
Course notes for EE394V
Restructured Electricity Markets:

Market Power

Ross Baldick

Copyright c© 2010 Ross Baldick

Title Page ◭◭ ◮◮ ◭ ◮ 1 of 153 Go Back Full Screen Close Quit



5
Transmission constraints

• This material is based on:
– Severin Borenstein, James Bushnell, and Steven Stoft, “The

Competitive Effects of Transmission Capacity in a Deregulated
Electricity Industry,”RAND Journal of Economics,31(2):294–325,
Summer 2000.

– Carolyn A. Berry, Benjamin Hobbs, William A. Meroney, Richard P.
O’Neill, and William R. Stewart, Jr., “Analyzing StrategicBidding
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Behavior in Transmission Networks.” In H. Singh, Editor,IEEE
Tutorial on Game Theory Applications in Power Systems,pages 7–32,
IEEE Press, 1999.

– Lin Xu and Yixin Yu, “Transmission constrained linear supply function
equilibrium in power markets: method and example,” InProceedings of
PowerCon 2002, International Conference on Power System
Technology,3:1349–1354, October 2002.

– Electric Reliability Council of Texas, “ERCOT Nodal Protocols,” 2007.
Available from http://nodal.ercot.com/protocols/index.html.

– Lin Xu and Ross Baldick, “Transmission-constrained Residual Demand
Derivative in Electricity Markets,”IEEE Transactions on Power
Systems,22(4):1563–1573, November 2007.

– Ross Baldick, “Course notes for EE394V Restructured Electricity
Markets: Locational marginal pricing,” Fall 2006. Available from
http://users.ece.utexas.edu/˜baldick/classes/394V/Locational.pdf and
from http://users.ece.utexas.edu/˜baldick/classes/394V/Linearized.pdf

– Ross Baldick, “Applied Optimization: Formulation and Algorithms for
Engineering Systems Slides,” Fall 2006. Available from
http://users.ece.utexas.edu/˜baldick/classes/380N/Inequality%20II.pdf
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– Manho Joung and Ross Baldick, “The Competitive Effects of
Ownership of Financial Transmission Rights in a Deregulated
Electricity Industry.”
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Outline
(i) Modeling market power, revisited,

(ii) Transmission constraints and geographical market power,
(iii) Shift factors and the DC power flow,
(iv) Offer-based transmission-constrained economic dispatch,
(v) Ad hoc analyses of market power with transmission constraints,

(vi) Consideration of incentives when transmission constraints bind,
(vii) Ownership of generation at multiple buses,

(viii) Pivotal offers,
(ix) Transmission and equilibrium analysis,
(x) Transmission, equilibrium, and transmission rights,

(xi) Summary.
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5.1 Modeling market power, revisited
• Market power assessment approaches:

(i) Ad hocapproaches based on indices such as HHI:
• have also been extended to include transmission constraints, but
• since foundation isad hoc,results are unreliable,
• will use example from ERCOT Nodal Protocols to illustrate.

(ii) Empirical analyses to test if offers are above marginalcosts or
assess the change in prices due to deviation from competitive offers:
• Joskow–Kahn paper,
• IMM report,
• transmission can be included,
• effect of market power can be assessed in presence of

transmission constraints, but
• difficult to obtain insights into effect of transmission on

competition.
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Modeling market power, revisited, continued
(iii) Analysis of incentives to deviate from competitive prices:

• given hypothesis of profit maximizer,
• what would have been the best response or the mark-up,
• Hortaçsu and Puller paper,
• basic insight is that derivative of residual demand with respect to

price (or derivative of inverse residual demand with respect to
quantity) determines the incentives to mark-up above competitive:
– if demand is very elastic (derivative of residual demand with

respect to price is large) then profit maximizer will offer close to
marginal, while

– if demand is inelastic (derivative of residual demand with
respect to price is small) then profit maximizer will offer above
marginal.

• So far have not included transmission in this assessment.
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Modeling market power, revisited, continued
• We will consider transmission constraints in assessment ofincentives by

generalizing the notion of residual demand to the
transmission-constrained case:
– we will first review the situation in the absence of transmission

constraints,
– then see how to generalize to case of transmission constraints.
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5.1.1 Incentives in the absence of transmission constraints
5.1.2 Residual demand

• As previously, we consider the residual demand faced by a market
participant:
– the actual demand minus the supply of all the other participants.

• Suppose that the demand in a particular pricing interval isD:
– we ignore price-responsiveness of demand, but it can be incorporated

into the analysis.
• Consider a particular market participantk.
• Suppose that the total offered generation of all theothermarket

participants besidesk is specified by the functionq−k : R→ R:
– At priceP, the total offered generation of all the other market

participants isq−k(P).
– Theresidual demandfaced by market participantk is (D−q−k(P)).

• The inverse of the function(D−q−k) is the inverse residual demand
function faced by participantk, which we will denotepd

−k : R→ R.
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5.1.3 Profits
• Consider operating profit,πk : R→ R, for participantk, which is revenue

minus costs:
– Revenue equals the product of:
◦ quantity,Qk, multiplied by
◦ the resulting pricepd

−k(Qk),
– Total variable operating costs for participantk areck : R→ R.

• Operating profit for market participantk is:

∀Qk ∈ R,πk(Qk) = Qkpd
−k(Qk)−ck(Qk).
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Profits, continued
• Assuming that:

– sufficient conditions for maximization are satisfied,
– functionspd

−k andck are differentiable, and
– generation capacity constraints are not binding at the profit maximizing

condition,
• then we can find the maximum of profit by setting its derivativeto zero:

0 =
∂πk
∂Qk

(Qk),

= pd
−k(Qk)+Qk

∂pd
−k

∂Qk
(Qk)−c′k(Qk),

• wherec′k =
∂c
∂Qk

is the marginal costs.
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5.1.4 Mark-up and market power index
• Re-arranging, we obtain the price-cost mark-up of price above marginal

cost under the hypothesis that the generator was maximizingits profits:

pd
−k(Qk)−c′k(Qk) =−Qk

∂pd
−k

∂Qk
(Qk). (5.1)

• We have seen this basic result previously:
– incentive for generatork to mark-up price above marginal cost depends

on the derivative of the inverse residual demand faced by generatork.
• The right-hand side of (5.1) is a market power index:

– if it is “large” according to some standard then a profit-maximizing
generator has incentives to drive up prices “significantly”by
withholding,

– ignoring forward contracts.
• Any generator that is not at full production but such that theright-hand

side of (5.1) is above a threshold would be flagged as of concern.
• In the context of “market power mitigation,” such generators might then

be subject to limits on offer prices.
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5.1.5 Excess transfers above competitive
• If marginal costs roughly represent the level of competitive prices then

the mark-up approximates the excess transfer of wealth, over and above
competitive levels, from consumers to producers per MW of production.

• Multiplying by productionQk, we obtain anapproximateindex of excess
wealth transfer to participantk:

− (Qk)
2∂pd

−k
∂Qk

(Qk). (5.2)

• Since the marginal costc′k(Qk) of participantk at its production level may
be below the competitive price, the excess wealth transfer may be less
than implied by (5.2).

• It is profit maximizing for a firm to offer at (close to) marginal cost if the
firm is “small:”
– “small” means that its effect on price is small.
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5.1.6 Calculation of index
• The right-hand side of (5.1) (or of (5.2)) can be evaluated using

knowledge of the offers and the quantities and prices cleared in an
offer-based electricity market.

• Example contexts:
(i) ex antesimulation of market operation over pricing intervals in a

time horizon using a production cost simulator,
(ii) alongside the clearing of the actual market based on actual offers,

or
(iii) based on historical information.
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5.1.7 Forward contracts
• If the generator has a forward contract for quantityQf

k at pricePf
k then the

profit function becomes:

∀Qk,πf
k(Qk) = (Qk−Qf

k)p
d
−k(Qk)+Qf

kP
f
k−ck(Qk).

• Again setting the derivative of profit to zero:

0 =
∂πf

k
∂Qk

(Qk),

= pd
−k(Qk)+(Qk−Qf

k)
∂pd

−k
∂Qk

(Qk)−c′k(Qk).

• Price-cost mark-up with a forward contract under the hypothesis that the
generator was maximizing its profits:

pd
−k(Qk)−c′k(Qk) =−(Qk−Qf

k)
∂pd

−k
∂Qk

(Qk). (5.3)

• Incentives for mark-up are reduced with forward contracts:
– as observed previously.
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Forward contracts, continued
• The right-hand side of (5.3) provides an index for assessing the incentives

to exercise market power:
– relies on knowledge of forward market positions.

• In real-time market, the day-ahead positions are forward financial
positions:

−(Qreal−time
k −Qday−ahead

k )
∂pd

−k
∂Qk

(Qreal−time
k ).

• It is profit maximizing for a firm to offer at (close to) marginal cost if:
– the firm is “small,” or
– the firm’s net position is small.

• No explicit representation so far of transmission constraints.
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5.2 Transmission constraints and geographical market power
5.2.1 Non-thermal constraints and “reliability must run”

• In some cases, a generator may be in a unique position when transmission
constraints are limiting:
– no other generator available to compete to supply.

• This is particularly the case with respect to non-thermal constraints, such
as voltage constraints, since reactive power must primarily be supplied
locally:
– geographically limited competition of reactive power supply,
– no explicit market prices for provision of reactive power (nor reactive

power reserves) in any electricity markets,
– so reactive power and voltage issues dealt with “out-of-market.”
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Non-thermal constraints and “reliability must run,” continued
• There may be well-defined situations when a particular generator must

run in order that demand be met:
– when demand in an importing level is high,
– a local generator providing reactive power may be “pivotal”in the sense

that if it was not in-service, demand would have to be curtailed.
• “Reliability must run” contracts are a typical mechanism todeal with this

type of market power:
– essentially a forward contract at negotiated or regulated prices.
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5.2.2 Thermal constraints
• In other cases, thermal constraints (or proxy thermal constraints) may be

the limiting issue.
• These constraints may limit competition, but we may want to avoid

regulated prices if (or whenever) possible:
– must then analyze competitive conditions explicitly to seeincentives for

mark-up of price above marginal cost.
• Analysis will primarily focus on thermal constraints (and constraints that

can be well approximated by proxy thermal constraints).
• When constraints are binding, it is common to say that “congestion” is

occurring:
– not like traffic congestion!
– transmission congestion means that one or more transmission

constraints are binding,
– so limiting elementcannotbe operated at a higher level without risking

cascading outages and blackout.
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5.2.3 Radial system
• Consider a system with a single radial transmission constraint joining two

zones.
• Whenever there is transmission congestion between the zones, the two

zones are separated into two markets.

wZone 1 wZone 2
Single radial constrained

transmission line

��
��
∼ ��

��
∼

Demand
?

