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() Introduction to equilibrium modelling,
(i) Homework exercises.



4.1 Introduction to equilibrium modelling

() Introduction,
(i) Model formulation,
(iif) Market operation and price formation,
(iv) Equilibrium and solution,
(v) Validity, uses, and limitations of equilibrium models,
(vi) Summary.



4.1.1 Introduction
e \We have already seen examplesobnomic equilibria
— Cournot equilibrium, and
— (in principle) equilibrium of group homework.
e These are examples bfash equilibrium:

— choice of strategic variables by each participant suchrtbagarticipant
can improve its profit by anilateral change to the value of its strategic
variables.

e Nash equilibrium is a basic unifying principle in models ofdaraction.

e We will discuss the formulation of Nash equilibrium modelstectricity
markets.

e As we will see, there are several difficulties in applying Naguilibrium
to electricity markets, including:

(i) non-convexity of generator feasible operating regioonfo
operating costs, non-concavity of generator profit fumgtio
(ii) inelastic demand,
(i) complexity of electricity market rules, and
(iv) representation of regulatory intervention.



4.1.2 Model formulation
Consider the modelling of:

() Transmission network,
(i) Generator cost function and operating charactesstic
(i) Offer function,
(iv) Demand, and
(v) Uncertainty.

For each, we will distinguish the:

Physical model: a (notionally) exact model of the physical characteristics
Commercial model: the model used in the actual market.
Economic model:the model used in the equilibrium formulation.



4.1.3 Transmission network
4.1.3.1 Physical model
e Kirchhoff’s laws (non-linear equality constraints):

— for example, at each bus in Figué€el there is a non-linear equation on
net power flow and a non-linear equation on net reactive ptower
— Six equations in total.

()

bus 1

Deman
bus 3

bus 2

@ Fig. 4.1. Three bus,

three line network.



Physical model, continued
e Thermal, voltage, and stability constraints (linear and-hioear
inequality constraints):

— for example, each line in Figure 1 has a thermal limit,

— thermal limit is an inequality constraint expressed in ewhthe
voltage magnitudes and angles at the buses joined by theftea
approximated in terms of the power flow along the line.

e May also be constraints on line flows or on corridor flows thegiehd on
particular generators being in-service.



4.1.3.2 Commercial network model

e Simplified transmission model used in market.
e Examples for Kirchhoff’s laws:

— linearization of non-linear equalities to obtain DC powei]
— buses aggregated into zones joined by equivalent linesnficercially
significant constraints” in ERCOT zonal market).
e Examples for inequality constraints:
— limits on real power flow in DC power flow model,
— limits on flow on commercially significant constraints.

e Discrepancies between commercial network model and phiysiodel
dealt with through “out-of-market” actions by independsystem
operator involving “side payments” to particular markettjggants.



Transmission network model, continued
4.1.3.3 Economic model

e Further simplified model used in equilibrium analysis,
e Examples:

— ignore transmission constraints,

— only consider pricing intervals when transmission cornstsaare not
binding,

— simplified network model,

— ignore effect of “out-of-market” actions,

— assume that market participants ignore the effect of tlotioas on
transmission congestion or on congestion prices.

e Simplifies the profit maximization problem faced by genaato

— For example, assuming that participants ignore the effigtisir actions
on congestion removes potential non-concavities from@pant profit
functions.

— Therefore, first-order necessary conditions are suffi¢@misimplified)
profit maximum problem.



Economic model, continued

e The solid curve shows the actual profit functiog, which is non-concave
and has two local maximizers; ands*.

e The dashed curve extrapolates the functional form fromtnegaalues,
which removes the non-concavity, but also eliminates theimaer!
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4.1.4 Generator cost function and operating characteristics
4.1.4.1 Physical model

e Thermal generators have energy costs, unit commitmergssseserves
and reactive power capability, ramp and other constraimtsperation.

e Energy cost functions for thermal generation are non-tifigactions of
production.

e Hydro generators have low, roughly constant, marginals;dsit are
energy limited.

4.1.4.2 Economic model
e Portfolio models abstract from unit commitment and othsués:
— ignore discrete variables associated with unit commitndentsions.

e May ignore the joint production of energy and ancillary segg by a
generator.



4.1.5 Offer function
4.1.5.1 Commercial model
e Complex (start-up costs etc) versus simple (energy) offiections,
e Requirements to hold offers fixed over multiple intervaldixed despite
uncertainty in demand,
e Uncertainty managed through long-term forward contratdg;ahead
markets, real-time markets, and ancillary services.
¢ Installed capacity markets.

4.1.5.2 Economic model
e Choice of strategic variable may abstract from the comraénsodel:

— quantity, as in Cournot model, does not literally represeatket rules,

— supply functions are closer in form to requirements of miankies,

— number of free parameters in supply function model can have
significant implications for the results of the model:

o for example, too few free parameters in offers usually mdiaais
results are an artifact of assumed values of fixed parameters

e Bilateral contract representation.



