
approximately:

0
AP = Wp_ll (X(O))AB_]_.



Linearization, continued
e The base-case power generati®f8 that determine the base-case
solution are chosen to be convenient for calculations.
e A typical base-case involves:

— zero net real power generation at all buses, soRfat= 0, and
— all voltage magnitudes 1 per unit, so thé = 1.

¢ If we make the realistic assumption that the transmissiogslhave zero
real values for their shunt elements tH#R = 0 solves the base-case.

0
o X0 = [ ‘1] — [2] is called aflat start.

0
O

e At the flat start, the linearization yields the following edjons:

op_
—aep_il' (X(O))Ae_]_ = AP_]_.



Linearization, continued

e To summarize, we have linearized about the flat start camdit
approximate the change-case solutior 8% + A9 = 0+ 20 = AP
corresponding to injectior = PO + AP = 0+ AP = AP.

e \We now interpret:

PO + AP = AP = P to be the power generation for the change-case we
are trying to solve, and

09 1+ A9 = A8 = 0 to be the solution for the angles for the change-case
we are trying to solve.

e That is, we solve the linearized power flow equationstfar

op1 (|0 _
EH (LSS
0p-1

B Ol . :
e Wheresz— IS a constant matrix,
001 \ |1

e O0_; is the vector of unknown angles at the change-case solaman,
e P_; is the sub-vector oP that omits the slack bus.



Linearization, continued
e These equations are in the fodn0_1; = P_1, where the coefficient

matrix is:
34— ap_l 0
1= 00_; 1/

e The coefficient matriXl_1 relates real power and angles and is the

sub-matrix of] = ge—pl 2 obtained by deleting row 1.

e The subscript-1 onJ ;1 is referring to bus 1 as the slack bus:

— for the general case of busas the slack bus, we will consider

5. _ g (O
97004 1)’

— where the reference bus is still bus 1, Byt has been obtained froth
by deleting rono.

— We will discuss changing both the slack bus and the referbusén
Section3.6.9

e The equationg 16 1 =P (orJ 40_1 = P) are sparse linear equations,
which can be solved efficiently fd ;.



Linearization, continued

e Paralleling the earlier observation, this approximatiothe solution of
the power flow equations for power generatin is equivalent to
performing one iteration of the Newton—Raphson methodtistpat a flat
start.

e Moreover, the real power at the slack bus for the change casbée

estimated by:
0 0
PL= 5= <H> 0.1, (3.11)
ops (|0

e OrP; = 30\ |1 0_, if bus o is the slack bus.

e We will see in Sectior3.6.6that the estimation of the real power
generation at the slack bus can be written more directlyrmdeof the
generation$_s at the other buses.



3.6.3 DC power flow equations

e CombiningJ 161 =P andP; = ge—pll (HD 0_1, we obtain:

J8,=P (3.12)

ap 0

00_1 \ |1

e Equations 8.12 are called théC power flow equations

e Values off_; andP that satisfy the DC power flow equatior& 12 then
approximately satisfy the power flow equality constrai@$)for all
buse¥.

e Recall that we have assumed tiais chosen to satisfy the power flow
equality constraints3(7) for all buse< for the assumed voltage
magnitudes/(9 = 1.

whereJ =



3.6.4 Interpretation

e We have interpreted the DC power flow approximation as etgrvado
performing one iteration of the Newton—Raphson methodtistpat a
base-case specified by a flat start, or equivalently the ptower
equations linearized about a flat start.

e This differs from the “traditional” interpretation that @tmasizes:

— the small angle approximations for cos and sin,

— voltage magnitudes assumed to equal one per unit, and

— the solution of DC power flow being the same as the solutiomof a
analogous DC circuit with current sources specified by thvegpo
injections and voltages specified by the angles.

e The traditional interpretation in terms of a DC circuit iséid for solving
small systems by hand:

— See in Sectiod.10and Exercise.5.

e The traditional interpretation also allows for a more gfndfiorward
derivation in the case of no shunt elements:

— See in Exercis8.6.



Interpretation, continued

e Our interpretation in terms of linearization provides aacéx and more
general perspective on the conditions when the DC power ffowiges a
good approximation:

— See in Exercis8.1
e It also provides a connection tiecompositionalgorithms:

— iteration between solution and linearization of the powawféquations,
and calculation of a desired generation operating point.



3.6.5 Terms in Jacobian
e The entries of] = a— <[0D are:

001\ |1
(S By, k=1,

ope (|0 _ ) i€l

m(H) ~ 1 -Bu ifkel(), (3:13)
\ 0, otherwise,

( minus the susceptan if k=/¢
> joining buseg andj )’ o

= { jel() _
— By, if ke J(0),
\ 0, otherwise,
| —Bw, ifkelJ@)u{¢}, | if the shunt susceptances
- 0, otherwise, are all equal to zero.

e Note that these entries correspond to the imaginary paheo&timittance
matrix, B, whereA = G+ B/ —1, notto the inverse of the line inductive
reactances, as is often stated in derivations of the DC pover

— these are different if the resistance is non-zero.



Terms in Jacobian, continued

e In the next slides, we will consider entriesbf= ge—pl ( 2 , which
includes the row consisting of the derivativespmfcorresponding to the
slack bus.

e If the shunt admittances are all equal to zero then:

J is minus the imaginary part of the admittance matrix, thatis, with
the column corresponding to the reference bus deleted,

J_1 is minus the imaginary part of the admittance matrix, thatig,
with the column corresponding to the reference bus delatddrae
row corresponding to the slack bus deleted, and

if the slack bus is bus, thenJd g is minus the imaginary part of the
admittance matrix, that is; B, with the column corresponding to
the reference bus deleted and the row corresponding toabk lslis
o deleted.

e If the shunt admittances are non-zero then the entridcofresponding
to diagonal entrie8,, of B will differ from the entries of—B by the shunt
admittance connected to bés] omits the shunt terms.



Terms in Jacobian, continued

e Summing the entries in thieth column ofge—lo1 ([2] ) , we obtain:

wyob (1)) = (12) 5o (5)

where the summation ovéiincludes
the slack bus,

= Z Bkj — Z Bk, general case fronB8(13),
jed(k) eJ(k)
considering possibly non-zero shunt admittances

= Y Bxj— Y B, sinceBui =By,
jel(k) teJ(k)
= 0.

e Thatis, each column af = g—pl ([2]) sums to zero, st'J = 0.



3.6.6 Slack injection and losses

1*39—"_1 ([2]) —0. (3.14)

e From (3.11), we can estimate the net injection at the slack bus as:

o apl 0
S ()L
~ .10pa (|0
- 1 ([2)]) e
: +0p O\ _
sincel 901 ([1]) = 0from (3.14),
= —1'Py,

e given the DC power flow approximation.

e Thatis,1'P = 0 and there are zero losses, given the DC power flow
assumption of the flat start as base-case, and assuminf¢haia part of
the shunt admittances are zero.

e Equivalently,



3.6.7 Solving for the angles

e The matrixJ_1 = gei‘ll < [cl)D IS hon-singular, so we can write
0_1 = [J4] _1P_1, allowing us to solve for the anglés;.

e As mentioned in Sectiof.2, in practice for large systems we would not
invert the matrixJ_;, but instead factorize it and use forwards and
backwards substitution.

e Given the lossless assumption and a specificatidh gfwe have already
evaluated the net generation at the reference/slackus:—1"P 4,

e SO that the slack bus exactly compensates for the net demmand o
withdrawal summed across all other buses, since the appatiin is
lossless.