Demand
?

Fig. 5.1. Two zone net-
work joined by radial
transmission.
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Transmission-constrained residual demand for a radial system, continued
• Suppose that the flow on the radial line is at its limit:

– If there is only one generator in Zone 2 then the derivative ofthe inverse
residual demand faced by that generator is given by the derivative of the
inverse demand in Zone 2.

– If demand in Zone 2 is inelastic then the the derivative of theinverse
demand is large.

– The incentive to mark-up price above marginal cost is large.
– There is “geographical market power.”

• Suppose that the flow on the radial line is not at its limit:
– The derivative of the inverse residual demand faced by the generator in

Zone 2 is due to:
◦ the supply in Zone 1,
◦ the demand in Zone 1, and
◦ the demand in Zone 2.

– Residual demand is more elastic in this case,
– Smaller incentive to mark-up price above marginal cost.
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5.2.4 Transmission-constrained residual demand for a radial system
• Whenever the transmission limit is binding, small changes in price in one

zone cannot affect the flow to or from the other zone:
– Analysis of residual demand involves considering each zoneseparately.
– Participants in one zone can be considered separately from other zone.
– Residual demand in each zone is due to offers and bids in that zone only.
– Residual demand elasticity is lower than when transmissionconstraint

does not bind.
• Analysis is valid in radial systems because of a particular feature of the

“shift factors:”
– the fraction of power flowing on a line due to injection at one zone and

withdrawal at a zone.
• For a radial line, the shift factors are always either zero orone.
• Given that the constraint is binding, the two zone system canvalidly be

analyzed as two separate markets.
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Transmission-constrained residual demand for a radial system, continued
• Borenstein, Bushnell, and Stoft analyze a radial system.
• Central insights of Borenstein, Bushnell, and Stoft:

– when transmission constraints are binding, residual demand will be less
elastic,

– increasing capacity of transmission links between marketscan improve
competitiveness in both markets by making residual demand of
combined market more elastic than residual demand of individual
markets.

• Also investigate more subtle issues regarding existence ofpure strategy
equilibrium when constraints bind.
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5.2.5 More realistic systems
• Realistic systems are meshed.
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Fig. 5.2. Four bus,
five line network based
on an example from
Berry, Hobbs, Meroney,
O’Neill, and Stewart
and in Lin Xu and Yixin
Yu.
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More realistic systems, continued
• Shift factors in a meshed system are almost always between zero and one.
• Market participantscannotbe validly divided into being in one zone or

the other.
• Residual demand at each bus can be affected by offers throughout system,

even when transmission constraints bind.
• Nevertheless, central insight of Borenstein, Bushnell, and Stoft is

relevant:
– when transmission constraints bind, residual demand will be less elastic.

• Transmission constraints can exacerbate market power by reducing
geographical extent of market:
– as discussed qualitatively in IMM report.

• How to quantitatively analyze this issue in meshed systems?
• Need to analyze shift factors.
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5.3 Shift factors and the DC power flow
5.3.1 Definition of shift factor

• For a given amount of power:
– injected at a specified point of injection, busk,
– withdrawn at a specified point of withdrawal, busℓ,

• what is the fraction,σkℓ, of the amount power that flows on a particular
line.

• Shift factors will vary with:
– point of injection,
– point of withdrawal, and
– line.

• Values of shift factors calculated from Kirchhoff’s laws and the
transmission network parameters:
– see derivation in EE394V: “Locational Marginal Pricing,” Available

from http://users.ece.utexas.edu/˜baldick/classes/394V/Linearized.pdf
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5.3.2 DC power flow as commercial network model
• The commercial network model for both the ERCOT zonal marketand

the ERCOT nodal market uses the DC power flow approximation:
– for a given network configuration, the shift factors are constant

independent of the levels of flows.
• Enables flows on lines to be expressed as a linear function of “net

injections” at buses.
• Net injectionqk at a bus is the difference between generationQk and

demandDk at each bus:
– positive for a net generator,
– negative for a net demand.
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5.3.3 Example
• Consider the three bus three line network with all lines having equal

admittance.
• Power injected at one bus and withdrawn at another is split between

“long” and “short” paths in proportion to path admittance.

Shift factors
to line A
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Fig. 5.3. Three bus,
three line network and
shift factors to line A.
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Example, continued
• Let qk be the net injection at busk:

– power balance requires that:

q1+q2+q3 = 0.

– we can pick out any one of the injections and express it in terms of the
others:

q3 =−q1−q2,

– we callq3 the “reference” bus.
• If we:

– injectq1 at bus 1, and
– injectq2 at bus 2,

• then we must withdraw(−q3) = q1+q2 at bus 3.
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Example, continued
• Therefore, using the definition of shift factors, the resulting flow on line A

will be:

q1σ13+q2σ23.

• Define:

q̂ =

[

q1
q2

]

,

Ĉ = [σ13 σ23] ,

= [2/3 1/3] ,

and letd̂ equal the capacity of line A.
• Then we can write the transmission capacity constraint as:

Ĉq̂≤ d̂.

• We could pick any of the three buses to be the reference bus:
– different choices will result in different representations of the

transmission capacity constraints.
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5.3.4 Multiple constraints
• In a typical network there may be many constraints that are potentially

binding (including many contingency constraints):
– that is, there are many limiting transmission elements.

• We can pick a reference bus and then calculate the shift factors to each
limiting transmission element:
– for injection at each bus, and
– withdrawal at the reference bus.

• If we haver limiting transmission elements in a system withn buses then
we can again express the constraints as:

Ĉq̂≤ d̂, (5.4)

with:
– the matrixĈ ∈ R

r×(n−1) has rows that consist of shift factors to the
limiting elements, with withdrawal at the reference bus,

– the vector ˆq∈ R
n−1 are the net injections at all buses except the

reference bus, and
– the vectord̂ ∈ R

r consists of transmission element limits.
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5.4 Offer-based transmission-constrained economic dispatch
• Also called “security-constrained economic dispatch” or “offer-based

optimal power flow.”

5.4.1 Formulation
• Recall formulation of offer-based economic dispatch:

– maximize the (revealed) surplus (or revealed benefitsb̃k minus revealed
costs ˜ck),

– subject to the upper and lower bound constraints and to the power
balance constraint.

• To simplify notation, consider all demands as “negative generation,”
represent benefits as “negative costs,” and assume that eachoffer or bid is
at a different bus:
– derivative of a revealed cost ˜ck at a busk is the offerpk at that bus,
– we will consider the case of both offer and demand at a single bus in

examples.
• Formulation then equivalent to minimizing revealed costs subject to

constraints.

Title Page ◭◭ ◮◮ ◭ ◮ 32 of 153 Go Back Full Screen Close Quit



Formulation, continued
• Collect net generationsqk (including negative demands) together into

vectorq∈ R
n of net injections, where we assume that there aren offers

and bids.
• Let q̂∈ R

n−1 be vector of net injections at buses other than reference bus.
• Using shift factors, flow on line can be expressed as a linear combination

of entries of ˆq as in (5.4).
• Upper and lower bound constraints on generation can also be expressed in

this form:
– upper and lower bound constraints on generation at the reference bus

require constraints of formCq≤ d,
– for simplicity, we will assume that upper and lower bound constraints

on generation at the reference bus are not binding and can be ignored.
• Offer-based transmission-constrained economic dispatchformulation:

min
q∈Rn

{
n

∑
k=1

c̃k(qk)|1
†q= 0,Ĉq̂≤ d̂},

• where1 is a vector of all ones and1†q= 0 enforces power balance.
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5.4.2 Solution
• Software, such at the MATLAB functionquadprog, can be used to find

the minimizerq⋆ ∈ R
n of this problem.

• Recall that, under suitable conditions, a set of “first-order necessary
conditions” characterize the minimizer:
– software to solve the problem typically seeks a solution of the first-order

necessary conditions.
• The first-order necessary conditions involve the “Lagrangemultipliers”

on the equality and inequality constraints:
– see derivation in EE394V: “Locational Marginal Pricing,” Available

from http://users.ece.utexas.edu/˜baldick/classes/394V/Locational.pdf
– the scalar̂λ⋆ ∈ R is the Lagrange multiplier on the equality constraint

1†q= 0 and represents the marginal value, in $/MWh, of additional
generation at the reference bus,

– the vectorµ̂⋆ ∈ R
r
+ is the vector of Lagrange multipliers on the

inequality constraints and represents the sensitivity of the cost of
dispatch to a reduction in a corresponding limit ind̂.
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Solution, continued
• First-order necessary conditions (ignoring upper and lower bound

constraints on generation at reference bus):

∃λ̂⋆ ∈ R,∃µ̂⋆ ∈ R
r , such that:

∀k not the reference bus, pk(q
⋆
k)− λ̂⋆+[Ĉk]

†
µ̂⋆ = 0;

For the reference bus, pk(q
⋆
k)− λ̂⋆ = 0;

∀ℓ, either theℓ-th constraint is binding, or ˆµ⋆ℓ = 0, or both;

1†q⋆ = 0;
Ĉq̂⋆ ≤ d̂; and

µ̂⋆ ≥ 0,

• whereĈk is thek-th column ofĈ, consisting of the shift factors associated
with injection at busk.

• “Complementary slackness constraints:” for each constraint ℓ, either:
(i) constraintℓ is binding, or

(ii) the corresponding entry of ˆµ⋆ℓ is equal to zero, or
(iii) both.

Title Page ◭◭ ◮◮ ◭ ◮ 35 of 153 Go Back Full Screen Close Quit



5.4.3 Locational marginal prices
• The locational marginal prices (LMPs) at the buses are givenby:

LMPk =

{
(

λ̂⋆− [Ĉk]
†
µ̂⋆
)

, if k is not the price reference bus,

λ̂⋆, if k is the price reference bus.

• whereĈk is thek-th column ofĈ, consisting of the shift factors associated
with injection at busk.

• The LMPs or “nodal prices” are the market clearing prices at each bus:
– all energy bought and sold at a bus is priced at the LMP in orderto clear

the market,
– LMPs are equal to:
◦ the price at the reference bus, minus
◦ a shift factor-weighted combination of the entries of ˆµ⋆.
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Locational marginal prices, continued
• The values of̂λ⋆ andµ̂⋆ will vary with the choice of reference bus:

– different representations of constraints result in different values of
Lagrange multipliers.

