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Simultaneous equations

() Formulation,
(i) Linear equations,
(iii) Non-linear equations,
(iv) Examples,
(v) Newton—Raphson algorithm,
(vi) Discussion of Newton—Raphson update,
(vi)) Homework Exercises.



2.1 Formulation

e Simultaneous equationgroblems arise whenever there is a collection of
conservation equations that must be satisfied:

— the equations may danear or non-linear,

— in Section3, we will formulate the solution of power flow as a
simultaneous non-linear equations problem,

— we will also describe an approach to approximating the smiudf
power flow as a simultaneoli:iear equations problem.

e The equations are specified in terms afexision vectorthat is chosen
from adomain.
e The domain will ben-dimensional Euclidean spa&®, where:

— R is the set of real numbers, and
— R"is the set oh-tuples of real numbers.



Formulation, continued
e We will usually use a symbol such &$o denote the decision vector:

— entries of vectors such aswill be indexed by subscripts,

— thek-th entry of the vectox is X,

— in some problem formulations, such as offer-based econdisatch
in Sectiong, it will be convenient to interprety as itself a vector.

¢ In the discussion of simultaneous equations in this seeti@whof
optimization problems in Sectich the vectox will be a generic decision
vector and we will not explicitly specify the entriesaf

— we will subsequently explicitly define the entriesxoivhen we
formulate specific problems such as power flow in Sec3ion
economic dispatch in Sectid

— the definition of entries in the decision vectowill vary with the
problem context and so the number of entnes the decision vectaox
will also vary with the problem context.



Formulation, continued

e Consider a vector functiog that takes values from a domai? and
returns values of the function that lie imrange R™.

e We writeg : R" — R™Mto concisely denote the domain and range of the
function.

e Similarly to the decision vector, entries of vector funossuch ag will
be indexed by subscripts:

— the/-th entry of the vector functiog is g,.
e \ector functions can be:

— linear, of the formVvx, g(x) = Ax, whereA € R™" is a matrix,

— affine, of the formVvx, g(x) = Ax— b, whereA € R™" is a matrix and
b e RMis a vector,

— polynomial or with some other specific functional form, or

— non-linear, where there are no restrictions gn

e As with the decision vector, in this section and in Sectdothe function
g will be a generic vector function and we will not explicitlpecify the
entries ofg (except in examples):

— we will need to assume that we can partially differentmte



Formulation, continued
e Suppose we want to find a value of the argumenk that satisfies:

g(x) =0. (2.1)
e A value,x*, that satisfiesd.1) is called a solution of theimultaneous
equationsg(x) = 0:
— we will use superscript to indicate a desired or optimal value.

e We will typically assume that the number of equatiomsis the same as
the number of entries, in the decision vectax.



2.2 Linear equations
2.2.1 Factorization and forwards and backwards substiturti
e If gis affine, we usually re-arrange the equationéas- b:

— calledlinear simultaneous equationsand we will typically assume that
A e R™Mandb € R", so that the number of equations, as specified by
the number of entries ib and the number of rows iA, is the same as
the number of entries ir.

— suchsquare systems are solved wiflactorization andforwards and
backwards substitution,

— will assume familiarity with solving linear equations ugisuchdirect
algorithms.



Factorization and forwards and backwards substitution,rdonued
e Key computational issues with factorization and substtuare:

— straightforward factorization ok € R"™" requires computational effort
on the order of®,

— forwards and backwards substitution requires effort orotider ofn?,

— although we will often write the solution of linear simul&wus
equations ag = Alb, evaluating the inverse of a matrix requires
significantly more computational effort than factorizatiand forwards
and backwards substitution.



2.2.2 Modified factorization

e In some cases, we need to consider solutions of simultarezpiagions
where the coefficient matri& is modified.

e The matrixA+ yuv', wherey € R, u,v € R" with y=£ 0 andu,v # 0, is
called arank-one modification ofA.

e If a matrix A has already been factorized, then there are ways to evaluate
the factors ofA+ yuv! with computational effort that is on the order o

e This is achieved bynodifying the factorization of A and is also related
to theSherman-Morrison formula:
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Modified factorization, continued

e For example, to solvéA+yuv')x = b for X = (A+ yuvT)_lb, we note by
the Sherman-Morrison formula that:

a1
Ll oa-1f,  YWA
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Modified factorization, continued

e Summarizingx = (A+ yuvT)_lb can be evaluated using the following:
(i) solve Ax* = b andAx™ = u, so thatx* = A~lb andx™* = Ay,

(ii) define:
a1 i
N o yuv'A b _ yuv N
1+wWrA-1u 1+ ywihxe*
ta-1
;o b Yuv'A

(iii) either solveAX' = b’ or solveANX = A and set’ = x* + X',
e Note thatx* is the solution of the originatase-casequationsAx = b and
we may have already solved fer as part of previous calculations.
e Solving forx in this way did not require factorization of the matrix
A-+yuv' and therefore reduced the computational effort from bemthe
order ofn® to being on the order of?.