Solving for the angles, continued
e Summarizing, the DC power flow equatiod@ ; = P are equivalent to:

P = —1'P,
01 = [J4] _1P_1.

e See Exercis8.4for a formal demonstration of the equivalence of the DC
power flow equations to this representation, which we wdbalefer to as
the DC power flow equations.

e As mentioned in Sectiof.2, in practice for large systems we would not
invert the matrixJ_;, but instead factorize it and use forwards and
backwards substitution.



3.6.8 Demand

e SO far, the vectoP has represented the vectorradtinjections at the
buses.

¢ In some formulations, we want to consider demand and gaoerat
separately.

e For example, if the net injection B— D, where:

P is now the vector of generations, and
D is the vector of demands,

e then the DC power flow equations are equivalent to:
~1'p = —1'D,
04 = [J4] '(P1-D),

e whereP_1 andD_; are the sub-vectors & andD, respectively, that omit
the reference/slack bus.



3.6.9 Slack bus and reference bus choices

e If the slack bus is bus then the DC power flow equations are equivalent

to:

~1'"p = —1'D,
e—1 - [J—o] _1(P—0— D—O’)a

e whereP_ s andD_g are the sub-vectors & andD, respectively, that omit

the slack bus, and
e Where the reference bus is still assumed to be bus 1.

e If the slack bus is bus and the reference bus is bpsghen the DC power
flow equations are equivalent to:

—1'p = —1'D, (3.15)
8 = [I4] (Po—Doy), (3.16)
e WherelJ' = gei ([(1)]) Is the matrix of partial derivatives with the
—p
reference bus assumed to be puend where the matrid’ differs fromJ
in one column.



3.7 Line flow

e We typically use the results of power flow to evaluate whetherflow
along a line is within limits:

— this is most straightforward for flow limits expressed imterof real
power flow,

— we can also consider flow limits expressed in terms of current
magnitude or the magnitude of complex power.

e There is typically a flow limit in each direction on the line.
e For a line joining bug to busk we can consider:

— real and reactive flowp, andqy along the line from bug in the
direction of buk, and

— real and reactive flowpy, andqgy, along the line from buk in the
direction of bu¢.

e Without loss of generality, we explicitly consider onbyi andqy.



Line flow, continued

¢ Ignoring shunt elements in the models, we have that the neateactive
flows are given by:

VX € R™, pi(X) = VeW[Gucco By — ) + BycSin(B; — Bk)] — (v¢) “Gu,
VX € R™qu(X) = VoWk[GukSin(6; — Bk) — B cos(8; — Bk)] + (Vr)“Byk.
¢ (The linearization analysis including shunt elements hassame result

that we will present, but is notationally inconvenient giee need to
define parameters for the shunt elements in each line.)

e We will approximate these expressions by again lineariaingut a
base-case:

— for convenience, we will again assuipe= 0 = 1 in the derivation and
then sketch the extensions to the general case.

e We linearize the expressions fpyx andqy aboute(_ol).
e \We continue to assume that the voltage magnitudes are fixé® at



3.7.1 Linearized line flow

|

0
A Prk(X ())Jra@p_gk( )08 4,

9&? +00 1

0

ngsm(eéo) eff’))
‘f‘BEkCOieg - I(<O))

= pu(X?) + v\

Qrk (

0
~ (X ))‘Fagfk( )08 4,

] (Aeﬁ - mk)7

0'9 + 084

0
.

Gk cos(Géo) — Gﬁo))

_ (0) (0),,(0)
= OQ(X*™) +V, 'V .
(X)) vy Ve + Buesin(6 — 8%

] (08, — DBy).



Linearized Line flow, continued

e \We focus on the real poweqyy flowing along the line from buéin the
direction of bu.
e Define the row vectoK of partial derivatives by:

Vi# LK =<

(

\

véo)vl((O) [— Gk sin(eéo) — Gf(o)) + Bk cos(Géo) — eﬁo))],

if j=1/,

—véo)vﬁo) [— Gk sin(eéo) — Gl((O)) + Bk cos(eéo) f_ _ef(o)l)j,
if j =Kk,

0, otherwise,

e Thatis,Kx)j is the j-th entry in the row vectoK ), which has entries
for every bus except the reference bus.
e Then the linear approximation oy is given by:

Prk (

9(_01) +00 4

0
v

) ~ pk(X\Y) + Ko 1.



3.7.2 Line flow constraints

e Suppose that we have line flow constraints of the f@Rix) < Py.
e Using the linear approximation, we obtain:

Pk(X%) + K D01 < P

e By defining a matrixK with rowsK and a vectod with entriesd, of
the form:

Ay = Pox— Pe(XY),
e We can approximate the collection of line flow constraintghmform:

KAB_1 < d.

e This form of the line flow constraints includes the angledliexty.



3.7.3 DC power flow approximation to line flow constraints
9@ 0
e Using a flat stark(®) = [ (g)] = [1] as the base-case for the
V1
linearization, we find:

0, otherwise,
B, If J=¢,
= { —Bw, if j=Kk,
0, otherwise,

_ 0
dixy = Pi— Pk ( [1]) ,

= P

P VoviBek, If | =4,
Kk Zaifk ([V(? > - { —VpWBk, if j =K,



DC power flow approximation to line flow constraints, contied
e Summarizing, we can approximate the flows at the angle
0= eﬁ? + /8 1 =B 1 using the linearized equatiokd_ ;1 < d, where:

B£k7 If J — E;
V({K), V] # LK) = { —By, if j=k,
0, otherwise,

V(¢K), diky = Pk

e Again, this form of the constraints includes the anglesieijyl and
approximates the power flow on a line joining bugesmdk as being
proportional to the angle differen¢8, — 6x) across the line.

e The(/k) row of K has exactly two non-zero entries of equal magnitude
and opposite sign, unlegor k is the reference bus, in which case the row
has one non-zero entry.



DC power flow approximation to line flow constraints, contied

e If the reference bus changes to hen the linearized line flow
constraints would b&'6_, < d, where:

B, iIf ] =4,
V(/Kk),Y] #p, Kégk)j = { —By, if | = K,
0, otherwise,

V(K),dy = P

e The matrixK’ differs from the matrix in one column.



3.7.4 Eliminating the angles

e In some cases, it can be convenient to eliminate the angkebles by
expressing them in terms of the net power injections.

e We previously found that the DC power flow equations could be
expressed as:

~1'p = —1'D,
01 = [Jo| ' (Ps—Doy),
e Wherea is the slack bus and = 1 is the reference bus.
e \We use the second equation to substitute Ko; < d to obtain the
equality and inequality constraints with the angles elauéal:
—1'p = —1'D, (3.17)
Kol Py < K[do| D g+d. (3.18)

e This approximation to the flows is not always good:

— itis used to represent transmission constraints in mosatiaad
electricity markets,
— will explore accuracy in homework exercise.