• However, the resulting LMPs are independent of the choice ofreference
bus:
– market clearing prices are independent of arbitrary choiceof reference

bus.
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5.4.4 Example
• If bus 3 is the reference bus and if the capacity of Line A is 10 MW then

the inequality constraint iŝCq̂≤ d̂,

• where:q̂=

[

q1
q2

]

,Ĉ= [σ13 σ23] = [2/3 1/3], andd̂ = [10].

Shift factors
to line A

σ12 σ13 σ23

1/3 2/3 1/3

w
@
@@R

w
�

��	

w

∼

∼

bus 1

bus 2

bus 3

Line A

�
�

�

��
��
∼

@
@

��
��

��
��

#
#
#
#
#
##

c
c
c
c
c
cc

?

Fig. 5.4. Three bus,
three line network and
shift factors to line A.

Title Page ◭◭ ◮◮ ◭ ◮ 38 of 153 Go Back Full Screen Close Quit



Example, continued
• Suppose that there are inelastic demandsDk at each bus.
• Since we have both demand and generation at each busk, we will

explicitly useQk for the generation at busk.
• Suppose that the offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• We consider two demand conditions:

(i) D1 = D2 = 0,D3 = 11 MW, and
(ii) D1 = D2 = 0,D3 = 30 MW.
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Example, continued
• The first-order necessary conditions forQ⋆

1, Q⋆
2, andQ⋆

3 to be optimal
generations are:

∃λ̂⋆ ∈ R,∃µ̂⋆ ∈ R, such that:

p1(Q
⋆
1)− λ̂⋆+(2/3)µ̂⋆ = 0;

p2(Q
⋆
2)− λ̂⋆+(1/3)µ̂⋆ = 0;

p3(Q
⋆
3)− λ̂⋆ = 0;

either [2/3 1/3]

[

Q⋆
1−D1

Q⋆
2−D2

]

− [10] = 0, or µ̂⋆ = 0, or both;

1†

[

Q⋆
1−D1

Q⋆
2−D2

Q⋆
3−D3

]

= 0;

[2/3 1/3]

[

Q⋆
1−D1

Q⋆
2−D2

]

≤ [10]; and

µ̂⋆ ≥ 0.
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Example, continued
DemandD1 = D2 = 0,D3 = 11 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• We claim that:

Q⋆
1 = 6 MW,

Q⋆
2 = 3 MW,

Q⋆
3 = 2 MW,

λ̂⋆ = 6 $/MWh,
µ̂⋆ = 0 $/MWh,

• satisfy the first-order necessary conditions.
• The LMPs at all buses are equal to $6/MWh.
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Example, continued

• To see this, note that:

p1(Q
⋆
1)− λ̂⋆+(2/3)µ̂⋆ = (6×1)−6+((2/3)×0),

= 0;
p2(Q

⋆
2)− λ̂⋆+(1/3)µ̂⋆ = (3×2)−6+((1/3)×0),

= 0;
p3(Q

⋆
3)− λ̂⋆ = (2×3)−6,

= 0;
µ̂⋆ = 0;
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Example, continued

1†

[

Q⋆
1−D1

Q⋆
2−D2

Q⋆
3−D3

]

= (6−0)+(3−0)+(2−11),

= 0;

[2/3 1/3]

[

Q⋆
1−D1

Q⋆
2−D2

]

= [2/3 1/3]

[

6−0
3−0

]

,

= [5],
≤ [10]; and

µ̂⋆ = 0,
≥ 0.

• Note that the transmission constraint is not binding for this demand
condition.

• Sinceµ̂⋆ = 0, the LMPs are all equal tôλ⋆ = 6 $/MWh.
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Example, continued
DemandD1 = D2 = 0,D3 = 30 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.
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Example, continued
DemandD1 = D2 = 0,D3 = 30 MW

• We claim that:

Q⋆
1 = 10 MW,

Q⋆
2 = 10 MW,

Q⋆
3 = 10 MW,

λ̂⋆ = 30 $/MWh,
µ̂⋆ = 30 $/MWh,

• satisfy the first-order necessary conditions.
• The LMPs at the buses are:

Bus 1 λ̂⋆− [Ĉ1]
†
µ̂⋆ = 30− (2/3)30= $10/MWh,

Bus 2 λ̂⋆− [Ĉ2]
†
µ̂⋆ = 30− (1/3)30= $20/MWh,

Bus 3 λ̂⋆ = $30/MWh.
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Example, continued

• To see this, note that:

p1(Q
⋆
1)− λ̂⋆+(2/3)µ̂⋆ = (10×1)−30+((2/3)×30),

= 0;
p2(Q

⋆
2)− λ̂⋆+(1/3)µ̂⋆ = (10×2)−30+((1/3)×30),

= 0;
p3(Q

⋆
3)− λ̂⋆ = (10×3)−30,

= 0;

[2/3 1/3]

[

Q⋆
1−D1

Q⋆
2−D2

]

− [10] = [2/3 1/3]

[

10
10

]

− [10],

= 0;
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Example, continued

1†

[

Q⋆
1−D1

Q⋆
2−D2

Q⋆
3−D3

]

= (10−0)+(10−0)+(10−30),

= 0;

[2/3 1/3]

[

Q⋆
1−D1

Q⋆
2−D2

]

= [2/3 1/3]

[

10−0
10−0

]

,

= 10,
≤ [10]; and

µ̂⋆ = 30,
≥ 0.

• Note that the transmission constraint is binding for this demand
condition.
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5.4.5 Dependence of LMPs on offers
• As demand varies, it is typical for the binding constraints to vary:

– at low demand, perhaps no line constraints are binding, while
– at high demand, several transmission and generator capacity constraints

may be binding.
• As demand and offers vary, the binding constraints will vary.
• For any given offers and demand, the offer-based

transmission-constrained economic dispatch will result in some particular
subset of the constraints being binding:
– suppose thatrB constraints (out of the totalr constraints) are binding,
– let ĈB ∈ R

rB×(n−1) be the rows ofĈ corresponding to the binding
constraints,

– let d̂B ∈ R
rB be the entries of̂d corresponding to the binding constraints,

and
– let µ̂⋆B be the entries of ˆµ⋆ corresponding to the binding constraints.
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Dependence of LMPs on offers, continued
• If, among other things, the solution isnot at a “corner” then for small

changes in the demand and/or the offers the set of binding constraints will
stay the same:
– constraints that are binding remain binding for small changes, while
– constraints that are not binding remain not binding for small changes.

• The first-order necessary conditions for the changed demandand/or offers
are then (again ignoring upper and lower bound constraints on generation
at reference bus):

∃λ̂⋆ ∈ R,∃µ̂⋆B ∈ R
rB, such that:

∀k not the reference bus, pk(q
⋆
k)− λ̂⋆+[ĈBk]

†
µ̂⋆B = 0;

For the reference bus, pk(q
⋆
k)− λ̂⋆ = 0;

1†q⋆ = 0;
ĈBq̂⋆ = d̂B,

• whereĈBk is thek-th column ofĈB, consisting of the shift factors
associated with injection at busk.
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Dependence of LMPs on offers, continued
• These are a set of equations and can be solved for values ofq⋆, λ̂⋆, andµ̂⋆B.
• Note that the entries of ˆµ⋆ corresponding to non-binding constraints are

zero, so we can obtain the values of all the entries in the vector µ̂⋆.
• DefineCB to be the matrix obtained from̂CB by adding a column of zeros

corresponding to the reference bus.
• Definep : Rn →R

n to be the vector consisting of the offerspk at all buses.
• Then the first-order necessary conditions are:

p(q⋆)−1λ̂⋆+[CB]
†µ̂⋆B = 0;

1†q⋆ = 0;
ĈBq̂⋆ = d̂B,

• where0∈ R
n is the vector of all zeros.

• Focusing on the first set of constraints, suppose thatrB ≤ n−1 and that
the rows ofCB are linearly independent:
– otherwise, Lagrange multipliers are not unique.

• We consider relationship betweenp(q⋆), λ̂⋆, andµ̂⋆B.
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Dependence of LMPs on offers, continued
• On re-arranging the first set of equations, we have:

[

1 −[CB]
†
]

[

λ̂⋆

µ̂⋆B

]

= p(q⋆),
[

1†

−CB

]

[

1 −[CB]
†
]

[

λ̂⋆

µ̂⋆B

]

=

[

1†

−CB

]

p(q⋆),

on multiplying on the left,
[

λ̂⋆

µ̂⋆B

]

=

[[

1†

−CB

]

[

1 −[CB]
†
]

]−1[
1†

−CB

]

p(q⋆),

(5.5)
on multiplying through by the inverse.
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Dependence of LMPs on offers, continued
• Repeating (5.5):

[

λ̂⋆

µ̂⋆B

]

=

[[

1†

−CB

]

[

1 −[CB]
†
]

]−1[
1†

−CB

]

p(q⋆).

• That is, the Lagrange multipliers, and hence the LMPs, depend on the
offer prices at the solution,q⋆, to the offer-based transmission-constrained
economic dispatch with changed demand and/or offers:
– effect of offer prices on LMPs is weighted by terms that depend on the

shift factors,
– note that the solution,q⋆, to offer-based transmission-constrained

economic dispatch, and hence the offer pricesp(q⋆), will generally
change with changes in demand and/or offers.
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Dependence of LMPs on offers, continued
• If a shift factor for injection at a generator is non-zero andthe generator is

not at maximum or minimum generation then its offer price will
contribute to determining the LMPs at every bus:
– when shift factors are between zero and one, situation is qualitatively

differentfrom the two zone model where shift factors were either zero
or one,

– in the two zone model, when the transmission constraint binds,
generation offers in one zone do not contribute (directly) to determining
the LMPs in the other zone,

– offers indirectly contribute to determining the LMPs through
determining whether or not constraint is binding,

– intuition from two zone model must be used with caution!
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5.4.6 Example
• Again consider the three bus example.
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Fig. 5.5. Three bus,
three line network and
shift factors to line A.
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Example, continued
DemandD1 = D2 = 0,D3 = 11 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• Recall that:

Q⋆
1 = 6 MW,

Q⋆
2 = 3 MW,

Q⋆
3 = 2 MW,

λ̂⋆ = 6 $/MWh,
µ̂⋆ = 0 $/MWh,

• satisfy the first-order necessary conditions.
• The LMPs at all buses are equal to $6/MWh.
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Example, continued
• Consider relationship between offers and prices.
• Note thatµ̂⋆B has no entries since no constraints are binding for

demand ofD3 = 11 MW.
• Specializing (5.5) to this case, we obtain:

λ̂⋆ =
[

1†1
]−1

1†p(Q⋆),

=
1
3

1†p(Q⋆),

• so,λ̂⋆, the price at each bus, is a linear combination of the (equal)
offer prices at each bus.
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Example, continued
• Suppose that the offer at bus 1 increases in price to:

∀Q1, p1(Q1) = Q1×2 $/(MW)2h.