4.1.6 Demand
4.1.6.1 Physical model

e Temporal variation and uncertainty,
e Usually small (possibly zero) short-term price elasticity

4.1.6.2 Commercial model

e Forecast of temporal variation,
e Uncertainty managed through long-term forward contratdg;ahead
markets, real-time markets, and ancillary services.

4.1.6.3 Economic model

e Forecast of temporal variation,
e Estimate of elasticity:

(i) May be calibration to observed behavior,
(i) May be representation of “competitive” market parniants.



4.1.7 Uncertainty
4.1.7.1 Physical model

e Demand, residual demand, fuel costs and availability, ajibenent
capacity are stochastic.

4.1.7.2 Commercial model
e Uncertainty in generator capacity and of demand is reptedeghrough:

— day-ahead and real-time markets,
— reserves and other ancillary services.

4.1.7.3 Economic model

e Many stochastic issues could be incorporated into the nsodel
e Uncertainty in demand is typically represented, but mdstiostochastic
Issues are typically not explicitly represented.

— Consequently, effect on prices of stochastic issues mapena

e Real-time markets may not be explicitly modelled or may beletied
separately, ignoring the joint equilibrium between the kets.



4.1.8 Market operation and price formation
4.1.8.1 Physical model

e Lack of storage and limited elasticity of demand mean thabady ISO
IS necessary to match supply and demand through utilizatiamcillary
services.

e For example, real-time market deals with deviations froyalkead
market positions.

4.1.8.2 Commercial model
e Typical commercial model is a uniform clearing price market
— “pay-as-bid” is an alternative model.

e The role of ancillary services in matching supply and demamubt
explicitly represented in, for example, the day-aheadgnerarket
model,

e Ancillary services become critical under scarcity:

— price formation under scarcity may not be explicitly specfi
— may rely on difficult-to-model operator actions and postkea
calculations.



Market operation and price formation, continued
4.1.8.3 Economic model

e Models crossing of supply and demand.
e Typically ignores ancillary services:

— Typically require elastic demand at each bus to obtain defined
prices when transmission constraints represented.

— Model results may be extremely dependent on the specificafio
demand elasticity.

e Typically ignores unit commitment and installed capaciigrkets:

— incorporating discrete variables into formulation is cartgionally
difficult.



4.1.9 Nash equilibrium and solution

e A Nash equilibrium is set of participant offers such that aetigipant can
improve its profit by unilaterally deviating from the offentivn the
market rules:

— ignores collusion,
— model of market operation and price formation determine$itpr

¢ In homework problem, equilibrium if everyone achieved ¢éxgpost
maximum profit.



Nash equilibrium and solution, continued
e Suppose strategic variables agdor participantk =1,...,n:

— choice of strategic variable in model is reflection of offeless and
decision process of participant,
— may only implicity reflect choices as in Cournot model.

e Suppose that profit to participakis Ti(s,S_k), wheres_y = (sy) sk iS
the collection of strategic variables of all the particifsabesides
participantk.

e Then(s;)k=1,..nis apure strategy Nash equilibrium if:

s € arg rgkaw(&,s*_k),

wheres®, = (S)) k.

o Note that arg mag i (S, S—«) is the best response of firkto the
decisionss_g of the other firms, as calculated by Hortagsu and Puller.

o If we “graph” the best response argngam (s, s_) versuss_i for eachk
then the equilibriun{s;)k=1... n is the intersection of these best response
curves.

e “Single-shot” versus “repeated game.”



Equilibrium solution methods
4.1.9.1 Analytical models

e Solve for equilibria analytically.
e Possible for some simple cases:

— Single pricing interval with certain demand,
— Cournot model (strategic variables are quantities) witlcajgacity
constraints.

e The collection of first-order necessary conditions for maxing each
participant’s profit can be solved:

— as in homework with Cournot duopoly.
e Conditions for existence for unique equilibrium may be klze.



4.1.9.2 Example

e Recall the “symmetric duopoly” with each firm= 1,2 having marginal
cost function:

VQ;,c(Qi) = 20+ 60Q; /2500
e Operating rang€0, Q;], whereQ; = 2500 MW.
e The inverse demand is:
vQ,p!(Q) = max{50—(Q—2800,2,0},
= max{1450— Q/2,0},
— 1450-Q/2,

e assuming that 1450 Q/2 > 0.
e Assume that the strategic variable is quantity.



Example, continued
e For firmi = 1, we have that the profit is:

T (Q1,Q2) = (1450— (Q1+Q2)/2)Q1 —c1(Qu),
= —%Q%Jr <1450— %Qz) Q1 —c1(Qq).

e Firmi =1 can choos€);, but accepts as fixed the val@ (whatever it
might actually be).

