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Simultaneous equations

(i) Formulation,
(ii) Linear equations,
(iii) Non-linear equations,
(iv) Examples,
(v) Newton–Raphson algorithm,

(vi) Discussion of Newton–Raphson update,
(vii) Homework Exercises.
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2.1 Formulation
• Simultaneous equationsproblems arise whenever there is a collection of

conservation equations that must be satisfied:
– the equations may belinear or non-linear,
– in Section3, we will formulate the solution of power flow as a

simultaneous non-linear equations problem,
– we will also describe an approach to approximating the solution of

power flow as a simultaneouslinear equations problem.
• The equations are specified in terms of adecision vectorthat is chosen

from adomain.
• The domain will ben-dimensional Euclidean spaceRn, where:

– R is the set of real numbers, and
– R

n is the set ofn-tuples of real numbers.
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Formulation, continued
• We will usually use a symbol such asx to denote the decision vector:

– entries of vectors such asx will be indexed by subscripts,
– thek-th entry of the vectorx is xk,
– in some problem formulations, such as offer-based economicdispatch

in Section8, it will be convenient to interpretxk as itself a vector.
• In the discussion of simultaneous equations in this sectionand of

optimization problems in Section4, the vectorx will be a generic decision
vector and we will not explicitly specify the entries ofx:
– we will subsequently explicitly define the entries ofx when we

formulate specific problems such as power flow in Section3 or
economic dispatch in Section5,

– the definition of entries in the decision vectorx will vary with the
problem context and so the number of entriesn in the decision vectorx
will also vary with the problem context.
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Formulation, continued
• Consider a vector functiong that takes values from a domainRn and

returns values of the function that lie in arangeRm.
• We writeg : Rn → R

m to concisely denote the domain and range of the
function.

• Similarly to the decision vector, entries of vector functions such asg will
be indexed by subscripts:
– theℓ-th entry of the vector functiong is gℓ.

• Vector functions can be:
– linear, of the form∀x,g(x) = Ax, whereA ∈ R

m×n is a matrix,
– affine, of the form∀x,g(x) = Ax−b, whereA ∈ R

m×n is a matrix and
b ∈R

m is a vector,
– polynomial or with some other specific functional form, or
– non-linear, where there are no restrictions ong.

• As with the decision vector, in this section and in Section4, the function
g will be a generic vector function and we will not explicitly specify the
entries ofg (except in examples):
– we will need to assume that we can partially differentiateg.
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Formulation, continued
• Suppose we want to find a valuex⋆ of the argumentx that satisfies:

g(x) = 0. (2.1)

• A value,x⋆, that satisfies (2.1) is called a solution of thesimultaneous
equationsg(x) = 0:
– we will use superscript⋆ to indicate a desired or optimal value.

• We will typically assume that the number of equations,m, is the same as
the number of entries,n, in the decision vectorx.
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2.2 Linear equations
2.2.1 Factorization and forwards and backwards substitution

• If g is affine, we usually re-arrange the equations asAx = b:
– calledlinear simultaneous equationsand we will typically assume that

A ∈ R
n×n andb ∈ R

n, so that the number of equations, as specified by
the number of entries inb and the number of rows inA, is the same as
the number of entries inx.

– suchsquaresystems are solved withfactorization andforwards and
backwardssubstitution,

– will assume familiarity with solving linear equations using suchdirect
algorithms.
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Factorization and forwards and backwards substitution, continued
• Key computational issues with factorization and substitution are:

– straightforward factorization ofA ∈ R
n×n requires computational effort

on the order ofn3,
– forwards and backwards substitution requires effort on theorder ofn2,
– although we will often write the solution of linear simultaneous

equations asx = A−1b, evaluating the inverse of a matrix requires
significantly more computational effort than factorization and forwards
and backwards substitution.
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2.2.2 Modified factorization
• In some cases, we need to consider solutions of simultaneousequations

where the coefficient matrixA is modified.
• The matrixA+ γuv†, whereγ ∈ R,u,v ∈ R

n with γ 6= 0 andu,v 6= 0, is
called arank-one modification ofA.

• If a matrix A has already been factorized, then there are ways to evaluate
the factors ofA+ γuv† with computational effort that is on the order ofn2.