• We claim that:

Q⋆
1 = 4.125 MW,

Q⋆
2 = 4.125 MW,

Q⋆
3 = 2.75 MW,

λ̂⋆ = 8.25 $/MWh, which is higher than before,
µ̂⋆ = 0 $/MWh, which is the same as before.

• satisfy the first-order necessary conditions.
• The LMPs at the buses are now all equal to $8.25/MWh:

– higher than before since offer at bus 1 has increased, but
– dispatch is still such that offer prices at all buses are equal,
– offer prices all equal to $8.25/MWh.
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Example, continued
• Increase in offer at bus 1 results in higher LMPs at all buses.
• The transmission constraint is still not binding.
• Moreover, we still have that:

λ̂⋆ = [(1/3) (1/3) (1/3) ] p(Q⋆).
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Example, continued
DemandD1 = D2 = 0,D3 = 30 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• Recall that:

Q⋆
1 = 10 MW,

Q⋆
2 = 10 MW,

Q⋆
3 = 10 MW,

λ̂⋆ = 30 $/MWh,
µ̂⋆ = 30 $/MWh,

• satisfy the first-order necessary conditions.
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Example, continued
• Consider relationship between offers and prices.
• In this case, ˆµ⋆B is the same as ˆµ⋆B since the one constraint is binding.
• By (5.5), we have that:

[

λ̂⋆

µ̂⋆B

]

=

[[

1†

−CB

]

[

1 −[CB]
†
]

]−1[
1†

−CB

]

p(Q⋆),

=

[

3 −1
−1 (5/9)

]−1[
1 1 1

−(2/3) −(1/3) 0

]

p(Q⋆),

=

[

(5/6) (3/2)
(3/2) (9/2)

][

1 1 1
−(2/3) −(1/3) 0

]

p(Q⋆),

=

[

−(1/6) (1/3) (5/6)
−1 0 1

]

p(Q⋆).

• Note that the coefficients of the offer at bus 1 arenegative,so that
increasesin offer prices at bus 1reducethe values of̂λ⋆ andµ̂⋆B.
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Example, continued
• Suppose that the offer at bus 1 increases in price to:

∀Q1, p1(Q1) = Q1×2 $/(MW)2h.

• We claim that:

Q⋆
1 = 9.23 MW,

Q⋆
2 = 11.53 MW,

Q⋆
3 = 9.23 MW,

λ̂⋆ = 27.69 $/MWh, which is lower than before,
µ̂⋆ = 13.85 $/MWh, which is also lower than before.

• satisfy the first-order necessary conditions, with LMPs:

Bus 1 λ̂⋆− [Ĉ1]
†
µ̂⋆ = 27.69− (2/3)13.85= $18.46/MWh, which is

higher than before,
Bus 2 λ̂⋆− [Ĉ2]

†
µ̂⋆ = 27.69− (1/3)13.85= $23.08/MWh, which is

higher than before,
Bus 3 λ̂⋆ = $27.69/MWh, which is lower than before.
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Example, continued
• Increase in offer at bus 1 results in lower LMP at bus 3!
• The transmission constraint is still binding.
• Note that the offer at bus 1 on the “export” side of the constraint can

affect the LMP at the demand at bus 3 on the “import” side of the
constraint:
– the system is notdividedinto independent “zones” by the

transmission constraint!
– offers in one ERCOT zone affect prices in other zones even when

transmission constraints are binding,
– we will return to this issue in the context of ad hoc analyses of

market power.
• Moreover, at the new solution of offer-based

transmission-constrained economic dispatch, we still have that:
[

λ̂⋆

µ̂⋆B

]

=

[

−(1/6) (1/3) (5/6)
−1 0 1

]

p(Q⋆).
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5.4.7 Sensitivity analysis
• In the last section, we considered the relationship betweenp(q⋆), λ̂⋆, and

µ̂⋆B when demand and/or offers changed:
– focused on changes in the values ofp(q⋆) rather than on changes in the

values ofq⋆, but
– enabled qualitative analysis of the dependence of prices onoffers.

• To apply the results quantitatively, we must calculate the changed value of
q⋆ due to change in demand and/or offers:
– as in previous example.

• In this section, we will apply sensitivity analysis to understand the
relationship betweenq⋆, λ̂⋆, andµ̂⋆B:
– will focus on injection at reference bus since that makes analysis

simpler, but
– can apply to any bus through change of reference bus.
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Sensitivity analysis, continued
• We will calculate the derivative of the residual demand faced by a

generator that is located at the reference bus:
– the transmission-constrained residual demand derivative,
– this will be the key to deriving an index of transmission-constrained

market power that is analogous to (5.1).

Title Page ◭◭ ◮◮ ◭ ◮ 64 of 153 Go Back Full Screen Close Quit



Sensitivity analysis, continued
• Recall first-order necessary conditions, again focusing onbinding

constraints:

∃λ̂⋆ ∈ R,∃µ̂⋆B ∈ R
rB, such that:

∀k not the reference bus, pk(q
⋆
k)− λ̂⋆+[ĈBk]

†
µ̂⋆B = 0;

For the reference bus, pk(q
⋆
k)− λ̂⋆ = 0;

1†q⋆ = 0;
ĈBq̂⋆ = d̂B.

• Now suppose that the generator at the reference bus were to slightly vary
its offer, resulting in a different set of quantities and prices.

• As the offer from the generator at the reference bus changes,there would
be changes in:
– the injection at the reference bus,
– the priceλ̂⋆ at the reference bus,
– the injections elsewhere, and
– the Lagrange multipliers ˆµ⋆B.
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Sensitivity analysis, continued
• Equivalently, if the generator at the reference bus commitsto meet the

residual demand then, as the priceλ̂⋆ varies, the residual demand faced at
the reference bus,−1†q̂⋆, will vary:
– we ignore theoffer at the reference bus and just consider the

relationship between the injection at the reference bus andother
injections and prices.

• We can think of̂λ⋆ as an independent variable and think of ˆq⋆ andµ̂⋆ as
dependent variables:
– as the price at the reference bus varies, the residual demand, −1†q̂⋆,

faced at the reference bus varies.
• Given, among other things, that we are not at a “corner” solution then

“the implicit function theorem” enables us to evaluate the sensitivity of
the dependence of ˆq⋆ andµ̂⋆ on λ̂⋆:
– see derivation in EE380N “Applied Optimization: Formulation and

Algorithms for Engineering Systems Slides.” Available from
http://users.ece.utexas.edu/˜baldick/classes/380N/Inequality%20II.pdf

Title Page ◭◭ ◮◮ ◭ ◮ 66 of 153 Go Back Full Screen Close Quit



Sensitivity analysis, continued

• We begin with the first-order necessary conditions, focusing on binding
constraints, but:

– ignoring the offer at the reference bus, since we are considering the
dependence of the injection at the reference bus on the priceat the
reference bus, and

– (temporarily) ignoring power balance, but will later use power balance
to evaluate the derivative of residual demand.

• That is:

p̂(q̂⋆)−1λ̂⋆+[ĈB]
†
µ̂⋆B = 0;

ĈBq̂⋆ = d̂B.

• wherep̂ : Rn−1 → R
n−1 is the vector consisting of the offerspk at all

buses except the reference bus, and
• where0∈ R

n−1 is the vector of all zeros.
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Sensitivity analysis, continued

• Viewing q̂⋆ andµ̂⋆ as functions of̂λ⋆, we can totally differentiate with
respect tôλ⋆:









p′1(q
⋆
1) 0 · · · 0

0 p′2(q
⋆
2)

. . . ...
... . . . . . . 0
0 · · · 0 p′n(q

⋆
n)









dq̂⋆

dλ̂⋆ −1+[ĈB]
†dµ̂⋆B
dλ̂⋆ = 0;

ĈB
dq̂⋆

dλ̂⋆ = 0.

• wherep′k is the derivative of the offerpk, and

• all matrices and vectors omit the reference bus.
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Sensitivity analysis, continued
• Let:

Λ =









p′1(q
⋆
1) 0 · · · 0

0 p′2(q
⋆
2)

. . . ...
... . . . . . . 0
0 · · · 0 p′n(q

⋆
n)









−1

.

• Then, re-arranging the first equality, we obtain:

dq̂⋆

dλ̂⋆ = Λ
(

1− [ĈB]
†dµ̂⋆B
dλ̂⋆

)

.

Using the second equality,0 = ĈB
dq̂⋆

dλ̂⋆ ,

= ĈBΛ
(

1− [ĈB]
†dµ̂⋆B
dλ̂⋆

)

,

= ĈBΛ1−ĈBΛ[ĈB]
†dµ̂⋆B
dλ̂⋆ .
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Sensitivity analysis, continued

Re-arranging:
dµ̂⋆B
dλ̂⋆ =

[

ĈBΛ[ĈB]
†
]−1

ĈBΛ1.

Finally:
dq̂⋆

dλ̂⋆ = Λ
(

1− [ĈB]
†dµ̂⋆B
dλ̂⋆

)

,

= Λ
(

1− [ĈB]
†
[

ĈBΛ[ĈB]
†
]−1

ĈBΛ1
)

.

• Now note that residual demand faced at the reference bus is, by definition,
−1†q̂⋆.