¢ Differentiatingmy with respect tdQ; and setting equal to zero to
maximize profit, we obtain:

o 6T[1
0 = 35, (QuQ2).
1 60
— _Ql - §Q2‘|‘ 1450— (20—|— m)Q]_) .
e Thatis:
1.024Q; + 0.5Q, = 1430 (4.1)



Example, continued
e Similarly, for firmi = 2, we have that:

™(Q2,Q1) = (1450— (Q1+Q2)/2)Q2 —c2(Q2),
= —%Qg—i— <1450— %Ql) Q2—C2(Q2).

e Firmi = 2 can choos€),, but accepts as fixed the val@g (whatever it
might actually be).

¢ Differentiatingmo with respect tdQ, and setting equal to zero to
maximize profit, we obtain:

oTt
0 = W(ZQZ(QZ,Ql),
1 60
= _QZ - éQl + 1450— (20—|— ﬁQZ) .
e Thatis:
0.5Q; +1.024Q, = 1430Q (4.2)



Example, continued
e Solving the simultaneous equatiods1) and @.2), we obtain:

Q: = 9383 MW,
Q; = 9383 MW,
Qi +Q5 = 18766 MW,
p%(Q5+Q5) = 5117 $/MWh,
c(QY) =c/(Q5) = 425 $/MWh.
e \We have calculated the Nash equilibrium of a Cournot duopgly

simultaneously solving the first-order necessary conustior
maximizing the profit function of each participant:

— by constructionQ7 = 9383 MW is the profit maximizing quantity for
firm 1, given that firm 2 produce®@; = 9383 MW, and
— vice versa.

e Note that a different choice of strategic variable mightlleaa different
result:

— see in homework.



4.1.9.3 More general derivation of Cournot model
e Considem firms with quadratic cost functiorgg : R, — R:

1
VQk € Ry, c(Qk) = éekQE + aQx,

e with g > 0 for convex costs.
e The marginal cost of firnk is ¢, with:

VQk € Ry, 0 (Qk) = &xQx + ax. (4.3)

e Ignore capacity constraints.
e Assume demand of the form:

VP e Ry, q%(P) = N—yP

e Note that previous derivation of Cournot model in Sectto®2used:

— general convex cost function instead of specific quadratictional
form, and
— elasticity of demand instead of demand slope.

e However, general features of model are similar.



More general derivation of Cournot model, continued

e Since total supplyy ,Q, must equal demand, inverse dema¥ddR — R
IS:

YQuk=1,...,n,p (2@) = (N—ng> /Y.
14 I4

e The operating profit for firnk is its revenue minus its operating costs:

Th(Qk, Q_k) = Qup* (; Qz) — Ck(Qx),

e Necessary and sufficient conditions Quto maximizeri(Qk, Q_k) are
linear:

0 — OT(QLOUMOL Q_y)
0Qx ’

_ pd (QEoumot+ ;Qg> o ngurnot(eK_l_ 1/V) — a.
14




More general derivation of Cournot model, continued

e Simultaneously satisfying the conditions for all firms fsin n
equations.
e Resulting “Cournot pricePC"“mOtis given by'

pCournot__ Zk_ Q<+1/V)
1
y+2k— (&t+1/y)
e Corresponding “Cournot quantities” are:
1

VK — N Cournot
O e 1)

(PCournot_ ak)



More general derivation of Cournot model, continued
e Price-cost mark-up is:
pCournot_ ay

ey+1

e Consider firms with the same generation technology butreiffe
capacities:
— ag is the same for all firms, but
— g is smaller for larger firms.

e Generation, market share, and price-cost mark-up is |&ogéarger
firms:

— as in earlier derivation of Cournot model, firms with largearket share
will have higher price-cost mark-up,

— in the limit for firms with market share approaching zero, phiee will
equal their marginal costs.

Cournot / Courno
P — G (Qg ) =




More general derivation of Cournot model, continued

e As a specific numerical example, consider the 5 firm example
specified in Tabld.1

Firm i 1 2 3 4 5
e(($/MWh)/GW) | 2.687| 4.615| 1.789| 1.93| 4.615
a($/MWh) 12 12 8 8 12

Table 4.1.
Five firm cost
data from
Baldick,
Grant, and
Kahn.



More general derivation of Cournot model, continued

e Assume that demand level is specifiedNby= 35 and the demand slope is
y=0.1 GW per ($ per MWh).

e Obtain:
pCoumot —  80$ per MWh
Qg:ournot — 5.3911 MW,
Qg:ournot — 4.6799 MW,
ngurnot = 6.1410 MW,

Qgeumet — 6.0684 MW,
QEOUMOt — 4.6799 MW.



4.1.9.4 Numerical solution

e The analytical approach may involve first-order necessamgitions that
are non-linear or require the solution of differential etipras.

e Numerical and differential equation solving methods magntbe used to
solve for the equilibrium.

e Potential for multiple equilibria is more difficult to inviegate in this
context.