3.7.5 Shift factor matrix

e The matrixK[J_,] * is the matrix of DCshift factors or power transfer
distribution factors .

e That is, entries in the matrix represent the fraction of fldeng each line
for:

injection at the buses represented in the vektgr and
withdrawal at the slack bus.

e \We occasionally want to express line flows in terms of theardetof all
net injections.

e First consider the case that= 1. A

e Foro =1, define the augmented shift factor mattix= |0 K[J_l]‘l].

e That is,C consists of the columns &f[J_1] * augmented by an additional
zero column corresponding .

e Each entry ofC represents the fraction of the generation from generator
at busk that flows on the corresponding line.

e The flows are given b (P —D).



Shift factor matrix, continued

e The equality and inequality constraints with the anglesielated are
then:

~1'p = —1'D, (3.19)
CP < CD+d. (3.20)



3.7.6 Shift factor matrix with other slack bus and referenteis choices

e Similarly, if the reference bus is some other lpusnd the slack bus is
some other bus, we can again define a corresponding augmented shift
factor matrixC’ such that the flows are given /(P — D), and the
equality and inequality constraints are then still of therfo

~1'p = —1'D,
CP < CD+d.

e For any particular example, we will typically maintain a gjivchoice of
reference bup and slack bug.

e Slightly abusing notation, we will henceforth typicallyfeeto the
Jacobian ad and the shift matrix a€ or C, irrespective of the choice of
reference and slack bus.

e We will make clear the choice of reference and slack bus ih eaample
and occasionally use notation suchJaandJ’ when when we are
considering different choices of reference and/or slack bu



3.7.7 Line flow constraints at other operating points

e The derivation so far used the flat start condition as the-base for
evaluating the shift factors and the line flow constraints.
e Other base-cases could be used, such as:

— another assumed operating point, or
— a measured or estimated operating point frogtade estimator.

e The lossless assumption will typically not hold at otheresaases nor for
the estimated change-case.



3.8 Example

e Consider the following one-line two-bus system with MW caipaand
per unit impedance (on a 1 MVA base) as shown.

e Let busp = 1 be the angle reference bus, so the unknown andlg is

e Let buso = 2 be the slack bus.

e There are generators and demand at both buses 1 and 2.

: “®)
0+0.001/-1
D,

100 MW D> Fig. 3.8. One-line two-

bus network.



3.8.1 Admittance matrix
e The line admittance is:
1

92 = 570000/ T
— —1000/-1.
e The bus admittance matrix is:
Y2 —92|  [-1000/—1 1000,/-1
—%2 92| ~ | 1000/—1 —1000/—1|’
_ _811\/—1 Blzx/l]
| Boiv—1 Bpov-1 '




3.8.2 Jacobian

e Evaluating the sub-matrix of the Jacobian correspondingadbpower
and angles at the condition of flat start:

= a5 (1)
i)
-3 (1)




3.8.3 DC power flow
e The DC power flow constraints are:

Je_p — P— D,

_ |Pi—D1
~ |Po=D2|"
e Substituting, we obtain:

—1000] 1o+ [PL—Ds
1000| 1921 = P,—D|"



3.8.4 Eliminating angles
e \We eliminated, to obtain the following form:

—P1—P, = —D;1—Dg,
02] = [Io] ‘[PL—Dul,

e where, to forml_g, we have deleted the second rowdaforresponding to
the slack bug = 2:

Jo = [_1OOQ7
(3ot = [-0.001.

e Note that theanglereference bus is bys= 1, whereas the slack bus is
busc = 2!

Example shows that the angle and slack buses can be diffarsas!



Eliminating angles, continued
e The DC power flow equations are then:

—PL—P = —D;—Dg,
8, — [~0.001[P;—Dy].

e For positive values oP;, we have thab, < 0= 0;.
Power flows from “higher” to “lower” angles.



3.8.5 Line flow constraints

e Assume that the real power line flow limit of 2100 MW appliesyom the
direction of the arrow in Figur8.8.

¢ Ignore the constraint on flow in the direction opposite todhew.

e The line flow constraint is then specified KY_, < d, where:

d = [Pa2l,
— [100],
K = [-Bi2,

— [-1000.

e Therefore:

(K[62] <d) < ([-100Q[62] <[100Q),
& (02> -01).

e For|6,| < 0.1 we have that sii; — 82) = sin(—02) ~ —05, so that the
DC power flow approximation is reasonable.



3.8.6 Shift factors
e The matrix of shift factors is:

Kdo]™ = [~1000[—0.001],
= [1].

e That s, if P is the net injection at bus 1 and an equal power is withdrawn
at bus 2 thenl|[P;] = Py will flow on the line between bus 1 and bus 2.

e If P, is the net injection at bus 2 and an equal power is withdraviugai2
then no power will flow on the line between bus 1 and bus 2.

e That is, the augmented shift factor matrix is:

~

C = [K[3q ™ 0],
= [1 0.



3.8.7 Line flow constraints with angles eliminated
e The system equality and inequality constraints with anglesinated are:

~1'"p = —1'D,
CP < CD+d.

e SinceC =[1 0], andd = [100], these constraints become:

—PL—P, = —D;1—-Dgy,
P1 < D1+100

e We could see this from Figur&8directly:

— Generation at buses 1 and 2 must meet demand at buses 1 and 2.

— For withdrawal at the price reference bms- 2, all net injection
(PL—Dj) at bus 1 flows on the line; therefore generation at bus 1 must
be within the capacity of the line plus the demand at bus 1.

— For withdrawal at the price reference hms- 2, no net injection at bus 2
flows on the line.

e What would the constraints bedf= 1 were the price reference bus?



3.9 Larger example

e Consider the following four-line four-bus system with M\Wpertities and
per unit impedances (on a 1 MVA base) as shown.
e Buso = 0 is the slack bus and there are no shunt admittances.

0
e Busp = 1 is reference bus, so the unknown anglestaie= [92] :

Zp1 =
0+0.001y/-1

210 = 3000 MW Zp3=
0+0.001,/—1 ' 0+ 0.002/—1
3000 MW Zao = 300 MW

0+0.001/-1
3000 MW
. 3
Do Ps

03

Fig. 3.9. Four-line
four-bus network with
generators at buses 1, 2,
and 3, and demand at
bus 0.