• The derivative of the transmission-constrained residual demand faced at
the reference bus is:

−1†dq̂⋆

dλ̂⋆ =−1†Λ
(

1− [ĈB]
†
[

ĈBΛ[ĈB]
†
]−1

ĈBΛ1
)

. (5.6)
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5.4.8 Example
• Again consider the three bus example.
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Fig. 5.6. Three bus,
three line network and
shift factors to line A.
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Example, continued
DemandD1 = D2 = 0,D3 = 11 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• Recall that:

Q⋆
1 = 6 MW,

Q⋆
2 = 3 MW,

Q⋆
3 = 2 MW,

λ̂⋆ = 6 $/MWh,
µ̂⋆ = 0 $/MWh,

• satisfy the first-order necessary conditions.
• The LMPs at all buses are equal to $6/MWh.
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Example, continued
• We calculate the residual demand derivative.
• We have that:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q1, p

′
1(Q1) = 1 $/(MW)2h,

∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p

′
2(Q2) = 2 $/(MW)2h,

Λ =

[

p′1(q
⋆
1) 0

0 p′2(q
⋆
2)

]−1

,

=

[

1 0
0 (1/2)

]

.

Title Page ◭◭ ◮◮ ◭ ◮ 73 of 153 Go Back Full Screen Close Quit



Example, continued
• In this case, there are no binding transmission constraints.
• Therefore,ĈB has no rows and so (5.6) becomes:

−1†dq̂⋆

dλ̂⋆ = −1†Λ1,

= − [1 1]

[

1 0
0 (1/2)

][

1
1

]

,

= −(3/2).

• Note that the residual demand derivative is negative since increasing
price reduces the residual demand.
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Example, continued
DemandD1 = D2 = 0,D3 = 30 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• Recall that:

Q⋆
1 = 10 MW,

Q⋆
2 = 10 MW,

Q⋆
3 = 10 MW,

λ̂⋆ = 30 $/MWh,
µ̂⋆ = 30 $/MWh,

• satisfy the first-order necessary conditions.
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Example, continued
• We calculate the transmission-constrained residual demand

derivative.
• We have that:

ĈB = [(2/3) (1/3) ] ,

ĈBΛ[ĈB]
†

= [(2/3) (1/3) ]

[

1 0
0 (1/2)

][

(2/3)
(1/3)

]

,

= [(1/2)],
[

ĈBΛ[ĈB]
†
]−1

= [2],

[ĈB]
†
[

ĈBΛ[ĈB]
†
]−1

ĈBΛ1

=

[

(2/3)
(1/3)

]

[2] [ (2/3) (1/3) ]

[

1 0
0 (1/2)

][

1
1

]

,

=

[

(10/9)
(5/9)

]

.
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Example, continued
• By (5.6),

−1†dq̂⋆

dλ̂⋆ = −1†Λ
(

1− [ĈB]
†
[

ĈBΛ[ĈB]
†
]−1

ĈBΛ1
)

,

= − [1 1]

[

1 0
0 (1/2)

]([

1
1

]

−

[

(10/9)
(5/9)

])

,

= −(1/9).

• Note that this derivative is smaller in magnitude than in thecase
where transmission constraints were not binding:
– illustrates general observation that residual demand becomes less

elastic when transmission constraints bind, even if all derivatives
of offers are constant.
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5.4.9 Summary
• We have considered the optimality conditions for offer-based

transmission-constrained economic dispatch.
• Showed that offers at buses on both “sides” of a transmissionconstraint

can affect LMPs everywhere through (5.5):
[

λ̂⋆

µ̂⋆B

]

=

[[

1†

−CB

]

[

1 −[CB]
†
]

]−1[
1†

−CB

]

p(q⋆).

• Derived the transmission-constrained residual demand (5.6):

−1†dq̂⋆

dλ̂⋆ =−1†Λ
(

1− [ĈB]
†
[

ĈBΛ[ĈB]
†
]−1

ĈBΛ1
)

.
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Homework exercise, part a
• Suppose that all baseload generators (each 500 MW capacity)were

located at bus 1; all intermediate generators (each 300 MW capacity)
were located at bus 2; and all peaking generators (each 100 MWcapacity)
were located at bus 3.

• Line A has capacity 1800 MW.

Shift factors
to line A

σ12 σ13 σ23
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Fig. 5.7. Three bus,
three line network and
shift factors to line A.
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Homework exercise, part a, continued
• Suppose that the costs for the last homework exercise stayedexactly the

same.
• Again assume that offers are required to be the same for each interval.
• Offers will be dispatched subject to transmission constraint that flow on

line A is less than 1800 MW.
• All demand is at bus 3.
• Inverse demand at bus 3:

Interval 1 ∀Q, pd(Q) = max{50− (Q−2800)/2,0},
Interval 2 ∀Q, pd(Q) = max{75− (Q−3500)/2,0},
Interval 3 ∀Q, pd(Q) = max{500− (Q−4200)/2,0},

• whereQ is in MW andpd(Q) is in $/MWh.
• Update your offers to maximize your profits.
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Homework exercise, part b
• Consider the example four-line four-bus system shown.
• Bus 0 is the reference bus and location of demand:

– injection at bus 3 and withdrawal at bus 0 causes “counterflow” on the
300 MW capacity line.

Shift factors
to 300 MW line
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Fig. 5.8. Four-line
four-bus network for
homework exercise.
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Homework exercise, part b
• Line limit constraint is:

Ĉq̂≤ d̂.

• where:

q̂ =

[

q1
q2
q3

]

,

Ĉ = [σ10 σ20 σ30] ,

= [0.2 0.4 −0.2] ,

d̂ = [300],

• qk is the net injection (equal to the generationQk) at busesk= 1,2,3.
• Net injection at busk= 0 is:

q0 = Q0−D0.
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Homework exercise, part b
• Suppose that the offers at the four buses are:

∀Q0, p0(Q0) = Q0×0.045 $/(MW)2h,
∀Q1, p1(Q1) = Q1×0.04 $/(MW)2h+10 $/MWh,
∀Q2, p2(Q2) = Q2×0.035 $/(MW)2h,
∀Q3, p3(Q3) = Q3×0.04 $/(MW)2h.

• We consider two demand conditions:
(i) D0 = 1000 MW, and

(ii) D0 = 4000 MW.
• Use the excel solver or the MATLAB functionquadprog to solve for

offer-based transmission-constrained economic dispatchfor each demand
level.

• For each demand condition:
– Show the dispatch, Lagrange multipliers, and LMPs.
– Calculate the transmission-constrained residual demand derivative faced

by the generator at the reference bus.
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5.5 Ad hoc analyses of market power with transmission constraints
5.5.1 ERCOT market context

• In the upcoming ERCOT nodal market there are severalad hocmethods
to assess market power.

• The “Element Competitiveness Index” (ECI) is styled as anex antetest of
competitiveness in the face of transmission constraints.

• Consider the system in figure5.9, which is based on an example from
Berry, Hobbs, Meroney, O’Neill, and Stewart and in Lin Xu andYixin Yu:
– four buses, 1, . . . ,4, each with generators,
– buses 3 and 4 have demand,
– all lines have equal impedance,
– the line joining busese= 1 andi = 3, has capacityf 13= 30 MW, while
– other lines have much larger capacity.
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ERCOT market context, continued
• Example system for ECI.
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Fig. 5.9. Four bus,
five line network based
on an example from
Berry, Hobbs, Meroney,
O’Neill, and Stewart
and in Lin Xu and Yixin
Yu.
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5.5.2 Shift factors for ECI test for example system
• The ECI test considers the DC shift factors for the various buses:

– test consists of two parts,
– we will perform the first part of the ECI test for the example system.

• For the f 13= 30 MW capacity line, the required shift factors involve the
“export” terminal of the line, buse= 1, and the “import” terminal of the
line, busi = 3.

• Generation capacities,Qk and forecast demands,Dk are also needed for
the ECI calculation.

Bus σki |σke| Qk Dk

1 5/8 0 16 0
2 1/4 3/8 100 0
3 0 5/8 40 100
4 1/8 1/2 50 40

Table 5.1.Data for
ECI calculation for

example system.
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5.5.3 First part of ECI test
(i) Determine the “effective load on the export side,”D, by multiplying

all loadDk at Electrical Busesk by the corresponding “import” shift
factorsσki, so that:

D = ∑
k

Dkσki,

= 0× (5/8)+0× (1/4)+100×0+40× (1/8),
= 5MW.
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First part of ECI test, continued
(ii) Determine the “effective capacity needed to meet load and to supply

power over the constraint on the export side” by:
(A) multiplying the generation capacityQk at each busk by the

corresponding “import” shift factorsσki to find the effective
capacityQ

effectivee
k , so that:

Q
effectivee
1 = 16× (5/8) = 10 MW,

Q
effectivee
2 = 100× (1/4) = 25 MW,

Q
effectivee
3 = 40×0 = 0 MW,

Q
effectivee
4 = 50× (1/8) = 6.25 MW;

(B) stacking the effective capacity in decreasing shift factororder
(that is, bus 1, then bus 2, then bus 4, then bus 3); and then
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First part of ECI test, continued
(C) selecting sufficient effective capacity from the stack to meet the

effective load on the export side plus the flow limit on the
constraint, which is:

D+ f 13 = 5+30,
= 35 MW.

Since the sum of the effective capacities at bus 1 and bus 2 is:

Q
effectivee
1 +Q

effectivee
2 = 10+25,

= 35 MW,

all of bus 1 and bus 2 effective capacity is necessary to meet
the effective load plus the flow limit.
The generators at buses 1 and 2 are therefore not considered in
determining the effective generation capacity available to
resolve the constraint on the import side, leaving the
generation at buses 3 and 4 available to resolve the constraint
on the import side.

Title Page ◭◭ ◮◮ ◭ ◮ 89 of 153 Go Back Full Screen Close Quit



First part of ECI test, continued
(iii) Determine the “effective generation capacities to resolve the

constraint on the import side,”Q
effectivei
k , by multiplying, for each

Resource not excluded in the previous step and having shift factors
greater than one-third of the highest Resource shift factor,
(A) the maximum capacityQk, times
(B) the absolute value of shift factor of the bus to the export

terminal|σke|,
so that:

Q
effectivei
3 = 40× (5/8) = 25 MW,

Q
effectivei
4 = 50× (1/2) = 25 MW,

with total effective capacity:

Q
effectivei

= Q
effectivei
3 +Q

effectivei
4 ,

= 50 MW.
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First part of ECI test, continued
(iv) The ECI on the import side is equal to the sum of the squareof the

percentages of the effective capacities owned by each entity.
Assuming that the generators at buses 3 and 4 are owned by
different entities,

ECI =

(

25
50

)2

+

(

25
50

)2

,

= 5000%2.