4.1.9.5 Example

e Following Green, we assume thdgmand §: R, x [0,1] — R has a
dependence on both price and on time:

VP e RVt €[0,1],qY(Pt) = N(t) — yP, (4.4)

where:

— Pis the price,

—tis the (normalized) time,

— N :[0,1] — R} is theload-durationcharacteristic, and
—y e R, is minus the slope of the demand curve.

e The load-duration characteristicrepresents the distribution of demand
over a time horizon, with:

— the time argumerttnormalized so that it ranges from O to 1, and
— N non-increasing, so that= 0 corresponds to peak conditions dnrd 1
corresponds to minimum demand conditions.

e It could also represent the probability distribution ofdam demand as
in Hortagsu and Puller.



Example, continued
e An affine load-duration characteristic.

Fig. 4.3. Example
t load-duration character-
istic.




Example, continued

e We assume that firms are labelled 1,...,n, withn> 2.

e Assume that théotal variable operating cost functioof thei-th firm is
G : R, — R, with ¢ assumed convex.

e Marginal costs are;.

e \We assume that market rules require that a single non-deogeaffer be
specified for all time in the time horizon specified by the laaotation
characteristic:

— similar to version of homework where offer was used for alkth
sub-intervals.

e It will turn out that it is easier to analyze theverseof the offer function,
called the “supply function.”

— Each firmi specifies a functios; : R — R.

— If the supply function is non-decreasing then the corredpanoffer
function will also be non-decreasing.

— If the price isP then firmi is prepared to producg(P).



Example, continued
e Suppose that each firjn£ i specifies its non-decreasing supply function
S;.
o Cjonsider a particular time
e Suppose that firmproducedQ;; at timet.
e Equating supply and demand at titn@e obtain an expression that must
be satisfied by the market clearing prigeat timet:

Qit =N(t) —yR— ) sj(R).
(t) J;SJ()

e If firm i commits to meeting the residual demand it faces then we can
think of Q;; as a function of:

— note thatQj also depends on the supply functissj # .



Example, continued
e The profit per unit timat; for firm i if the price isP, is therefore:

m(R) = QitP —ci(Qit),
= (N(t)—yﬂ—éq(ﬁ))ﬁ—q (N(t)—yﬂ—%q(ﬁ)).
JA |

e Suppose that the supply functiogisj # i are differentiable.
¢ Differentiatingtg; with respect td? and setting equal to zero, we obtain:

a .
0 = gp (R,

- (N(t) V“ E Sj(l i)) (‘V_ E _GHj (I i)) ”
J# J#I
aSj

_d(NO—yR-TF s -5 Sim).
C((t) YR ;SJ(H)><V J;pt(Pt)>



Example, continued
e Recall the market clearing condition:

Qit =N(t) —yR— ) sj(R
t = N(t) J;SJ()

e Substituting from the market clearing condition, we camrée the profit
maximization condition as:

0=Qu+(R- c<Q.t>>< ;3—5{(3))
IEX

e Re-arranging and requiring this condition to hold for eantet, we
obtain:

vt € 0,1],Qr = (R —c/(Qu)) <v+ > si(R) ) (4.5)
7

e Again, larger firms will have a larger price-cost mark-up.
¢ In the limit for small firms, the price will equal their margihcosts.



Example, continued

e To summarize, and similarly to Hortagsu and Puller, if thpy
functions of every other firm are specified then we can findethpost
optimal quantity and price for firmat timet.

e This defines an implicit relationship betwe&n andP..

e If the implicit relationship is non-decreasing then we cawal & supply
functions that satisfies it.

e That is, we seek a functios that satisfies:

VP s(P) = (P—ci(s(P))) <v+ ZSJq(P)) : (4.6)
J#!

e If the load-duration characteristic consists of discretlei@s (as in the
homework) then4.6) will only hold at the particular corresponding
values ofP.

e If the load-duration characteristic is continuous thé®)Y will hold for a
continuum of prices.



Example, continued

e If we can finds',i =1,...,nthat satisfy 4.6) for every firmi then we
have an Nash equilibrium in supply functions:

— “supply function equilibrium.”

e If the load-duration characteristic is continuous, thessthconditions
specify a set of coupled non-linear differential equations

— there are multiple solutions to the non-linear differergiguations
depending on the “initial conditions,”

— “least competitive SFE” includes prices that are equal tar@ot prices
at peak demand,

— “most competitive SFE” includes prices that are competdiiv peak
demand!

e Unfortunately, the differential equations are difficultstalve in general
for supply functions that satisfy the non-decreasing cairss:

— particular cases such as all cost functions identical (‘fegtnical SFE”)
are typically easier to solve.



Example, continued
e Suppose that = 3 with all firms having the same quadratic cost function:

YQ € R,,6(Q) = 8@ +aQ,

Eirm | 1T 21 3 Table 4.2.Cost and
&($/MWh per MWh)( 0.5[ 0.5/ 0.5 capacity data for three
ai($/MWh) 9| 9| 9 firm example system

from Day and Bunn.
e Demand slope ig = 0.125 GW per ($/MWh)
e Load-duration characteristic is:

vVt € [0,1],N(t) =7+20(1—t),

e With quantities measured in GW.
e That is,N varies linearly from 27 to 7 GW.