3.9.1 Admittance matrix
e The line admittances are:
1

1= D10=212=921= 3= 30 010,000/ 1 O/ -1,
1
—_— —_— :—50 —1.
J23=9%2 = G000/ 1 N



Admittance matrix, continued
e The bus admittance matrix is:

Y1+93 —Jo1 0 —903
-0 D10+912 912 0
0 —91  921+923 —923
—930 0 —932 930+ 932

[ _2000/—1 1000/-1 0 1000/—1 |
B 1000/—1 —2000,/—1 1000,/—1 0

n 0 1000/—-1 —1500/—-1 500/—-1]’
1000/—1 0 500,/—1 —1500,/—1 |

Boov—1 Bo1v/-1 0 Bosv/-1
Biov—1 Bi1v/—1 Biay/—1 0

B 0 Bpiv-1 Bppv/—1 Bpzy/-1
| Baov/-1 0  Bszy/—1 Bazy/—1]




e Since there are no shuntb=

3.9.2 Jacobian

op

T 001\ |1

o). _. . :
is minus the imaginary part

of the admittance matrix, that is;B, with the column corresponding to
the reference bus deleted:

op

J=%0,

(I

)

[—Boo 0 —Bos
—B1o —B12 O
0 By —Bos|’
| —B3p —B32 —Bss
- 2000 0 —-100
—1000 —1000 0
0O 1500 -500]"

| —1000 —500 1500

e Note that the rows o are indexed by 0, 1, 2, 3, while the columns are

indexed by 0, 2, 3.



3.9.3 DC power flow

e \We can solve foB_; to obtain the following form for the DC power flow
equations:

~1'p = —1'D,
6.1 = [Jo *(Po—D_o).
e Whereld g is J with the row corresponding to = O deleted, so that:
"—1000 —1000 - J

Jo = 0 1500 —500|
| 1000 —500 150
-—0.0008 —0.0006 —0.000
2! .
6

Jo ™ = |-00002 00006 Q000
| —0.0006 —0.0002 0000

e Note that the subscriptl on0_; is referring top = 1, the reference bus,
with the entry6; omitted, (and columns af also omit terms fof),
e Whereas the subscrip0 onJ o, P, andD_g is referring too = 0, the

slack bus, with rovxb%o—ol, and term$y andDy, respectively, omitted.



DC power flow, continued

e So far, the development considered generation and dematicoases.

e The example only has demand at bus 0 and has generation athuse
and 3.

e Since there is only demand at bus 0 then the DC power flow exnsadire:

—P1—P,—P3 = —Do,
—0.0008 —0.0006 —0.000 P1
8.1 = | —-0.0002 00006 000021 [P2] :
—0.0006 —0.0002 Q0006] | Ps



3.9.4 DC power flow approximation to line flow constraints

e In principle, there are limits on flow in both directions orckdine.

e We will assume that the only binding limits are in the diren8 from
buses 1t0 0, 2to 1, 2 to 3, and 3 to 0, respectively, as sughegtie
arrows in Figures.9.

e These four line flow inequality constraints are then spettifie
KO6_; <d, where:

P10 300
d — Poq _ 3000
Pos 300]|°
| P3o 3000
[—B1op O 0 —1000 0
K — 0 By1 o 0O 1000 0
B 0 By —Bo3| O 500 -500] -
| —B3zo 0 Bao —1000 0O 100

e Note that the rows oK are indexed by10), (21), (23), (30), while the
columns are indexed by 0, 2, 3.



3.9.5 DC shift factors
e The matrix of DC shift factors is:

[ —1000 0

~0.0008 —0.0006 —0.000
Kot = 01000 = O | 50002 00006 000027,
6

0 500 —500
| 1000 0 100 —0.0006 —0.0002 0000

[ 08 06 02
—-0.2 06 02
- 0.2 04 -0.2
02 04 08

e The augmented shift factor matrix is:

~

C = [0 Ko '],
00 08 06 02
00 —-0.2 06 02
00 02 04 —-0.2
00 02 04 08



DC shift factors, continued

e For example, for power injected at bus 1 and withdrawn atdus0, the
shift factors to the lines 1t0 0, 2to 1, 2 to 3, and 3 to O argyeebvely
0.8,-0.2,0.2,0.2.

e Moreover, the flow on any particular line is the sum of the flalus to
individual injections at particular buses.

e For power injected at bus 0 and withdrawn at bus 0, what are the shift
factors to the lines from buses: 1t0 0; 2to 1; 2 to 3; and 3 to 0?

e If 1 MW is injected at bus 1, 10 MW is injected at bus 2, and 100 AW
injected at bus 3, with 111 MW withdrawn at bas= 0, what is the flow
on the line from bus 1 to bus 0?



3.9.6 Line flow constraints in terms of shift factors
e The flows on the lines are given ﬁA;(P— D) or, equivalently,
K[J1] (P — D_o).
e The equality and inequality constraints with angles elaéal are:
~1'p = —1'D,
Ko Po < K[ *Do+d.

e Again note thaD_g = O for this particular example.

300
e Also,d = 3g88 . SO these constraints become:
3000
—P1—P,—P3 = —Dao,
08 06 02 P 300
~02 06 02 Pl ~ | 3000
0.2 04 —0.2 PZ = | 300]"
02 04 08| ' 3000



Line flow constraints in terms of shift factors, continued

—0.2P; + 0.6P, 4+ 0.2P5
Py < 3000 MW P
1 « 2
0.8P; +0.6P, + 0.2P; ! i 0.2P; +0.4P, — 0.2P5
< 3000 MW < 300 MW

N

Dy 0.2P,+0.4P,+0.8P, @
< 3000 MW

Fig. 3.10. DC power flow approximation to line flow constrairior four-line
four-bus network.



3.10 DC power flow circuit interpretation

e As mentioned in SectioB.6.4 we can interpret the DC power flow
approximation in terms of an analogous linear DC circuit:

— the DC circuit interpretation is useful to solve small sysseoy hand.

e Recall that the power flow equations are in the fafn, = P, wherep is
the reference bus.

e If the shunt admittances are zero thkis given by—B with the column
corresponding to the reference bus deleted.

e Consider the following analogy with a DC circuit:

— Busp is the datum node in the circuit with DC voltage defined to be 0O,

— Real power injection® are analogous to DC current injectionat all
buses,

— Anglesb_, are analogous to DC voltages, at all nodes except the
datum node,

— Entries inJ are analogous to the admittance matrix of a circuit having
resistors joining nodeéandk with “conductance’gk = |By/.

e The analogous linear DC circuit satisfi#g , = i:
— applies whether or not there are non-zero shunt admittances



DC power flow circuit interpretation, continued

e Currentinjections and flows in the DC circuit corresponddower
injections and flows in the power system.

e Recall that DC current is shared along parallel paths inqntagn to the
conductance of each path:

— the current flowing in each parallel path due to a single ipacand
withdrawal is proportional to the conductance along eac¢h.pa

e Recall that currents in a linear DC circuit can be superposed

— the current flowing in a branch due to multiple current in@es and
withdrawals is equal to the sum of the currents flowing in thranch
due to each current injection and withdrawal consideredrse@ly.

e Therefore, we can:

— evaluate sharing ggfowerflow in the DC power flow approximation in
the same way as we evaluate sharingwfentin a DC circuit, and

— superpos@owerflow in the DC power flow approximation in the same
way as we superposeirrentflow in a DC circuit.



DC power flow circuit interpretation, continued

e For example, suppose that the DC circuit has two nodes, 1 goah2d
by two conductances as shown in FigGr&1, which we view as two
“paths” between these nodes (possibly consisting of seleaiaches in
series):

— From circuit theory, recall that if current is injected aieamode and
withdrawn at another node then current is shared on the beano
these paths in proportion to the path conductances.