(v) If the ECI is greater than 2,000 %2 on the import side then the
constraint fails the competitive test for the month.
Since the ECI is 5000 %2 in this case, the constraint fails the
competitive test.
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5.5.4 The ECI test
(i) The “effective load on the export side,”D, is the demand weighted

by the shift factors:
• no first-principles justification of any relevance to marketpower

assessment.
(ii) The “effective capacity needed to meet load and to supply power

over the constraint on the export side” arbitrarily assignsthe
capacity of certain generators to meet the demand and to “fillup”
the transmission capacity:
• ignores physical reality that generation collectively meets demand,
• no first-principles justification of any relevance to marketpower

assessment,
• these generators are arbitrarily removed from further analysis of

competitiveness with regard to offers.
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ECI test, continued
(iii) The “effective generation capacities to resolve the constraint on the

import side,”Q
effectivei
k , is the generation capacity weighted by shift

factors:
• no first-principles justification of any relevance to marketpower

assessment.
(iv) The ECI test is an HHI test based on capacity aimed at deciding if

there is “enough” competition in the transmission-constrained case:
• As discussed previously, there is no theoretical justification for

capacity-based HHIs as a measure of market power:
– when HHIs are based on market shares instead of capacities,

thereis a connection to the Cournot model,
– but need to include residual demand elasticity and forward

contract positions to assess market power.
(v) The HHI threshold is arbitrary.

• The second part of the ECI test is similar to the first part.
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ECI test, continued
• The ECI test incorporates, through the shift factors, a proxy for the

geographical extent of the market.
• However, the ECI testomitsthe fundamental drivers of market power:

– the residual demand faced by market participants, and
– the forward contract positions.

• For example, in step(ii) (C), the generators at buses 1 and 2 are arbitrarily
removed from consideration in the final calculation of the ECI:
– buses 3 and 4 are then essentially evaluated as being a duopoly market

by the ECI test,
– this ignores the fact that in this meshed system the offers atbuses 1

and 2 also contribute to setting the LMP and also contribute to the
residual demand at buses 3 and 4:
◦ as discussed in the previous three bus example.
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ECI test, continued
• The ECI test focuses on each line separately.
• Does not consider the effect ofinteractionsbetween constraints on

market power.
• In fact, the key economic issue is the incentives to market participants at

particularbusesdue to potentially multiple interacting constraints:
– The ECI test obscures the locus of the fundamental economic incentives.
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5.6 Consideration of incentives when transmission constraints bind
• To model market power in the presence of transmission constraints, we

focus on incentives.
• To do this we will use the derivative of the residual demand faced by

market participants at an actual or estimated market clearing condition of
offer-based transmission-constrained economic dispatch.

• We will need to consider offer information.
• We will also consider forward contract positions.
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5.6.1 Transmission-constrained residual demand
• Section5.4.7showed how to calculate the derivative of the

transmission-constrained residual demand.
• The analysis focused on the residual demand at the referencebus, but can

be applied to any busk.
• Write pd

−k for the inversetransmission-constrained residual demand faced
by a generator at busk

• The derivative ofpd
−k is the reciprocal of the derivative of the

transmission-constrained residual demand.
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5.6.2 Profits
• Suppose that the generator at busk has a forward contract for quantityQf

k
at pricepf

k.
• In this case, the profit function becomes:

∀Qk ∈ R,πf
k(Qk) = (Qk−Qf

k)p
d
−k(Qk)+Qf

kpf
k−ck(Qk).

• Assuming that:
– sufficient conditions for maximization are satisfied,
– functionspd

−k andck are differentiable, and
– generation capacity constraints are not binding at the profit maximizing

condition,
• then we can find the maximum of profit by setting its derivativeto zero.
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5.6.3 Mark-up and market power index
• Re-arranging the maximum profit condition, we can obtain the

transmission-constrained price-cost mark-up with a forward contract
under the hypothesis that the generator was maximizing its profits:

pd
−k(Qk)−c′k(Qk) =−(Qk−Qf

k)
∂pd

−k
∂Qk

(Qk). (5.7)

• The right-hand side of (5.7) is a transmission-constrained market power
index:
– if it is “large” according to some standard then a profit-maximizing

generator has incentives to drive up prices “significantly”by
withholding,

– ignoring forward contracts.
• Again, any generator that is not at full production but such that the

right-hand side of (5.7) is above a threshold would be flagged as of
concern.
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Mark-up and market power index, continued
• In the context of “market power mitigation,” generators having a large

value of the index (5.7) might be subject to limits on offer prices when
transmission constraints are binding.

• In contrast to ECI, the index (5.7) has a concrete interpretation in terms of
market power:
– it represents the mark-up of price above marginal cost for a hypothetical

profit maximizing generator.

• If forward contract information was not available then−Qk
∂pd

−k
∂Qk

(Qk)

could be used as an index instead:
– however, any market power mitigation should be sensitive tothe

implications of forward contracting on market power.
• Excess wealth transfer can be estimated using (5.2).
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5.6.4 Example
• Again consider the three bus example.
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Fig. 5.10. Three bus,
three line network and
shift factors to line A.
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Example, continued
DemandD1 = D2 = 0,D3 = 11 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• Recall that:

Q⋆
1 = 6 MW,

Q⋆
2 = 3 MW,

Q⋆
3 = 2 MW,

λ̂⋆ = 6 $/MWh,
µ̂⋆ = 0 $/MWh,

• satisfy the first-order necessary conditions.
• The LMPs at all buses are equal to $6/MWh.
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Example, continued
• From previous analysis, the derivative of the residual demand faced

at the reference bus, bus 3, is−(2/3).
• Therefore, at the market clearing conditions, the derivative of the

inverse residual demand at bus 3 is:

∂pd
−3

∂Qk
(Q⋆

k) =−(3/2).

• Ignoring forward contracts, the index (5.7) is:

−Q⋆
k

∂pd
−k

∂Qk
(Q⋆

k) = −2×−(3/2),

= 3 $/MWh.
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Example, continued
DemandD1 = D2 = 0,D3 = 30 MW

• Offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• Recall that:

Q⋆
1 = 10 MW,

Q⋆
2 = 10 MW,

Q⋆
3 = 10 MW,

λ̂⋆ = 30 $/MWh,
µ̂⋆ = 30 $/MWh,

• satisfy the first-order necessary conditions.
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Example, continued
• From previous analysis, the derivative of the residual demand faced

at the reference bus, bus 3, is−(1/9).
• Therefore, at the market clearing conditions the derivative of the

inverse residual demand at bus 3 is:

∂pd
−3

∂Qk
(Q⋆

k) =−(9).

• Ignoring forward contracts, the index (5.7) is:

−Q⋆
k

∂pd
−k

∂Qk
(Q⋆

k) = −10×−(9),

≈ 90 $/MWh.

• Even with the slopes of the offers the same, when transmission
constraints bind, market power increases significantly at bus 3
because:
– the residual demand faced at bus 3 is less elastic, and
– the generator at bus 3 is selling a greater quantity.
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5.6.5 Second example
• As a second example of applying the index (5.7), consider the example

that was used to illustrate the ECI.
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Fig. 5.11. Four bus,
five line network based
on an example from
Berry, Hobbs, Meroney,
O’Neill, and Stewart
and in Lin Xu and Yixin
Yu.
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Second example, continued
• Xu and Baldick report residual demand derivatives at the

transmission-constrained affine supply function equilibrium market
clearing conditions as:

∂pd
−1

∂Q1
(Q1) ≈ −8 ($/MWh)/MW,

∂pd
−2

∂Q2
(Q2) ≈ −0.9 ($/MWh)/MW,

∂pd
−3

∂Q3
(Q3) ≈ −1.5 ($/MWh)/MW,

∂pd
−4

∂Q4
(Q4) ≈ −3.7 ($/MWh)/MW.

• In this example, and in contrast to the arbitrary assumptionin the ECI
calculation, all four generators are marginal and all contribute to
determining the residual demand at all buses.
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Second example, continued
• Market clearing quantities at these buses are:

Q1 ≈ 13 MW,

Q2 ≈ 93 MW,

Q3 ≈ 4 MW,

Q4 ≈ 30 MW.
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Second example, continued
• The index (5.7) for these four buses, ignoring forward contracts, is:

−Q1
∂pd

−1
∂Q1

(Q1) ≈ 96 $/MWh,

−Q2
∂pd

−2
∂Q2

(Q2) ≈ 85 $/MWh,

−Q3
∂pd

−3
∂Q3

(Q3) ≈ 6 $/MWh,

−Q4
∂pd

−4
∂Q2

(Q4) ≈ 112 $/MWh.

• With a $10/MWh mark-up threshold, generators 1, 2, and 4 would be
flagged for market power mitigation, whereas generator 3 would not.

• Although there is considerable market power in this small market,
consistent with the ECI test, the diagnosis of market power specifically at
buses 1, 2, and 4 contrasts with the ECI result that flagged buses 3 and 4
as a duopoly.
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5.7 Ownership of generation at multiple buses
• So far assumed that any particular firm owns a generator or generators at

only one bus, busk.
• In reality, in LMP markets, assets will be owned at multiple buses and the

LMPs at these different buses are related.
• For convenience, suppose that a firm owns generators at buses

k= 1, . . . ,s, with s< n.
• Collect the production quantitiesqk,k= 1, . . . ,s into a vector ˇq∈ R

s.
• The inverse residual demand faced by a generator at busk now depends

on the whole vector ˇq, so thatpd
−k : Rs→ R.

• The prices at each of the busesk= 1, . . . ,s, depend on the vector ˇq.
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5.7.1 Jacobian
• Collecting the inverse residual demandspd

−k,k= 1, . . . ,s, together into a
vector functionpd : Rs→ R

s, we can consider the dependence of the
vector of inverse residual demands at busesk= 1, . . . ,s on the generation
q̌.

• Paralleling the earlier development, the incentives facedby the firm at the

market clearing condition will involve theJacobianof pd; that is,∂pd

∂q̌
.