Example, continued

e Solving the differential equations corresponding to th& &bt different
“Initial conditions” results in various equilibria:

— because the cost functions are symmetric, a symmetrigdinit
condition” results in a symmetric equilibrium.

e There is a continuum of equilibria:

— for each equilibrium, all three supply functions are the eam
— will illustrate the supply function for one of the firms.



Example, continued

e Figure shows 14 different equilibria.
e The dashed curve shows an equilibrium where the supplyitmscare
affine.

P

20

18

T Fig. 4.4. Continuum of
P
5 (P) equilibria.



Example, continued

e Now let’'s assume that market rules require that a singleeaffifer be
specified for all time in the time horizon:

— similar to homework,
— rules out all but one of the equilibria calculated in the pyag example.

e It will again turn out that it is easier to analyze timeerseof the offer
function, which is also affine:

Vi, VP > aj, SMNe(P) = Bi(P—aj), (4.7)

e Whereq; andf3; are coefficients determined by firm
e The corresponding offer function is:

ai + 0 /Bi,
e SO that the offer price at zero quantityas

e The slope}i € R,..,i=1,...,nmust be non-negative to ensure that the
offer function is well-defined and non-decreasing.



Example, continued
e We will assume that the cost functions are quadratic andeofahm:

i, YO € Ry, G(Q) = 38 QF + 40,

e with g > 0 for each so that the variable generation costs are convex.
e Marginal costs are;, so that:

vQ € R4, G(Q) =aQi+ai. (4.8)

e \We ignore capacity constraints.
e Note that a competitive offer would correspond to:

ai = aj,

Bi = 1l/e.



Example, continued

e Substituting the assumed affine functional form irtd@®) and assuming
that the load-duration characteristic is continuous (@t there are at
least two distinct clearing prices) and that price is alwatylgast
max{a;}, we obtain:

Vi,VP.Bi(P—ai) = (P—afi(P—ai) — &) <V+ ZBJ> :
J#!
e Equating coefficients d?, we obtain:

Vi, Bi = (1—api) <V+§_Bj>- (4.9)
B4

e Equating coefficients of the constant terms, we obtain:

Vi, —0iBi = —(a — pBia;) <V+ZBJ>- (4.10)
J#



Example, continued
e Substituting from4.9) into the left-hand side o#( 10 yields:

—0i(1—ep; i | = —(a—&abiqj |-
ol QB)(\H‘;BJ) (& QBG)<V+;BJ>

e Solong agy+ Y i Bj) > 0, we can cancel this factor on both sides to
obtain:

Vi,af =aq.

e Note that although firnncan choose; as it wishes, its profit maximizing
choice is consistent with a competitive offer!
e However,3* will generally differ from Ve.



Example, continued

e Rudkevich shows that here is exactly one non-negativeisalt (4.9),
which can be found by solving the non-linear equatigff¥) = O, where:

B

—the unknowns ar@ = | : | € R",

Bn
— the functiong : R" — R" is defined by:

vB,6i(B) = Bi — (1— &) <y+ ;m) |
[EA

e See in homework.



Homework exercise: Due Tuesday, April 29 in class

e Consider the “symmetric duopoly” with each firm= 1,2 having
marginal cost function:

vQi, ¢i(Qi) = 20-+60Q; /2500

e Operating rang€0, Q;], whereQ; = 2500 MW.
e Note that, in the context of the affine supply function edpilim
formulation,g = 60/2500 andy; = 20 for each firm.
e The inverse demand in each of three intervals is:
Interval 1 VQ, p4(Q) = max{50— (Q —2800)/2,0},
Interval 2 VQ, p4(Q) = max{75— (Q —3500/2,0},
Interval 3 VQ, pY(Q) = max{500— (Q —4200/2,0},
e whereQis in MW andp%(Q) is in $/MWh.
e That is, the demand slopeys= 2 MW per ($/MWh).



Homework exercise: Due Tuesday, April 29 in class

¢ Find the affine supply function equilibrium for this industr

e That is, assume that the strategic variable is the suppbtifumand that
supply functions are restricted to being affine.

e Moreover, assume that a single affine supply function muspleeified
for all three intervals:

— this is sufficient for the affine supply function equilibrivamnalysis to
apply.

e Solve @.9) for this data using the kirLAB functionf sol ve (or any
other technique of your choice) with initial guess given by inverses of
theeg.

e That s, solveg(p) = 0, where:

VB, Gi(B) = Bi — (1— &) <y+ ;BJ) |
[EA

e Calculate the clearing price and quantities in each interva
e Compare the results to the Cournot results obtained whestitheegic
variable was assumed to be the quantity.