— If the two conductances are equal then each will have orfeshtie
total flow of current.

e If the two lines have equal admittance then power injectduiatl and
withdrawn at bus 2 will be shared equally between the twasline

Fig. 3.11. Two-line
two-bus network.



DC power flow circuit interpretation, continued

e Moreover, if there is current injected at multiple nodes amttidrawn at
another node or nodes then the resulting total current irbaauych is
equal to the superposition of the currents in that branchaltize
individual current injections and withdrawals.



DC power flow circuit interpretation, continued

e Recall the example from Figu®9, repeated in Figurd.12
e We will illustrate the DC circuit using this example.

Zp3 =

0+ 0.002/—-1

Zpy =
04 0.001/—1
210 = 3000 MW
0+0.001,/—1
3000 MW Zao =
0-+0.001/—1
3000 MW
Do

3

300 MW

Fig. 3.12. Four-line
four-bus network re-
peated from Figur8.9.



DC power flow circuit interpretation, continued

e Suppose current is injected at node 1 in the analogous DGitcaned
withdrawn at the node = 0.

e Note that the actual impedance directly joining buses 1 aindlie power
system is G+ 0.001/—1:

— analogous “conductance” of this pathgis = |B1o| = 1000,
— current on this analogous conductance is proportional @10

e We can also think of the lines from buses 1t02,2to 3,and 3® 0 a
another impedance joining buses 1 and 0 in the power system:

— total impedance in this path is:
0+0.001/-1+0+0.002/-1+0+0.001y -1 = 0.004y —1,

— analogous “conductance” of pathggy3o= 250,
— current on this analogous conductance due to the lines 12¢a23, and
3 to 0 is proportional to 250.

e Current injected at node 1 and withdrawn at node 0 is shareeka the
analogous conductances in the paths in the proportion
1000:250=0.8:0.2.



DC power flow circuit interpretation, continued

¢ In the power system, the DC power flow approximation mearnspibaer
injected at bus 1 and withdrawn at the slack bus 0 will be shared in
the ratio 0.8:0.2 between:

— the path consisting of the line directly joining buses 1 andrl
— the lines forming the path from buses 1 to 2, 2to 3, 3to O.

e That is, the shift factors, for injection at bus 1 and withvdabat bus 0, to
the lines from buses 1t0 0, 2to 1, 2 to 3, and 3 to 0 are, respédcti
0.8,—0.2,0.2,0.2, exactly as calculated in the previous section,

e By superposition, we can approximate the total power flow bnesas
the sum of the power flows due to individual power injections.



3.11 Losses
3.11.1 Losses under DC power flow approximation

e In Section3.6.6 we found that losses under the DC power flow
approximation are zero.

e This can be understood in terms of the linearization intggiron of DC
power flow:

— DC power flow involves a first-order Taylor approximation njctions
as a function of angles, evaluated at a flat start, correspgrad zero
net real power injections,

— the condition of zero net real power injection correspordzetro losses,
while

— linearizing about the flat start results in the derivativédogkes with
respect to injections being zero,

— so0 a first-order Taylor expansion of losses has zero constiantand
zero linear term!

¢ In the following sections we find a more accurate approxiomaky
considering a second-order Taylor expansion of the exauresgion for
losses.



3.11.2 Exact loss expression

e Recall from Sectior3.2.8that the functiorp, : R" — R that evaluates the
real power flow out of bug into the lines connected to it is given b§.8),
which we repeat here:

XERY p(X) = > Vew[Gucos(B; — k) + Bacsin(6, — Bi)).
keI (TTu{0}

e Focusing on just the real power flawy : R" — R from bus/ into the line
joining bus/ to a busk € J(¢), ignoring shunts, but including the terms in
the power flow fork = / that involveGy, we obtain:

VX € R", p(X) = Vo[G08 — Bk) + By Sin(8y — Bk)] — (Vi) °Gek.

e Similarly, the real power flovpy, : R" — R from busk into this same line
from its other end is:

VX € Rn, pkg(X) = Vng[ngCOieg — ek) — ngSin(Gg — ek)] — (Vk)Zng.



Exact loss expression, continued

e The lossed /i : R" — R on the line is the sum of the power injected from
busk and bu¢’:

YXE R Lik(X) = pek(X) + pre(X),
= 2vywGcog 0, —6By) — [(Vg)z + (Vk)z] G-
(3.21)

e The total losses in the systein; R" — R is the sum of the losses over
the lines:

XERLL() = 5 Lu(X).
(keI (D) k>

e The total losses can also be evaluated as1'p, wherep: R" — R"ot1
Is the vector of flows from the buses into the rest of the system



3.11.3 Quadratic loss expression

e We approximaté , andL through a second-order Taylor approximation
about a flat start, again assuming a fixed voltage schedutbaswe only
explicitly consider the dependence on angle:

Lax) ~ Lgk<m> +ggs (m) ep+%[epf%; ([2]) 6.p.

— 0408 5+ (—Gu) (6, — 67, (3.22)

e On evaluating the terms.

e As mentioned above, there is a zero constant term and a nedr lierm
in the Taylor expansion of losses.

e The quadratic term is non-zero and has coefficiery).



Quadratic loss approximation, continued

e Note that the loss approximation is proportional to the sg@hthe angle
difference across the line.

e Recall from Sectior3.7.3that, under the DC power flow approximation,
the angle difference is approximately proportional to e power flow.

e That is, losses are approximately proportional to the sgjabthe power
flow.

e Note thatGy < 0, so that the loss function is therefore approximately a
convex quadratic function of the power flow.

e Using the DC power flow approximation, the power flows are
approximately linear in the real power injections.

e Therefore, the losses in each line are approximately a gaqvadratic
function of the real power injections.

e Summing losses over lines, the total losses in the system,
L =3 keg(e) k>¢Lek, IS approximately a convex quadratic function of the
real power injections.

e If the losses are small then they can be estimated by sulbggitiom the
flows given by the DC power flow approximation.



Quadratic loss approximation, continued

e \We can write approximate the total losses by:

XeRMLL(XY) = 5 LaX),
£,keJ(0) k>0

(—Gu) (8 — 61,

Lkel() k>0
= e'wgw'e,
= [Bp) WLpG(Wp) 'Bp.

Q

e by (3.3, where:

— the matrix§G is a diagonal matrix with entries corresponding to the
conductances of the series elements of the lines,

— the matrixW is the bus-to-series element incidence matrix; and,

— the matrixXW_, is the bus-to-series element incidence matrix with pow
removed.



Quadratic loss approximation, continued

e By the DC power flow approximation in Secti@»6.9 usingJ for the
Jacobian with reference bps

0p=[Jo _l(Pw —D_o),

e by (3.16 whereJ = ge—':) ([2] )

e DefiningL : R"™Pe~1 — R to be the losses expressed in terms of the
generatiorP_g, we have that the losses are:

VP4 € R [(Py)
~ (Po—D_o) 3o W GW ) [36) L(P-s— D).

e That is, losses are a convex functionRof and losses are strictly convex
if the conductances of all series elements are non-zero.