• Calculation of the Jacobian is an extension of the sensitivity analysis in
section5.4.7to the vector case, involvings calculations, one for each bus.
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5.7.2 Index for ownership at multiple buses
• We consider how to extend the market power index (5.3) to the case of a

firm owning generators at busesk= 1, . . . ,s using the Jacobian.
• The production cost function of the firm is specified by the cost functions

ck : R→ R,k= 1, . . . ,s.
• Profit for the market participant is now specified by:

∀q̌∈ R
s,π(q̌) =

s

∑
k=1

qkpd
−k(q̌)−ck(qk).
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Index for ownership at multiple buses, continued
• As previously, assuming that:

– sufficient conditions for maximization are satisfied,
– pd andck,k= 1, . . . ,s, are differentiable, and
– generation capacity constraints are not binding at the profit maximizing

condition,
• we can find the maximum of profit by setting the vector of its partial

derivatives equal to zero:

0=
∂π
∂q̌ (q̌).
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Index for ownership at multiple buses, continued
• Focusing on the partial derivative with respect toqℓ, we obtain:

0=
∂π
∂qℓ

(q̌) = pd
−ℓ(q̌)+

s

∑
k=1

qk
∂pd

−k
∂qℓ

(q̌)−c′ℓ(qℓ),

• wherec′ℓ =
∂cℓ
∂qℓ

is the marginal cost of the generator owned by the firm at

busℓ.
• Re-arranging, we obtain the price-cost mark-up at busℓ under the

hypothesis that the generator was maximizing its profits:

pd
−ℓ(q̌)−c′ℓ(qℓ) =−

s

∑
k=1

qk
∂pd

−k
∂qℓ

(q̌). (5.8)

• There is a value of the index (5.8) for each of the generators owned by the
firm.
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Index for ownership at multiple buses, continued

• Since cross-derivatives
∂pd

−k
∂qℓ

for k 6= ℓ will typically be positive, it can be

the case that, at some buses, profit maximization corresponds to a
mark-downrather than a mark-up:
– That is, for some busesℓ, the index (5.8) may be negative.
– For example, Hogan and Cardellet al. describe a case where a firm

owning a generator at a buseon the export side of a constraint offers at
below marginal cost in order to congest the line and be able tooffer well
above marginal cost at a busi on the import side.

– That is,

(

−
s

∑
k=1

qk
∂pd

−k
∂qe

(q̌)

)

is negative, while

(

−
s

∑
k=1

qk
∂pd

−k
∂qi

(q̌)

)

is

significantly positive.
– The mark-up at each bus does not, in this case, give a full picture of the

excess transfer of wealth from consumers to the firm.
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Index for ownership at multiple buses, continued
• As a measure of market power for this case, consider (5.2), which

estimated the excess transfer from consumers to a single generator.
• Generalizing (5.2), the net excess transfer from consumers to the firm,

over and above competitive levels, is approximated by:

−
s

∑
ℓ=1

qℓ
s

∑
k=1

qk
∂pd

−k
∂qℓ

(q̌) =−[q̌]†∂pd

∂q̌
(q̌)q̌.

• As with (5.2), this must be viewed as only an approximate estimate of
excess wealth transfer above competitive levels since competitive prices
at each busℓ may deviate from the marginal costsc′ℓ.
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Index for ownership at multiple buses, continued
• Exercising market power by strategically congesting and forcing price on

the importing side very high is not evident in the two zone model that
assumesseparateconsideration of each market when constraints bind.

• That is, this mode of exercising market power represents a case that
cannot easily be qualitatively analyzed in a two zone model.

• Moreover, in the context of anad hocindex such as described in
Section5.5, the arbitrary removal of particular generators based on shift
factors means that the significance of generator offers on the export side
interactingwith offers on the import side might be overlooked.
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5.8 Pivotal offers
• The analysis so far considers the “small signal” issue of whether the slope

of the residual demand is such that the first-order necessaryconditions for
profit maximization imply “economic” withholding that would
significantly increase price over marginal costs.

• As discussed in the IMM report, there is also a concern that the “large
signal” action of “physically” withholding capacity wouldlead to
infeasibility.

• In the four bus system in Figure5.11, for example, the 100 MW generator
at bus 2 is pivotal since removing it from the system would leave only 106
MW of generation capacity but 140 MW of demand.

• Transmission constraints can make firms pivotal that would otherwise not
be pivotal.

• Analysis of this case requires some sort of explicit consideration of
withholding of capacity from market:
– for example, check whether offer-based transmission-constrained

dispatch is feasible if offer of a firm is removed from market.
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5.9 Transmission and equilibrium analysis
• In the discussion of Nash equilibrium, we only briefly discussed the effect

of transmission constraints.
• Borenstein, Bushnell, and Stoft (BBS) consider a Nash equilibrium

analysis of a radial system:
– we will follow their analysis, but recognize that non-radial systems can

behave somewhat differently from radial systems,
– as in example of strategically congesting to force prices very high on

import side of constraint.
• Key observation in BBS is that transmission capacity between two zones

can have “value” in mitigating market power even if no power flows
between the zones:
– the presence of the line causes prices to decline compared tothe case of

separated markets;
– therefore, the societal benefit may not be linked to the levelof usage of

the line.
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5.9.1 Symmetric two-firm model
• We will follow the notation of BBS, although it differs somewhat from

the notation we have previously used.
• Assume two identical markets,N andS.
• Inverse-demand in each market is given byP(QS) andP(QN),

respectively, whereQS andQN are the quantities consumed inSandN,
respectively.

• Firmsn ands, located inN andSrespectively, have identical costsC(qn)
andC(qs), whereqn andqs are the generations by the firmsn ands.

• Assume generation quantitiesqn andqs are the strategic variables, so that
the model is Cournot.
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Symmetric two-firm model, continued
• If there were no transmission capacity between the two zonesthen each

firm would act as a monopolist in its own market:
– n would maximizeP(qn)qn−C(qn),
– swould maximizeP(qs)qs−C(qs),
– because of symmetry, each firm would produce the same,
– the price would be the same in both markets and demand would bethe

same in both markets.

Title Page ◭◭ ◮◮ ◭ ◮ 121 of 153 Go Back Full Screen Close Quit



Symmetric two-firm model, continued
• If there were infinite (or large) transmission capacity between the two

zones the market would bemergedand there would be a Cournot duopoly:
– because of symmetry, each firm would produce the same,
– the price would be the same in both markets and demand would bethe

same in both markets,
– so the flow on the line would be zero!
– the “merged-market Cournot duopoly.”

• Prices in the merged-market Cournot duopoly are lower than monopoly
prices in each separate market:
– the “separated-market monopoly prices,”
– presence of the line decreases prices (and increases quantities)

compared to separated-market monopoly prices despite no net flow on
the line.
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Symmetric two-firm model, continued
• We consider capacitiesK that are neither zero nor very large.
• First suppose that generation is equal in each zone so thatqn = qs:

– because of demand symmetry, there would be equal demand in each
zone and zero flow on the line.

• More generally, ifqn ≈ qs then the the flow on the line would be less than
K:
– demand and prices would still be equal in each zone.
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Symmetric two-firm model, continued
• However, ifqn < qs−2K we claim that the demand cannot be equal in

each zone:
– suppose demand in each zone wasQN = QS= (qn+qs)/2,
– so flow fromS to N would be:

QN−qn = (qn+qs)/2−qn,

= (qs−qn)/2,
> K,

– which exceeds transmission capacity.
– So demand cannot be equal, flow fromS to N must equalK.
– Inverse demand faced byn has slope of inverse demand in zoneN alone.
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Symmetric two-firm model, continued
• Similarly, if qn > qs+2K then:

– flow from N to SequalsK.
– Inverse demand faced byn has slope of inverse demand in zoneN alone.

• Figure 1 of BBS shows the variation in the slope of the inversedemand
faced byn asqn varies:
– for qs−2K ≤ qn ≤ qs+2K, flow is not at limit, inverse demand faced

by n is due to demand response of merged markets,
– for qn < qs−2K, flow is at limit fromSto N, inverse demand faced byn

is due to demand response inN alone,
– for qn > qs+2K, flow is at limit fromN to S, inverse demand faced byn

is due to demand response inN alone.
• Symmetric observations apply to inverse demand faced bys asqs varies.
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5.9.2 Best response
• Recall the best response calculation in Hortaçsu and Puller:

– calculated the supply function that was the best response toa particular
choice of supply functions of other market participants.

• Could also calculate the best quantity response of firmn to the generation
of firm s:
– the “best response curve” forn is the graph of the best quantity response

versus various values ofqs,
• Similarly, can calculate the best quantity response of firms to the

generation of firmn:
– the “best response curve” fors.
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5.9.3 Equilibrium
• The intersection of the best response curves, if there is one, is the Nash

equilibrium.
• In the case of a small value ofK:

– for low values ofqs, best response ofn is to generate enough to cause
flow on line to equal capacity and to be monopoly supplier to local
demand inN,

– for intermediate values ofqs, the best response ofn is to increase
production asqs increases,

– above a threshold value ofqs, the best response ofn involves a drop in
production.

• Situation is illustrated in figure 2 of BBS:
– best response ofn to qs is shown asBRn(qs),
– best response ofs to qn is shown asBRs(qn).

• There is no intersection and therefore no pure strategy equilibrium.
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Equilibrium, continued
• In the case of a intermediate values ofK:

– the sloping section of best response may intersect the merged-market
Cournot duopoly best response before the threshold is reached for a
discontinuous drop in production.

• Shown in figure 3 of BBS.
• Still may be no intersection of best responses and thereforeno pure

strategy equilibrium.
• For larger values ofK, above a thresholdK⋆, there is a pure strategy Nash

equilibrium:
– the Nash equilibrium is equal to the merged-market Cournot duopoly

equilibrium as shown in figure 4 of BBS.
• BBS characterizes thresholdK⋆.
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5.9.4 Example
• Suppose that demand in each market isP(Q) = 10−Q.
• Suppose marginal costs are are zero.
• Separated-market monopoly:

– with no line joining the markets, profit would be:

P(qn)qn = 10qn− (qn)2, for firm n, and

P(qs)qs = 10qs− (qs)2, for firm s.

– Profit maximizing conditions yieldqn = qs= 5 and prices 5 in both
markets.
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Example, continued
• Merged-market Cournot duopoly:

– with a large capacity line joining the markets, each generator supplies
half of demand in each market, profit would be:

P((qn+qs)/2)qn, for firm n, and
P((qn+qs)/2)qs, for firm s.

– Profit maximizing conditions yieldqn = qs= 6.67 and prices 3.33 in
both markets.