Homework exercise: Due Tuesday, April 27, by 10pm

e For next week, we will again allow offers to vary for three p@aicing
periods with demand:

— 4150 MW,
— 4200 MW, and
— 4250 MW.

e That is, a different offer will be used for each of three precperiods.

e Suppose that the cost functions for the last homework esestayed
exactly the same.

e Again assume that the “top” 400 MW of demand in each periotheil
price responsive, with willingness-to-pay varying lingdrom
$500/MWh down to $100/MWh.

e Update your offers for the peak demand period to try to imergour
profits compared to your previous offers:

— submit offers for all periods, all three offers will be coesied.



4.1.9.6 Fictitious play

e For complex models, a natural approach is to successivelgtaghe
strategic variables starting from some initial guess aetnglibrium
value of the strategic variables.

e Each participant may find its profit maximizing response ®dther
participants’ strategic variables and use that to updatewin strategic
variables:

— in principle, can incorporate a variety of issues includyegeration
capacity and transmission constraints,

— in principle, global search could be carried out to deal wibh-concave
profit function but, in practice, implementations tend te iecal
optimizers.



Fictitious play, continued
e In principle, converges to “single-shot” pure strategyiklouum, if it
exists:

— does not represent repeated game, despite update invodpegted
updates!

— “damped” update may be necessary to facilitate convergence

— if local optimizer is used then may converge to non-equilir.

e Can also sometimes be used to find a mixed strategy equitbriu
— strategies are random mixtures of “pure strategies.”



4.1.9.7 Example
e Use five firm data again, but include generator capacitieb@srsin

Table4.3.
Firm i 1 2 3 4 5
& (($/MWh)/GW) 2.687| 4.615| 1.789 1.93| 4.615
a($/MWh) 12 12 8 8 12
QGW) 5.70945| 3.35325| 10.4482| 9.70785| 3.3609

Table 4.3. Five firm cost data from Baldick, Grant, and Kahn.

e Assume a demand slopepf= 0.1 GW per ($ per MWh) and thad(t) is
affine, ranging from 35 to 10 GW as in Figu4es.

e Allow piecewise linear supply functions with multiple segnts.

e Initially ignore capacity constraints.



Example, continued
e Initial guess is affine supply function equilibrium.
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Fig. 4.5. Profits versus
iteration for case of
No capacity constraints,
starting from the affine
e m w w w w w w s o V SFE supply function.
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Example, continued

e Supply functions stay the same at each iteration sincalgjtiess is
equilibrium!

P

o f Fig. 4.6. Supply func-

o tions at iteration 100

for case of no capac-
ity constraints, starting

i from the affine SFE sup-

5= S(P) ply function.



Example, continued

e Price is affine function of time since load-duration chagastic was
assumed to be affine function of time and equilibrium supphctions
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are affine.
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Fig. 4.7. Price-duration
curve at iteration 100
for case of no capacity
constraints, starting
from the affine SFE
supply function.



Example, continued

e In this case, initial guess is competitive offers.
e Profits increase from competitive as equilibrium is appheakc

T
£ Fig. 4.8. Profits versus
iteration for case of
ol --oTTTTTTTTTTTTTTTITIIII ] no capacity constraints,
e starting from the com-
e w6 w w w % w wm VY petitive supply function.



Example, continued

e Equilibrium is somewhat different to affine SFE.
e Consistent with theoretical conclusion that there areipialequilibria.
e Only offers for prices less than $28/MWh are relevant.

Fig. 4.9. Supply func-
tions at iteration 100 for
case of no capacity con-
straints, starting from
the competitive supply
= S(P) function.




Example, continued
e Prices somewhat lower than in affine SFE except for low demand

Fig. 4.10. Price-
duration  curve  at
1 iteration 100 for case
| of no capacity con-
straints, starting from
the competitive supply
T T T A R T function.




Example, continued

e Starting from widely different initial guesses result irgskly different
equilibria.

e Range ofnumericallycalculated equilibria is much less wide than the
range of theoretically possible equilibria.

rRUN Fig. 4.11. Profits ver-
1 sus iteration for case of

e no capacity constraints
’ for all starting functions
N wm W W & w w % % i V combined.




Example, continued

e Only offers for prices less than approximately $30/MWh alevant for
comparison.
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Fig. 4.12. Supply func-

tions at iteration 100 for

case of no capacity con-
straints for all starting

functions combined.
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Example, continued
e Equilibria only differ noticeably at higher demand levels.

Fig. 4.13. Price-
. duration curve at
| iteration 100 for case of

no capacity constraints
for all starting functions
T T T A R T combined.




4.1.9.8 Example with capacity constraints

e Now impose capacity constraints on five firm example.
e Start with competitive offers.
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Fig. 4.14. Profits
versus iteration with

401

o B -] capacity constraints
starting from capaci-
N % W s % W % e i V tated competitive.



e Supply functions have kinks.
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Example with capacity constraints, continued
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Fig. 4.15. Supply

functions at iteration
100 with capacity con-
straints starting from
capacitated competitive.