2.2.3 Sparsity
e Large-scale linear equations typically exhigarsity:

— many of the entries in the matrix are zero, and

— sparsity techniquesallow this characteristic to be exploited to reduce
computational effort compared to straightforward facation and
substitution.

e This means that factorization and substitution may takeretihat is
much less than® andn?, respectively.

e |t is still generally computationally faster to factorizecause forwards
and backwards substitution on a large sparse system thaveid the
matrix.

e If a sparse matriA has already been factorized, then to obtain a
factorization of a modified matriR+ yuv' it is still generally
computationally faster to modify the factorizationAthan to factorize
the modified matrix from scratch.



2.3 Non-linear equations

e If gis not affine, then the equations are non-linear.
e Non-linear equations usually requiterative algorithms, and we will
briefly develop the Newton—Raphson algorithm:

— requires an initial guess that is then iteratively imprqved

— we will focus on issues related to linearization that willibgortant in
the context of understanding formulations and approxiomstused in
power flow and electricity markets.



2.4 Examples

e Figure2.1shows the case of a functigt R? — R2.

e There are two sets illustrated by the solid curves.

e These two sets intersect at two poinds X, illustrated as bullets.

e The pointsx* andx™ are the two solutions of the simultaneous equations
g(x) =0, so that{x € R"|g(x) = 0} = {x*,x**}.

¢ In general, simultaneous equations problems could havelotans, one
solution, or multiple solutions.

X2

| (xe R2gy(x) = 0}

X*
e Fig. 2.1. Example of
{x € R?|gz(x) = 0} simultaneous equations
X1 and their solution.




Examples, continued
e As another example, leg : R? — R? be defined by:

2 | (x2)? 4+ (x2)?+ 2% — 3

Vx e R4, g(X) = 1% | (2.3)
X2
1 {x € R?|gz(x) = 0}
ir X**
2 X
Sl | Fig. 2.2. Solution  of

{x € R?|gy(x) =0} non-linear simultaneous

) ’ equationgy(x) = 0 with
R e N R A A g defined as inZ.3).




Examples, continued
e As a third example, leg: R — R be defined by:

vxeR,g(x) = (x—2)°+1. (2.4)
e By inspectionx* = 1 is the unique solution tg(x) = O.



2.5 Newton—Raphson algorithm

e \We now consider a general approach to solving simultaneondinear
equations:

e whereg : R" — R" so that the number of entries in the decision vector is
the same as the number of entries in the vector function:
— there are the same number of variables as equations.

2.5.1 Initial guess
e We will distinguish successive iterates by superscriptareptheses.
e Letx9 be the initial guess of a solution t@.p).
e In general, we expect thgtx(©)) £ 0.
e We seek an updated value of the veotdt = x(9 + A9 such that:

g(xV)) = g(x¥ + >) =0. (2.6)



2.5.2 Taylor approximation
2.5.2.1 Scalar function

g1(xY) = g1 (X9 +9), sincex® = xO + A0,

d 0 0
~ (X 0) + g (X +- 4 5B (O,

n
= a®)+ 3 SR,

d
— g (xO ))+631 (X9)ax(©). (2.7)

e In (2.7), the symbol &” should be interpreted to mean that the difference
between the expressions to the left and to the right okthe small

compared tcHAx(o) H .



Scalar function, continued

e The expression to the right of thein (2.7) is called &first-order Taylor
approximation of g aboutx(©:

d
01 () + g (X)X

e For a partially differentiable functiog; with continuous partial
derivatives, the first-order Taylor approximation abwout x(©

approximates the behavior gf in the vicinity of x = x(@.
e The first-order Taylor approximation represents a planeigitangential
to the graph of the function at the poixif).



Scalar function, continued
For example, suppose thgit: R? — R is defined by:

Vx € R%,g1(X) = (x1)%+ (X2)*+ 2x2 — 3.

Function

Fig. 2.3. Graph of
sroximation function and its Taylor
approximation  about

S X (0 _ [ %] |



Scalar function, continued

e Forx0 = [:1,)] X0 = [ﬂ , andg; : R? — R defined by:

VX e R27 gl(x) - (Xl)z + (XZ)Z + 2X2 - 37

evaluate:

gl(x(o))

72 040)

61(x9) + 2% (x(0) (©

gl(x(o) + AX(O))



2.5.2.2 \ector function

e \We now consider the vector functignn R" — R".
e Sinceg is a vector function angis a vector, the Taylor approximation of

g involves then x n matrix of partial derivativegyg evaluated ax(©.

e A first-order Taylor approximation aj aboutx?) yields:
0
g(x@ + A9 ~ g(x( ))+63( OO,

e Where by thex we mean that the norm of the difference between the
expressions to the left and the rightsefis small compared t#Ax(O)‘ :

e The first-order Taylor approximation again represents arfe! that is
tangential to the graph of the function; however, the situneis much
more difficult to visualize for a vector function.



2.5.2.3 Jacobian

e The matrix of partial derivatives is called tdacobianand we will
usually denote it byl (e):

— in some later development, we will need to consider paidicul
sub-matrices of the Jacobian and we will also use the syttml
denote particular sub-matrices.