• This is achieved bymodifying the factorization of A and is also related
to theSherman-Morrison formula:

(A+ γuv†)
−1

= A−1−
A−1γuv†A−1

1+ γv†A−1u
,

= A−1
(

I −
γuv†A−1

1+ γv†A−1u

)

. (2.2)
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Modified factorization, continued

• For example, to solve(A+ γuv†)x = b for x′ = (A+ γuv†)
−1

b, we note by
the Sherman-Morrison formula that:

(A+ γuv†)
−1

b = A−1
(

I −
γuv†A−1

1+ γv†A−1u

)

b,

= A−1b′,

• where:

b′ =

(

I −
γuv†A−1

1+ γv†A−1u

)

b,

= b+∆b′,

• where:

∆b′ =

(

−
γuv†A−1

1+ γv†A−1u

)

b.
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Modified factorization, continued

• Summarizing,x′ = (A+ γuv†)
−1

b can be evaluated using the following:
(i) solveAx⋆ = b andAx⋆⋆ = u, so thatx⋆ = A−1b andx⋆⋆ = A−1u,

(ii) define:

∆b′ = −
γuv†A−1

1+ γv†A−1u
b =−

γuv†

1+ γv†x⋆⋆
x⋆,

b′ = b+∆b′ =

(

I −
γuv†A−1

1+ γv†A−1u

)

b,

(iii) either solveAx′ = b′ or solveA∆x′ = ∆b′ and setx′ = x⋆+∆x′.
• Note thatx⋆ is the solution of the originalbase-caseequationsAx = b and

we may have already solved forx⋆ as part of previous calculations.
• Solving forx′ in this way did not require factorization of the matrix

A+ γuv† and therefore reduced the computational effort from being on the
order ofn3 to being on the order ofn2.
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2.2.3 Sparsity
• Large-scale linear equations typically exhibitsparsity:

– many of the entries in the matrix are zero, and
– sparsity techniquesallow this characteristic to be exploited to reduce

computational effort compared to straightforward factorization and
substitution.

• This means that factorization and substitution may take effort that is
much less thann3 andn2, respectively.

• It is still generally computationally faster to factorize and use forwards
and backwards substitution on a large sparse system than to invert the
matrix.

• If a sparse matrixA has already been factorized, then to obtain a
factorization of a modified matrixA+ γuv† it is still generally
computationally faster to modify the factorization ofA than to factorize
the modified matrix from scratch.
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2.3 Non-linear equations
• If g is not affine, then the equations are non-linear.
• Non-linear equations usually requireiterative algorithms, and we will

briefly develop the Newton–Raphson algorithm:
– requires an initial guess that is then iteratively improved,
– we will focus on issues related to linearization that will beimportant in

the context of understanding formulations and approximations used in
power flow and electricity markets.
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2.4 Examples
• Figure2.1shows the case of a functiong : R2 → R

2.
• There are two sets illustrated by the solid curves.
• These two sets intersect at two points,x⋆,x⋆⋆, illustrated as bullets•.
• The pointsx⋆ andx⋆⋆ are the two solutions of the simultaneous equations

g(x) = 0, so that{x ∈ R
n|g(x) = 0}= {x⋆,x⋆⋆}.

• In general, simultaneous equations problems could have no solutions, one
solution, or multiple solutions.

✲

✻

x2

x1

✫ ✪
✬ ✩t
t

x⋆

x⋆⋆

{x ∈ R
2|g1(x) = 0}

{x ∈ R
2|g2(x) = 0}

Fig. 2.1. Example of
simultaneous equations
and their solution.
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Examples, continued
• As another example, let:g : R2 → R

2 be defined by:

∀x ∈ R
2,g(x) =

[

(x1)
2+(x2)

2+2x2−3
x1− x2

]

. (2.3)
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x1

x2

x⋆

x⋆⋆

{x ∈ R
2|g1(x) = 0}

{x ∈ R
2|g2(x) = 0}

Fig. 2.2. Solution of
non-linear simultaneous
equationsg(x) = 0 with
g defined as in (2.3).
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Examples, continued
• As a third example, letg : R→ R be defined by:

∀x ∈ R,g(x) = (x−2)3+1. (2.4)

• By inspection,x⋆ = 1 is the unique solution tog(x) = 0.
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2.5 Newton–Raphson algorithm
• We now consider a general approach to solving simultaneous non-linear

equations:

g(x) = 0, (2.5)

• whereg : Rn → R
n so that the number of entries in the decision vector is

the same as the number of entries in the vector function:
– there are the same number of variables as equations.