Example with capacity constraints, continued
e Price-duration curve non-affine.

Fig. 4.16. Price-

duration curve at itera-
tion 100 with capacity
constraints starting from
—eT o o7 or o5 o o7 o5 o5 L capacitated competitive.




Example with capacity constraints, continued

e Starting from widely different initial guesses again reésulklightly
different equilibria.

e Range ofnumericallycalculated equilibria is very small.
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100 -

Fig. 4.17. Profits
versus iteration with

| e — - capacity constraints for
all starting functions
T m w w wm w % s w V combined.




Example with capacity constraints, continued
e Supply functions at iteration 100 similar despite varyingial guesses.

Fig. 4.18. Supply
functions at iteration
100 with capacity con-
straints for all starting
= S(P) functions combined.




Example with capacity constraints, continued

e Price-duration curves at iteration 100 all similar despégying initial
guesses.

P(t)
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Fig. 4.19. Price-

y duration curve at
iteration 100 with ca-
pacity constraints for
all starting functions
T R RS AT | combined.




Fictitious play, continued

e “Agent-based” models fall into this framework, althougle tagent” may
not be explicitly finding its profit maximizing response.

e “Experimental economics,” where human subjects act asebark
participants are another example of fictitious play:

— as in group homework where offers are updated each week.



Equilibrium solution methods, continued

4.1.9.9 Mathematical program with equilibrium constraiatnd
equilibrium program with equilibrium constraints

e Model the market clearing mechanism by its optimality ctiods.
e Incorporate optimality conditions into the optimizatioroplems faced by
each participant:

— optimization problem is a “mathematical program with edpmim
constraints.”

— May deliberately simplify the profit maximization problengsavoid
non-concave profit functions for participants, particiylam case of
generator or transmission capacity constraints.

e Collecting together the problems of every participant awidisg for the
equilibrium results in an “equilibrium program with eqgbitium
constraints.”



4.1.9.10 Specialized solution methods
e In some cases, specialized algorithms may be applied twplart types
of equilibria.
e For example, Anderson and Hu describe a technique for firglipgly
function equilibria.



4.1.10 Validity, uses, and limitations of equilibrium models
e Are equilibrium models reasonable?

— In the ERCOT balancing market, some smaller market paaitid
behavior is evidently not consistent with a model of profit
maximization:

o as discussed in Hortagcsu and Puller,
o this may simply be due to discrepancies between the ecoramdic
commercial models or due to concerns about regulatoryvaidion.



Validity, uses, and limitations of equilibrium models, continued
e Are equilibrium models reasonable?

— Sometimes, there are only “mixed strategy” equilibria:

o rock, scissors, paper payoffs are shown in table,

o if either player picks one strategy and continues to picketntthe
other player can always win!

o Nash equilibrium strategy is for each player to randomlk pack,
Scissors, or paper.

Payoff 2
(tol,to2)] Rock| Scissors Paper
Rock (0,0)] (1,-1)|(—1,1)
1 Scissors | (—1,1) (0,0) | (1,-1)
Paper (1,-1)| (-1,1)| (0,0

Table 4.4. Payoffs for
rock, scissors, paper.



Validity, uses, and limitations of equilibrium models, continued
e Are equilibrium models reasonable?

— There is little evidence of randomized offers in actual eleity
markets:

o Simplifications of representation of transmission and gggien
capacity constraints are typically aimed at ensuring catcaf
generator profit function to help assure that pure stratggiibria
exist,

o Not clear whether this simplification is an appropriate made
participant behavior.

— There may be multiple equilibria, particularly for supplynttion
equilibria, reducing the predictive value:

o numerical results and theoretical “stability” analysiggest that
range of observed equilibria is likely to be smaller tharotietically
possible range,

o ongoing research in this area.



Validity, uses, and limitations of equilibrium models, continued
e Are equilibrium models reasonable?
— There are a large number of modelling assumptions:
o only a fraction of market rules can be modelled.

— Choice of parameterization of strategic variables can tpadinely and
gualitatively affect equilibrium:

o as in Cournot and supply function versions of homework paoid,
o requires very careful modelling to avoid the results beinguifact of
unrealistic choices of strategic variables.

e Cannot expect to predict outcomes and prices accurately!



4.1.11 Principled analysis of the effect of changes
e Evaluate alternative market rules such as:

— allowing offers to change from interval to interval versaguiring
offers to remain fixed over multiple intervals, and
— single clearing price versus pay-as-bid prices,
e Evaluate changes in market structure such as mandatediuives
e Estimate the effect of transmission constraints.
e Estimate the effect of the level of contracts, such as:

— physical and financial bilateral energy contracts, and
— financial transmission rights,

e Evaluate modelling assumptions, such as:

— the assumed form of cost functions or offer functions,
— the use of portfolio-based versus unit-specific costs @arsffand
— the representation of unit commitment.