3.11.4 Example

e Consider a modified version of the one-line two-bus systemnfr
Section3.8as shown in in Figur8.13

e Busp = 1 is the angle reference bus, so the unknown andle.is

e Buso = 2 is the slack bus.

e There is generation and demand at both buses 1 and 2.

e The admittance of the series element is modified to:

712 =100— 1000y —1.

O “®
9/12— I:‘
D1 1100- 1000/— D> Fig. 3.13. One-line

two-bus network.




3.11.4.1 Admittance matrix
e The bus admittance matrix is:
t | 92 —912
WOWE = |55, 94
[ 100-1000/—1 —100+1000,/—1
—100+1000/—-1 100-1000,/-1|"

~ [Gu+Buv/—1 G12+B12\/1]
| G21+B21v—1 Go2+Boov/—1]°

e Thatis, we have:

t _ [Gu1 G
WGW" = | G21 Gzz]’

100 —100
~ | —100 100"

W,G(Wp)" = [100.




3.11.4.2 Power flow equations and Jacobian

e \We assume that the voltage magnitudes are maintained eqoiaétper
unit, so thav(®) = 1 = i .

e Noting that the imaginary part of the admittance matrix haischanged
compared to the example in Secti®®8, we have that the power flow
equations are:

—P—P, = —D;—Da,
82) = [J6] 7 [PL—Dal,
e Where:
Jo = [_100q7
3]t = [~0.001.



3.11.5 Quadratic loss approximation
e The exact loss expressiod.2]) for this system is:

VxR L1a(X) = 2v1V2G12c0801 — 62) — [(V¢)? + (Vi) *] Gk,
— 200(1—cog6y)). (3.23)

e sincevy = Vo =1, G2 = —100, and assuming that the angle reference is
01 =0.
e A quadratic approximation to this function yields:

vx € R L1o(X) ~ 100(8,)2. (3.24)



Quadratic loss approximation, continued

e The quadratic loss approximation in terms of power injett®
L:R— R:

VP e R,L(Py)
~ (Po—Do)[[36] ™ W GW ) [36] H(Ps— D),
— (P,—D4)'[~0.003[100[-0.001 (P, — Dy),
= (0.0001) (P, —D1)?

e For example, if P — Dj1) = 100 MW, so that line is at capacity, then
losses ar¢0.0001)(100)? = 1 MW, and there are 1% losses in the line
under these conditions.



3.11.6 Errors with quadratic loss approximation

e If the losses are large then the approach can be erroneous.

e Consider the simple three bus, three line system shown ur&g8y14

e Assume that the slack and reference bus is bus one, sp that= 1.

e Note that the DC shift factors for injection at bus 3 and floveazh of the
lines are both equal to one. (See Exerdse)

— the DC approximation models all power injected at bus 3 flgnan
both of the lines,

— does not model any losses occurring “on” these lines,

— the loss approximation effectively models all of the lossge®ccurring
“at” the slack bus.

‘ ‘ ‘ Fig. 3.14. Three bus,

Bus 3 Bus 2 Bus 1 two line radial network.



Errors with quadratic loss approximation, continued

e If the losses on the line joining buses 3 and 2 are signifithat) a
significant amount of the injection at bus 3 will by lost orsthine and
will not flow on the line from bus 2 to bus 1.:

— the DC power flow approximation will ignore this issue, oestimating
the contribution of injection at bus 3 to flow on the line joigibus 2 to
bus 1,

— substituting from the DC power flow into the loss expressi22?) for
the line joining bus 2 to bus 1 will over-estimate the effefdingection
at bus 3 on losses on this line.

e Will tend to over-estimate the contribution of remote geien to losses.

e This issue is treated in different ways in different markepiementations.

e Despite this issue, losses are still approximately a coguexiratic
function of power injections.



3.12 Contingency analysis

e Power flow analysis evaluates the angles, voltage magsiaael line
power flows on a given system.

e We will see in Sectio® that we must dispatch generation so that, among
other things, the flow on each line in the system does not extee
capacity:

— we will consider optimization formulations that seek digpeto keep
flows within normal odong-term ratings of transmission lines.

¢ In addition, we must consider the fact that lines may be adag
occasionally:

— typical cause is due to lightning strike causing shorttgtrc



Contingency analysis, continued

e Standard practice is to operate power systems so that eviea avent of
any given single outage, the resulting flows on the lines nemvahin
limits:

— because most outages are temporary, we generallghaseterm or
emergencyratings to evaluate whether flows in each contingency are
acceptable,

— we will also include theseontingency constraintsin the optimization
formulation.

e In this section, we will utilize the DC power flow approximatito
approximately evaluate the flow under a contingency.

e For a system having 5000 lines, how many line contingencies a
possible?



3.12.1 Pre-contingency flows

e We first consider the DC power flow approximations for the ioag)
pre-contingencysystem.

e Suppose that the reference bus is pughile the slack bus is bus.

e From Sectior8.6.9the DC power flow equations are equivalent to:

~1'p = —1'D,
6p = [Jo _1(P—0— Do),

e whereP_s andD_g are the sub-vectors &fandD, respectively, that omit
the slack bus, and 4 is minus the imaginary part of the admittance
matrix, that is,—B, with the column corresponding to the reference ppus
deleted and the row corresponding to the slackddsleted.

e Asin Section3.7.3 we can evaluate the pre-contingency line flows as
K6_p, where each row af corresponds to a line and has exactly two
non-zero elements, with the non-zero values given by plds@inus the
susceptance of the series element of the corresponding line

e The matrixK[J ¢] ~Lis the pre-contingency Déhift factors.



3.12.2 Post-contingency system

e As discussed in Sectidh 2.5 we can consider removing a line from the
system and we will also use the DC power flow approximatiortH
post-contingencysystem:

— in principle, we need to consider the effect of removing dawhin the
system on the flows in the remaining system,

— in practice, we may only select some contingencies for aimgly

— even selecting only some contingencies, there will stpi¢glly be
many to be considered, so computational effort is still icgnt.

e Consider the effect of removing a line joining btit busk, where the
series element of the line model has imaginary @t

e Letw e R™ be a vector with a one in thieth entry, a minus one in the
k-th entry, and zeros elsewhere.

e If the line is removed, the imaginary part of the admittangrin
changes fronB to (B — Byww).



3.12.3 Post-contingency flows

e Removing the line means that the DC power flow equations fr th
system will change to:

~1'p = —1'Dp,
1
o, = [Jo] (Po—Do),

e whereld'; is minus the imaginary part of the changed admittance matrix
that is,(—B + Bxww'), with the column corresponding to the reference
busp deleted and the row corresponding to the slackddsleted.

e Thatis,J ;=J s+ ﬁgkw_o(w_p)T, wherew_g andw_, are, respectively,
the vectomw with the o-th andp-th entries, respectively, deleted.

e As mentioned in SectioB.2, in practice we will not invert the matri¥ .

e Instead of inverting’ ;, we could factorize it and use forwards and
backwards substitution to solve 6.