2.5.1 Initial guess
• We will distinguish successive iterates by superscript in parentheses.
• Let x(0) be the initial guess of a solution to (2.5).
• In general, we expect thatg(x(0)) 6= 0.
• We seek an updated value of the vectorx(1) = x(0)+∆x(0) such that:

g(x(1)) = g(x(0)+∆x(0)) = 0. (2.6)
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2.5.2 Taylor approximation
2.5.2.1 Scalar function

g1(x
(1)) = g1(x

(0)+∆x(0)), sincex(1) = x(0)+∆x(0),

≈ g1(x
(0))+

∂g1
∂x1

(x(0))∆x(0)1 + · · ·+
∂g1
∂xn

(x(0))∆x(0)n ,

= g1(x
(0))+

n

∑
k=1

∂g1
∂xk

(x(0))∆x(0)k ,

= g1(x
(0))+

∂g1
∂x (x(0))∆x(0). (2.7)

• In (2.7), the symbol “≈” should be interpreted to mean that the difference
between the expressions to the left and to the right of the≈ is small

compared to
∥

∥

∥
∆x(0)

∥

∥

∥
.
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Scalar function, continued
• The expression to the right of the≈ in (2.7) is called afirst-order Taylor

approximation of g aboutx(0):

g1(x
(0))+

∂g1
∂x (x(0))∆x(0).

• For a partially differentiable functiong1 with continuous partial
derivatives, the first-order Taylor approximation aboutx = x(0)

approximates the behavior ofg1 in the vicinity of x = x(0).
• The first-order Taylor approximation represents a plane that is tangential

to the graph of the function at the pointx(0).
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Scalar function, continued

• For example, suppose thatg1 : R2 → R is defined by:

∀x ∈ R
2,g1(x) = (x1)

2+(x2)
2+2x2−3.
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Fig. 2.3. Graph of
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Scalar function, continued

• For x(0) =

[

1
3

]

, ∆x(0) =

[

1
1

]

, andg1 : R2 → R defined by:

∀x ∈ R
2,g1(x) = (x1)

2+(x2)
2+2x2−3,

evaluate:
g1(x(0))
∂g1
∂x (x(0))

g1(x(0))+
∂g1
∂x (x(0))∆x(0)

g1(x(0)+∆x(0))
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2.5.2.2 Vector function
• We now consider the vector functiong : Rn → R

n.
• Sinceg is a vector function andx is a vector, the Taylor approximation of

g involves then×n matrix of partial derivatives
∂g
∂x evaluated atx(0).

• A first-order Taylor approximation ofg aboutx(0) yields:

g(x(0)+∆x(0))≈ g(x(0))+
∂g
∂x (x(0))∆x(0),

• where by the≈ we mean that the norm of the difference between the

expressions to the left and the right of≈ is small compared to
∥

∥

∥
∆x(0)

∥

∥

∥
.

• The first-order Taylor approximation again represents a “plane” that is
tangential to the graph of the function; however, the situation is much
more difficult to visualize for a vector function.
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2.5.2.3 Jacobian
• The matrix of partial derivatives is called theJacobianand we will

usually denote it byJ(•):
– in some later development, we will need to consider particular

sub-matrices of the Jacobian and we will also use the symbolJ to
denote particular sub-matrices.

– the definition will be clear from the context.
• UsingJ to stand for the Jacobian, we have:

g(x(1)) = g(x(0)+∆x(0)),by definition of∆x(0),

≈ g(x(0))+ J(x(0))∆x(0). (2.8)

• In some of our development, we will approximate the Jacobianwhen we
evaluate the right-hand side of (2.8)

• In this case, the linear approximating function is no longertangential tof .
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2.5.3 Initial update
• Setting the right-hand side of (2.8) to zero to solve for∆x(0) yields a set of

linear simultaneous equations:

J(x(0))∆x(0) =−g(x(0)). (2.9)

2.5.4 General update

J(x(ν))∆x(ν) = −g(x(ν)), (2.10)

x(ν+1) = x(ν)+∆x(ν). (2.11)

• (2.10)–(2.11) are called theNewton–Raphson update.
• ∆x(ν) is theNewton–Raphson step direction.
• Suppose thatg : Rn → R

n is affine and suppose thatx(0) ∈ R
n is arbitrary.

Use the Newton–Raphson update to obtainx(1). What can you say about
g(x(1))?
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2.6 Discussion of Newton–Raphson update
• In principle, the Newton–Raphson update is repeated until asuitable

stopping criterion is satisfied that is chosen to judge whether the
solution is accurate enough.