4.1.11.1 Strategy to evaluate changes
e Hold most market rules and features constant.
e Vary one particular issue for a qualitative “sensitivityiadysis.
e Estimate the&ehangedue to the modeled variation.
¢ Allows the potential for policy conclusions to be made franndses even
in the absence of absolute accuracy:

— responds to Harvey and Hogan criticism that underlying risodere
developed for comparing alternatives, not for absolutéuaien.

e Group homework provides examples:

— allowing offers to change from interval to interval versu®d offers,
— Iinelastic versus elastic demand.

e Case studies:

(i) Market rules regarding changing of offers.
(i) Single clearing price versus pay-as-bid prices.
(i) Divestitures.



4.1.11.2 Market rules regarding changing of offers

e Single set of energy offers that must apply across all iialern the day
versus offers that can vary from hour to hour.

e A supply function equilibrium model can represent both sase

e Many of the detailed features of electricity markets, iclahg
transmission constraints, might be ignored.

e Such an analysis was performed by Baldick and Hogan (200%5)20

e A rule requiring consistent offers can help to mitigate neapower.



4.1.11.3 Single clearing price versus pay-as-bid prices

e Concerns about exercise of market power sometimes prorggestions
for a “pay-as-bid” market:
— each accepted offer is paid its offer price instead of theketarlearing
price,
— so even if the market clearing price is high due to market poatber
offers will only receive their offer price.

e Proposals for pay-as-bid markets usually neglect to redhat offers will
change in response to changes in market rules.

e The “revenue equivalence theorem” suggests that equilibprices
should be the same in both types of markets:

— in absence of uncertainty, offers in pay-as-bid market rigé to equal
whatwould have been the equilibrium clearing price in the single
clearing price market!

— clearing price estimation errors in presence of uncestaint mean
that dispatch is inefficient.

e Not all of the assumptions required for the revenue equinadeheorem
actually hold in electricity markets.



Single clearing price versus pay-as-bid prices, continued

e A simplified model of an electricity market can be used to wbéta
sensitivity result for the change between single clearimgepand
pay-as-bid prices.

¢ In some models of electricity markets, pay-as-bid priciag cesult in
lower equilibrium prices than in single clearing price netgk(Fabria,
2000, and Son, Baldick, and Lee, 2004).

— Effect is relatively small and unlikely to compensate fontsides of
pay-as-bid such as poor dispatch decisions.

— Although revenue equivalence theorem does not apply ngdypthe
result remains approximately true.



4.1.11.4 Divestitures

e Market structure has been changed by mandated divestituties
England and Wales market in the late 1990s.

e A supply function equilibrium model reproduced the changprices
from before to after the divestitures, given calibratiombserved demand
pre-divestiture (Baldick, Grant, and Kahn, 2004, and Day Rann,
2001).

e Helps to confirm insight that greater number of smaller caitgrs
results in more competitive prices.



4.1.12 Summary

e Discussed equilibrium models, their solution, and uses.

e There has been considerable effort in recent years in danglthe
theory and application of these models.

e There are strong prospects for improving such models, adfhoheir
application should be tempered with the understandingthigaéctual
market is likely to include a host of details that remain udeited.

e Qualitative sensitivity analysis can be useful, even inabgence of
guantitative accuracy.

e Empirical studies, such as the IMM report can elucidate@sgerof
market power.

e Theoretical studies, such as equilibrium analysis, carmithe
empirical studies and help with market design.



Homework exercise: Due Tuesday, May 4, by 10pm

e For next week, we will again allow offers to vary for three p@aicing
periods with demand:

— 4150 MW,
— 4200 MW, and
— 4250 MW.

e That is, a different offer will be used for each of three precperiods.

e Suppose that the cost functions for the last homework esestayed
exactly the same.

e Again assume that the “top” 400 MW of demand in each periotheil
price responsive, with willingness-to-pay varying lingdrom
$500/MWh down to $100/MWh.

e Update your offers for the peak demand period to try to imergour
profits compared to your previous offers:

— submit offers for all periods, all three offers will be coesied.



Homework exercise: Due Tuesday, May 4 in class

e Consider the five firm example system with costs shown in thie ta

e Solve @.9) for this data using the kirLAB functionf sol ve (or any
other technique of your choice) with initial guess given by inverses of
theeg.

e That s, solveg(p) = 0, where:

VB, Gi(B) = Bi — (1— &) <y+ ;BJ) |
[EA

e Assume thay = 0.1 GW per ($/MWh).

Table 4.5.
Firmi 1 2 3 4 5 Five firm cost
e ((3/MWh)/GW) | 2.687| 4.615| 1.789| 1.93] 4.615 data from
a,($/MWh) 12| 12 8| 8| 12 Baldick,
Grant, and
Kahn.
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