Post-contingency flows, continued

e If we have already factorizedl 5, which corresponds to the

pre-contingency system, we can reduce the effort to famdfi; or use
the Sherman-Morrison formula.
e In particular, we can evaluate:

-
using the foIIowmg:
(i) solved ¢80, = (P-¢ —D_g) andJ_¢6; = w_g, so thatd*, are the
angles in the pre-contingency or base-case syster@’@rnafe the

angles that would occur in a system with unit injection of poat
bus/ and unit withdrawal at buk (and no other injections or

withdrawals), ,
. - _ Bawo(Wp)' Ak
(i) defineAP 5 = 1%0( )6 0%,, and
(iii) solve J 00’ ; = AP 5 and seB’ =07, + 00,



Post-contingency flows, continued

e Note that all of these calculations involve forward and lveantds
substitution using the factors dfy, which corresponds to the
pre-contingency system.

e We do not need to factoriz# ;, which is desirable since we must
evaluate the effect of outages of multiple lines in the syste



Post-contingency flows, continued

e \WWe can interpret the solution of the post-contingency sysie being a
perturbation on the solutiodr,, of the pre-contingency system that is due
to the flow on the line joining busésandk being redistributed to all of
the other lines in the system.

Q;EkW—c(W—p)T o

1+ By (wp) 0% P

IS used as an

e The vector of injectioné&P 5 = —

intermediate step to evaluate how the flow is distributed ihe rest of
the system:
{Bﬁk(W—p)T *
L+ By (w-p) 6P
AP 5 has exactly two non-zero entrid¥), = a andAR = —q,
— that is,AP 4 defines a matched injection and withdrawal at busmsdk
of powera.
— These injections are equal to the pre-contingency flow ottirle

Tax 1
Bik(W-p) 0%, scaled by the factor RIS

— The injections have the effect of creating a flow on the lirasd thakes
the flows in the rest of the system the same as an outage ohthe li

— since\P_; = aw_g, wherea = — € R, we note that




Post-contingency flows, continued

e To understand the choice af consider Figure.15 which shows buse&
andk, the line joining them, and lines from these two buses tordihees

in the system that are denoted by arrows.
e Letybe the base-case flow on the line from lBue busk:

y=(—Ba) (n_p) 0%,

Other lines in the system

Fig. 3.15. Two buses,
bus/ busk ¢ and k, in network.
Source: This figure is
y adapted from figure
11.16 of Wood and
Wollenberg (1996).

Y



Post-contingency flows, continued
e Consider a matched injection and withdrawal at busasdk, assuming
that there are no other injections and withdrawals in théesys

— Let 3 be the flow on the line from busto busk if there were a unit
injection of power at bug and unit withdrawal at buk (and no other
injections or withdrawals):

B = (—Bu) (wp) 0%,

— Now suppose that, instead of a unit injection, there is agctign ofa
at bus/ and withdrawal at buk.

— Then the flow from bug to busk due to this injection would be scaled
to ap.



Post-contingency flows, continued

e Now consider the case that there is both the base-case flothafdws
due to the injection ofi at bus/ and withdrawal ofn at busk:

— Summing both the base-case flow and the injectiom,afe would
obtain a net flow on the line af3 +v.

e Consider the conditions am so that the flows from busésandk into the
rest of the system are zero:

— at bus/, this would require that the injectianequals the net flow
o +yinto the line’,

— at busk, this would require that the withdrawalequals the net flow
o +yout of the line at bus.

e If we conceptually “split” the bus, we can think of the flowsdrthe rest
of the system as being flows “across” the bus.

e If this flow across the bus is made equal to zero, as shown ur&8y16
then the effect of the injections and withdrawals at busa&sdk and the
effect of the base-case flow on the line are cancelled.



Post-contingency flows, continued

e Summarizing, to achieve flow of zero across the bus, we redoat the
net injectiona balances the floms3 + .
Brwp)' o

e Re-arranging, we obtain = — > .
ging 1+ By (wp) 0% P

bus/ busk
Flow across bus ¢ T Flow across bus 0
o o =0p+y a Fig. 3.16. Conditions

=

for zero net flow into
rest of network.



Post-contingency flows, continued

e The line has been effectively removed from the system thrdhg
superposition of the original flows together with the matthgection at
bus/ and withdrawal at buk.

e The zero flow across the buses is equivalent to the buses &glihgand
the line removed from the rest of the system, as shown in Eigui7.

bus? ‘ ‘ busk

o Al a= C{B‘FV |— a
] Fig. 3.17. Splitting

buses.




3.12.4 Outage shift factors

e The flows on the lines in the rest of the system can be evalaastétd’ ,
whereK’ is obtained fronK by deleting the row corresponding to the line
joining buse¥ andk.

o Similarlyl, post-contingency avutageshift factors can be evaluated as
K'(Jg) .

e |t is sometimes more convenient to think of the outage sadtdrs as
being the sum of the pre-contingency shift factors plus scitmt
represent:

— the effect of injections on the pre-contingency flow on tine fjoining
bus/ to busk, and

— the effect of redistributing the flow on this line to the othaes due to
the contingency.

e This is useful for large-scale implementations.



3.13 Summary
e In this chapter we formulated the power flow problem, and icared:

— linearization of power flow,
— fixed voltage profiles,

— DC power flow,

— losses, and

— contingency analysis.

This chapter is based on:

e Sections 8.2 and 9.2 &pplied Optimization: Formulation and
Algorithms for Engineering Systentdambridge University Press 2006.

e Ross Baldick, “Variation of Distribution Factors with Laad,” IEEE
Transactions on Power System§(4):1316—-1323, November 2003.

e Brian Stott, Jorge Jardim, and Ongun Alsag, “DC Power FlewviSited,”
IEEE Transactions on Power Systeri4(3):1290-1300, August 20009.

e Allen J. Wood and Bruce F. Wollenbergpwer Generation, Operation,
and Contro] Second Edition, Wiley, New York, 1996.



Homework exercises

3.1Consider a power system consisting of two buses and onanissisn line:

e bus 1 (the reference/slack bus), where there is a geneaatbr,
e bus 2, where there is load.

Suppose that the reference/slack bus voltage is specifiseMo—= 1/0° and that
real power flow from bus 2 into the line is given by:

YV, € R+,V92 e R, p2<92,V2) =\, SIino,.

(That is, we assume th@h, = G, = 0 andB, = 1.) Suppose, = 1.0.

(i) What is the largest value of demabd at bus 2 for which there is a
solution to the equatiop,(6,,1.0) + D, = 0? What is the corresponding
value off, with t> 6, > —m? We will write 8, for this value of9,.

(i) What happens iB, becomes smaller thed?

(iii) Show that there are two solutions to the equat®®,,1.0)+D, =0
with 0 > 6, > —2mif D, = 0.5. What are the corresponding value$Hg?

(iv) Use DC power flow to approximate the relationship bem@eandD,.

(v) When do you expect the DC power flow to be a poor approxioneio
the exact solution?



3.2 Consider the example in SectiBB, but suppose that bus 0 is both the
reference and the slack bus, so that 0 = 0.

() What is vector of unknown anglds?