• Issues:
(i) The need to calculate the matrix of partial derivatives and solve a

system of linear simultaneous equations at each iteration can
require considerable effort.

(ii) At some iteration we may find that the linear equation (2.10) does
not have a solution, so that the update is not well-defined.

(iii) Even if (2.10) does have a solution at every iteration, the sequence
of iterates generated may not converge to the solution of (2.5).
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Discussion of Newton–Raphson update, continued
• Approximations and variations have been developed due to:

– the computational effort of performing multiple iterations, and
– the potential that the iterates fail to form a convergent sequence.

• One variation is to perform justone Newton–Raphson update starting
from a suitable initial guess to obtain an approximate answer.

• We will develop this variation in the context of power flow because it:
– is used in many electricity market models, and
– sheds light on decomposition approaches even when the non-linear

equations are being solved more accurately.
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2.7 Summary
• In this section we considered solution of simultaneous linear and

non-linear equations problems.
• We introduced the Sherman-Morrison formula.
• We considered linearization of a function.
• We developed the Newton–Raphson algorithm.

This chapter is based on Sections 2.1, 2.2, and 9.2 ofApplied Optimization:
Formulation and Algorithms for Engineering Systems, Cambridge
University Press 2006.
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Homework exercises

2.1Consider the matrixA =

[

2 3 4
7 6 5
8 9 11

]

and the vectorb =

[

9
18
28

]

.

(i) Factorize this matrix intoL andU factors. For example, you can use the
MATLAB function lu . (Note that MATLAB will provide a factorization
of the formPA = LU , whereP is a permutation matrix.) If you have not
studiedLU factorization before, you should read through slides 37 to 61 of
www.ece.utexas.edu/ ˜ baldick/classes/380N/Linear.pdf .

(ii) Solve Ax = b (or PAx = Pb using forwards and backwards substitution.)
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Homework exercises, continued

2.2This exercise concerns Taylor’s theorem. Letg : R2 → R
2 be defined by:

∀x ∈ R
2,g(x) =

[

exp(x1)− x2
x1+exp(x2)

]

.

(i) Use Taylor’s theorem to linearly approximateg(x+∆x) in terms of:

• g(x),

• the JacobianJ(x), and

• ∆x.

Write out the linear approximation explicitly for the giveng. That is, you
must explicitly differentiateg to find the entries inJ.

(ii) Calculate the difference between the exact expressionfor g(x+∆x) and
the linear approximation to it. Let us call this differencee : R2×R

2 → R

defined by:

∀x ∈ R
2,∀∆x ∈ R

2,e(x,∆x) = g(x+∆x)− (the linear approximation).
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(iii) Show that:

‖e(x,∆x)‖2

‖∆x‖2 ≤
exp(2x1)(exp(∆x1)−1−∆x1)

2

(∆x1)2

+
exp(2x2)(exp(∆x2)−1−∆x2)

2

(∆x2)2
.

Use the norm given by:∀x ∈ R
2,‖x‖=

√

(x1)2+(x2)2.
(iv) Show that‖e(x,∆x)‖/‖∆x‖→ 0 as‖∆x‖→ 0. Use the norm given by:

∀x ∈ R
2,‖x‖=

√

(x1)2+(x2)2. Be careful when proving this limit.
(Hint: Consider‖e(x,∆x)‖2/‖∆x‖2 and use the previous part together
with l’H ôpital’s rule to evaluate the limit of the ratio.)
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Homework exercises, continued

2.3 In this exercise we will apply the Newton–Raphson update to solve
g(x) = 0 whereg : R2 → R

2 was specified by (2.3):

∀x ∈ R
2,g(x) =

[

(x1)
2+(x2)

2+2x2−3
x1− x2

]

.

(i) Calculate the Jacobian explicitly.
(ii) Calculate∆x(ν) according to (2.10) in terms of the current iteratex(ν).

(iii) Starting with the initial guessx(0) = 0, calculatex(1) according
to (2.10)–(2.11).

(iv) Calculatex(2) according to (2.10)–(2.11).
(v) Sketchg1, x(0), x(1), and the first-order Taylor approximation tog1 about

x(0).
(vi) Sketchg1, x(1), x(2), and the first-order Taylor approximation tog1 about

x(1).
(vii) Sketch, on a single graph, the points and functions in Parts(v) and(vi)

versusx1 along the “slice” wherex1 = x2. Discuss the progress of the
iterates.
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