— the definition will be clear from the context.

e UsingJ to stand for the Jacobian, we have:
g(xV) = g(x@ + A9, by definition of A©),
~ g(x9) +3(x0)AO), (2.8)

¢ In some of our development, we will approximate the Jacolibaen we
evaluate the right-hand side ¢.8)
e In this case, the linear approximating function is no longegential tof .



2.5.3 Initial update

e Setting the right-hand side a2.@) to zero to solve forx(? yields a set of
linear simultaneous equations:

IO = —g(x9). (2.9)

2.5.4 General update

I = —g(xV), (2.10)
XV = xV) AV, (2.11)
e (2.10—(2.11) are called thé&Newton—Raphson update
e XV is theNewton—Raphson step direction
e Suppose thag: R" — R" s affine and suppose thef) € R" is arbitrary.

Use the Newton—Raphson update to obsdih What can you say about
g(x\M)?



2.6 Discussion of Newton—Raphson update

e In principle, the Newton—Raphson update is repeated ustiitable
stopping criterion is satisfied that is chosen to judge whether the
solution is accurate enough.

e ISsues:

(i) The need to calculate the matrix of partial derivativad golve a
system of linear simultaneous equations at each iteradan c
require considerable effort.

(i) At some iteration we may find that the linear equati@ril() does
not have a solution, so that the update is not well-defined.

(i) Even if (2.10 does have a solution at every iteration, the sequence
of iterates generated may not converge to the solutioB.5f.(



Discussion of Newton—Raphson update, continued
e Approximations and variations have been developed due to:

— the computational effort of performing multiple iteratgrand
— the potential that the iterates fail to form a convergenusege.

e One variation is to perform jusine Newton—Raphson update starting
from a suitable initial guess to obtain an approximate answe
e \We will develop this variation in the context of power flow bese it:

— is used in many electricity market models, and
— sheds light on decomposition approaches even when the mea-|
equations are being solved more accurately.



2.7 Summary
¢ In this section we considered solution of simultaneousaliraand
non-linear equations problems.
e \We introduced the Sherman-Morrison formula.
e \We considered linearization of a function.
e We developed the Newton—Raphson algorithm.

This chapter is based on Sections 2.1, 2.2, and 94pplfied Optimization:
Formulation and Algorithms for Engineering Systems, Cambridge
University Press 2006.



Homework exercises

2 3 4 9
2.1 Consider the matriA= |7 6 5] and the vectob = [18].
8 9 11 28

() Factorize this matrix intd. andU factors. For example, you can use the
MATLAB functionlu . (Note that MaTLAB will provide a factorization
of the formPA = LU, whereP is a permutation matrix.) If you have not
studiedLU factorization before, you should read through slides 37tof6
www.ece.utexas.edu/  ~baldick/classes/380N/Linear.pdf :
(i) Solve Ax = b (or PAx = Pb using forwards and backwards substitution.)


www.ece.utexas.edu/~baldick/classes/380N/Linear.pdf

Homework exercises, continued

2.2 This exercise concerns Taylor's theorem. gefR? — R? be defined by:

e g0 - [ S8

(i) Use Taylor’s theorem to linearly approximagéx+ Ax) in terms of:

* g(x),
e the Jacobiad(x), and
o /X

Write out the linear approximation explicitly for the givgnThat is, you
must explicitly differentiatey to find the entries id.

(if) Calculate the difference between the exact expres&ing(x+ Ax) and

the linear approximation to it. Let us call this differereeR? x R> — R
defined by:

Vx € R? VX € R?, e(x, ) = g(x -+ AX) — (the linear approximation).



(iii) Show that:

le(x,&)|* _ exp(2xa)(exp(ix) —1—Ax)?
[N (5xq)?
n exp(2x2) (exp(sz) —1- AXz)Z
(D)2 '

Use the norm given byyx € R?, ||X|| = /(X1)2 + (X2)2.

(iv) Show that||e(x,AX)|| / ||&%|| — O as||A&x|| — 0. Use the norm given by:
vx € R?||x|| = v/(x1)2+ (X2)2. Be careful when proving this limit.
(Hint: Consideri|e(x,A)||?/ [|AX||? and use the previous part together
with I'H Opital’s rule to evaluate the limit of the ratio.)




Homework exercises, continued

2.31In this exercise we will apply the Newton—Raphson updatebzes
g(x) = 0 whereg : R? — R? was specified by2.3):

(X1)?+ (X2)° + 2% —3 .

2 _
Vx e R, g(x) = N

() Calculate the Jacobian explicitly.
(ii) Calculatex™) according to 2.10) in terms of the current iteraté?).
(iii) Starting with the initial guesg(® = 0, calculatexV) according
to (2.10—(2.11).
(iv) Calculatex® according to2.10—(2.11).
(V) S(Ig)etchgl, x©, x| and the first-order Taylor approximationdpabout
x\%),
(vi) S(li)etchgl, xM, x@ and the first-order Taylor approximationdpabout
X\,
(vii) Sketch, on a single graph, the points and functionsart$fv) and(vi)
versusx; along the “slice” where; = xo. Discuss the progress of the
iterates.
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