(i) Evaluated’ — ng_o ( m ) |

(iii) Evaluate[J/,] .
(iv) Write down the DC power flow equations in terms of generatat buses
1, 2, and 3, and demand at bus 0.
(v) Evaluate the matriX’ in the linearized representation of line flow
inequality constraint&’AB_o < d.
(vi) Evaluate the shift factor matrik'[J',] .
(vii) Write down the line flow inequality constraints in tesmof the shift
factors.
(viii) What do you notice about the line flow inequality corahts? Did the
choice of reference bus change the form of the line flow camgi?

(ix) Repeat the previous parts, but with bus 1 both the refsend the slack
bus, so thap = o0 = 1.



3.3 Consider the three bus, two line system shown in Fi@ui8and suppose
that bus 1 is both the reference and the slack bus, spthat = 1. The line
capacities are shown. Assume that the susceptance joingg to bus 1 and the
susceptance joining bus 3 to bus 2 are both non-zero.

Line Capacity Line Capacity
‘ 100 MW ‘ 1000 MW ‘

Bus 3 Bus 2 Bus 1 Fig. 3.18. Three bus,
two line radial network.

() What is vector of unknown anglds?

(il EvaluateJ:ngl ) ) (Hint: See 8.13.)

(iif) Write down the DC power flow equations in terms of gerienaand
demand at buses 2 and 3.



(iv) Evaluate[d ;] ™.
(v) Assume that the only flow constraints are from bus 2 to had from
bus 3 to bus 2. Evaluate the matKxin the linearized representation of
real power line flow limit inequality constraint&A8_; < d.
(vi) Evaluate the shift factor matrik [J 4] .
(vii) Write down the real power line flow limit inequality cstraints in terms
of the shift factors as in3(18).
(viii) Interpret these inequality constraints in termsloé figure.



3.4 Assuming thatl_; is invertible, show that the DC power flow equations
JO_, = P are equivalent to:

P = 1Py,
6, = [J4] P4

That is, show thal_; satisfies]8_; = P if and only if 6_, satisfies
6., = [J4] *P; andP, = —1'P ;. (Hint: See discussion in Secti@®6.50r

:
consider the invertible matri®/ = [(1) 1| ].)



3.5 Consider the three bus system shown in Figdii®with buses = 1,2, 3
and with bugp = o0 = 1 the reference/slack bus. Assume all three lines have the
same admittance. Using the analysis in Sec8d), calculate the matrix of shift
factors for this system to flows on the lines from buses 2 totth,13 and 2 to 3.

O

P, Qq

P3,Qs3

/.

P2, Q2 Fig. 3.19. Three-bus,

O three-line network.




3.6 As mentioned in SectioB.6.4 when there are no shunts, we can follow the
“traditional” approach to analyzing DC power flow assuming:

¢ the small angle approximations for cos and sin, and
¢ voltage magnitudes assumed to equal one per unit,

in order to derive the DC power equations in a more straigivdod manner
than the more general sensitivity analysis used in Sec8@and3.7.

In particular, again adopting the fixed voltage schedularagsion of
Section3.5with all busesPV buses, we assume that:

vy~ 1, VY,

and can therefore ignore the reactive power equality caimssr 3.7) since they
will be satisfied by controlled reactive injection at eacls.bMoreover, assuming
that angle differences are small we obtain that:

e, vk € J(0) U {£},sin(8, — 8)
Sin(eg — Gk)

(8 —8k),
(6, — 6y).

A
~
Y
~



Substituting into the real power equality constraild$), we obtain:
P = g ng(eg —0By), VL.
keI (HU{e}

Suppose there are no shunt elements in the system. Theealhmower flow on
a line joining buseg andk is given by:

P = B (6 — Bk).

For the rest of the question, we will continue to assume treretare no shunt
elements in the system. Similarly to the analysis in Se@i@ define the
following matrices:
¢ let B be the diagonal matrix with diagonal elements equal to the
susceptances of the series elements in the system, and
e the bus-to-line incidence matrif/, with columns ordered corresponding
to the rows and columns &#, and with each column having a single 1
and—1 entry at the locations of the buses joined by the correspgnd
series element imB.



With these definitions, evaluate the following.

() Find an expression for the vector of real power flo#son the lines in
the system in terms aB,W, and®.

(i) Find an expression for the vector of real power injend, at the buses
in the system in terms aB, W, and®.

(i) The matrix in the last part is singular; however, by elahg a row
corresponding to the slack busand a column corresponding to the
reference bup, a non-singular matrix can be obtained. Given a choice of
slack buso and choice of reference bpsexpress the vector of real
power injections everywhere except the slack IBug,in terms of 3,
W_g, W_,,, andB,, whereW_g is the matriXWV with row o deletedW._;, is
the matrixw with row p deleted, and, is the vecto® with the entryp
deleted.

(iv) Find an analogous expression fBrin terms of B, W_,, and6,,.

(v) Evaluate the matrixC, of shift factors that evaluates flo® in terms of
injectionsP; at all buses except the slack bus.



3.7 Consider again the modified one-line two-bus system in 8e8til1.4as
shown in in Figure8.13 and repeated as Figu8e20 with busp = 1 is the angle
reference bus, and admittance of the series elepient 100— 1000,/ —1.

Evaluate the exact loss expressi8r2@) and the quadratic approximatio8.24)
for each of the following angle8; (in radians).

(i) 8, =0.01,
(i) 8, = 0.05,
(i) 9, = 0.1,
(iv) 8, =0.5.

(R ()
9’12 = I:‘
D1 100— 1000/— D>

Fig. 3.20. One-line
two-bus network.



3.8 Consider again the four-bus four-line example shown in F&g8.9
and3.12 and repeated in Figu®&21 Section3.10used the DC power flow
circuit interpretation to evaluate the shift factors toth# lines for injection at
bus 1, withdrawal at bus 0. In this question, we will evaluaeshift factors for
injections at the other buses. Evaluating by inspectionfficgent in all cases.

Zpz =
0+ 0.002y/ -1
300 MW

Zp1 =
0-+0.001/—1
210 = 3000 MW
0-+0.001/—1
3000 MW Zao=
0-+0.001/—1
3000 MW
Do

3

Fig. 3.21. Four-line
four-bus network re-
peated from Figure8.9
and3.12



(i) Evaluate the shift factors to all the lines for injectianbus 2 and
withdrawal at bus O.
(i) Evaluate the shift factors to all the lines for injeatiat bus 3 and
withdrawal at bus O.
(i) Consider a contingency on the line joining bus 1 to bus 0

(a) Evaluate the shift factors to all the remaining linesifgection at
bus 1 and withdrawal at bus O.

(b) Evaluate the shift factors to all the remaining linesifgection at
bus 2 and withdrawal at bus O.

(c) Evaluate the shift factors to all the remaining linesifgection at
bus 3 and withdrawal at bus 0.

(iv) Consider a contingency on the line joining bus 1 to bus 2.

(a) Evaluate the shift factors to all the remaining linesifgection at
bus 1 and withdrawal at bus O.

(b) Evaluate the shift factors to all the remaining linesifgection at
bus 2 and withdrawal at bus O.

(c) Evaluate the shift factors to all the remaining linesifgection at
bus 3 and withdrawal at bus 0.
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