– Threshold capacity isK⋆ = 0.57.
– Note that the increase in production of the merged-market Cournot

duopoly over the separated-market monopoly is 1.67, which exceedsK⋆.
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5.9.5 Summary
• For large enoughK, above a thresholdK⋆, there is a pure strategy

equilibrium corresponding to the merged-market Cournot duopoly:
– increase in production over the separated-market monopolyproduction

is greater thanK⋆.
• For values ofK less thanK⋆ there is no pure strategy equilibrium:

– simulation of mixed strategy equilibrium indicates that increase in
production over the separated-market monopoly productionincreases
with K and exceedsK.
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5.9.6 Extensions
• More realistic systems have asymmetric markets:

– Separated-market monopoly prices differ inN andS.
– In this case, a pure strategy equilibrium can exist for smallvalues of

capacityK.
– At small values of capacity, the pure strategy will involve power flowing

from lower-price to higher-price market.
– At high values of capacity, the merged-market Cournot duopoly

equilibrium will occur.
– At intermediate values of capacity then, depending on particulars of

market and value ofK:
◦ there may be an asymmetric pure-strategy equilibrium with quantities

lower than the merged-market Cournot duopoly, the
“passive/aggressive equilibrium, as shown in figure 5 of BBS,

◦ there may be no pure-strategy equilibrium, as shown in figure6 of
BBS, or

◦ there may be both the merged-market Cournot duopoly and the
passive/aggressive equilibrium, as shown in figure 7 of BBS.
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5.9.7 Application to California market
• Represent California as two zones, North and South, (represents most

significant transmission constraints in California).
• Consider demand in September and December.
• Analysis suggests that at lowest demand levels in December there is no

pure strategy Cournot equilibrium.
• At other demand levels in September and December there is a pure

strategy Cournot equilibrium with flow at limit in South to North
direction.
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Homework exercise, part a: Due Tuesday, December 4, by 5pm
• Continue to suppose that all baseload generators are located at bus 1; all

intermediate generators are located at bus 2; and all peaking generators
are located at bus 3.

• Update your offers to maximize your profits.
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Fig. 5.12. Three bus,
three line network and
shift factors to line A.
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Homework exercise, part b: Solution
• Consider the example four-line four-bus system shown.
• Bus 0 is the reference bus and location of demand:

– injection at bus 3 and withdrawal at bus 0 causes “counterflow” on the
300 MW capacity line.
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Fig. 5.13. Four-line
four-bus network for
homework exercise.
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Homework exercise, part b: Solution, continued
• Line limit constraint is:

Ĉq̂≤ d̂.

• where:

q̂ =

[

q1
q2
q3

]

,

Ĉ = [σ10 σ20 σ30] ,

= [0.2 0.4 −0.2] ,

d̂ = [300],

• qk is the net injection (equal to the generationQk) at busesk= 1,2,3.
• Net injection at busk= 0 is:

q0 = Q0−D0.
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Homework exercise, part b: Solution, continued
• Suppose that the offers at the four buses are:

∀Q0, p0(Q0) = Q0×0.045 $/(MW)2h,
∀Q1, p1(Q1) = Q1×0.04 $/(MW)2h+10 $/MWh,
∀Q2, p2(Q2) = Q2×0.035 $/(MW)2h,
∀Q3, p3(Q3) = Q3×0.04 $/(MW)2h.

• We consider two demand conditions:
(i) D0 = 1000 MW, and

(ii) D0 = 4000 MW.
• For each demand condition, we calculate:

– the dispatch, Lagrange multipliers, and LMPs.
– the transmission-constrained residual demand derivativefaced by the

generator at the reference bus.
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Homework exercise, part b: Solution, continued
(i) D0 = 1000 MW.

• We can use MATLAB or, alternatively, directly seek a solution of
the first-order necessary conditions.

• For this demand, let us guess that the transmission constraint is
not binding.

• Under this assumption, the LMPs are the same at all buses.
• Solving the first-order necessary conditions results in:

λ̂⋆ = 12.4016,
Q⋆

0 = 275.59,
Q⋆

1 = 60.04,
Q⋆

2 = 354.33,
Q⋆

3 = 310.04.

• Given these generations, the flow on the constrained line is 91.7
MW, which is consistent with the guess.

• Therefore, we have found the solution and the LMPs are
$12.40/MWh at each bus.
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Homework exercise, part b: Solution, continued
• In this case, there are no binding transmission constraints.
• Therefore,ĈB has no rows and so (5.6) becomes:

−1†dq̂⋆

dλ̂⋆ = −1†Λ1,

= −78.57 MW/($/MWh).

• Note that the residual demand derivative is negative since
increasing price reduces the residual demand.
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Homework exercise, part b: Solution, continued
(ii) D0 = 4000 MW.

• For this demand, let us guess that the transmission constraint is
binding.

• Solving the first-order necessary conditions results in:

λ̂⋆ = 45,
µ̂⋆ = 25,
Q⋆

0 = 1000,
Q⋆

1 = 750,
Q⋆

2 = 1000,
Q⋆

3 = 1250.

• Given these generations, the flow on the constrained line is 300
MW, which is consistent with the guess.
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Homework exercise, part b: Solution, continued
• Therefore, we have found the solution and the LMPs are:

LMP⋆
0 = λ̂⋆ = 45,

LMP⋆
1 = λ̂⋆− (0.2)× µ̂⋆ = 40,

LMP⋆
2 = λ̂⋆− (0.4)× µ̂⋆ = 35,

LMP⋆
3 = λ̂⋆− (−0.2)× µ̂⋆ = 50.

• In this caseĈB = Ĉ and by (5.6),

−1†dq̂⋆

dλ̂⋆ = −1†Λ
(

1− [ĈB]
†
[

ĈBΛ[ĈB]
†
]−1

ĈBΛ1
)

,

= −58.69 MW/($/MWh).

• Note that this derivative is smaller in magnitude than in thecase
where transmission constraints were not binding:
– again illustrates general observation that residual demand

becomes less elastic when transmission constraints bind, even if
all derivatives of offers are constant.
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Homework exercise, part b: Due Wednesday, December 5
• Again consider the example four-line four-bus system:

(i) D0 = 1000 MW, and
(ii) D0 = 4000 MW.

• For each demand condition calculate the index (5.7) for the generator at
the reference bus.
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Fig. 5.14. Four-line
four-bus network for
homework exercise.
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5.10 Transmission, equilibrium, and transmission rights
5.10.1 Congestion rent

• When transmission constraints bind, the total payment by demand based
on LMPs is greater than the total payment to generators basedon LMPs.

• This difference is called the “congestion rent:”
– as discussed in the transmission-constrained homework exercise, part a,
– the difference is sometimes called the “merchandising surplus” and

sometimes (erroneously) called the “congestion cost.”
• Since demand pays the ISO and the ISO pays the generators, the

congestion rent accrues to the ISO:
– we will see that the ISO pays out the congestion rent to transmission

rights holders.
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5.10.2 Example
• Again consider the three bus example.

• We have: ˆq=

[

q1
q2

]

,Ĉ= [σ13 σ23] = [2/3 1/3], andd̂ = [10].
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Fig. 5.15. Three bus,
three line network and
shift factors to line A.
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Example, continued
• There are inelastic demandsDk at each bus.
• The offers at each bus are:

∀Q1, p1(Q1) = Q1×1 $/(MW)2h,
∀Q2, p2(Q2) = Q2×2 $/(MW)2h,
∀Q3, p3(Q3) = Q3×3 $/(MW)2h.

• Consider the two demand conditions:

(i) D1 = D2 = 0,D3 = 11 MW, and
(ii) D1 = D2 = 0,D3 = 30 MW.
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Example, continued
DemandD1 = D2 = 0,D3 = 11 MW

• The solution is:

Q⋆
1 = 6 MW,

Q⋆
2 = 3 MW,

Q⋆
3 = 2 MW,

λ̂⋆ = 6 $/MWh,
µ̂⋆ = 0 $/MWh.

• The LMPs at all buses are equal to $6/MWh.
• Since total demand equals total generation, the demand payments of

11 MW× $6/MWh= 66 $/h are equal to the payments to
generation of:

(6+3+2) MW ×$6/MWh= 66 $/h,

• Congestion rent is zero when there is no congestion.
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Example, continued
DemandD1 = D2 = 0,D3 = 30 MW

• The solution is:

Q⋆
1 = 10 MW,

Q⋆
2 = 10 MW,

Q⋆
3 = 10 MW,

λ̂⋆ = 30 $/MWh,
µ̂⋆ = 30 $/MWh.

• The LMPs at the buses are:
Bus 1 λ̂⋆− [Ĉ1]

†
µ̂⋆ = 30− (2/3)30= $10/MWh,

Bus 2 λ̂⋆− [Ĉ2]
†
µ̂⋆ = 30− (1/3)30= $20/MWh,

Bus 3 λ̂⋆ = $30/MWh.
• The congestion rent is:

30×30 $/h− [(10×10)+(10×20)+(10×30) $/h] = 900−600 $/h,
= 300 $/h.
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5.10.3 Financial transmission rights
• Consider a generator with a forward contract for sale of energy to

demand.
• In the discussion of forward contracts, we ignored transmission and

showed that the forward contract hedged the position of the generator and
the demand for the contract quantity:
– implicitly predicated on both the generator and demand being exposed

to the same LMP.
• Unless the generator and demand are at the same bus, they willbe

exposed to different LMPs whenever transmission constraints are binding:
– in ERCOT nodal, even generator and demand at the same bus are not

exposed to the same prices, since generators are paid the LMP, but
demand is paid a demand-weighted average of demand LMPs in its
zone.

• The forwardenergycontract holders are exposed to the difference in
LMPs between their buses:
– forward energy contract does not hedge against transmission price risk.
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Financial transmission rights, continued
• For example, suppose that a generator and demand agree to a forward

contract for 10 MW at $50/MWh:
– that is, the generator commits to providing 10 MW to demand ata net

price paid by demand of $50/MWh.
• If the LMP at the demand is LMPd then the demand will pay to the ISO:

10 MW ×LMPd.

– To make thenetpayment by the demand (sum of demand payments to
the ISO and to the generator) equal to 10 MW× $50/MWh, the demand
should pay to the generator:

10 MW× (50 $/MWh−LMPd).

– the forward contract is implemented as an agreement by the demand to
pay this amount, called a “contract for differences.”
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Financial transmission rights, continued
• If the LMP at the generator is LMPg then the net payment to the generator

will be due to the energy payment by the ISO and the contract for
differences payment by the demand:

10 MW×LMPg+10 MW× (50 $/MWh−LMPd)

= 10 MW× [50 $/MWh− (LMPd−LMPg)].

• If there is no congestion then LMPd = LMPg and the net payment to the
generator is 10 MW×50 $/MWh.

• If transmission limits are binding then LMPd 6= LMPg and the net
payment to the generator is different to 10 MW× $50/MWh:
– for most generators most of the time, when transmission limits are

binding, LMPd > LMPg and the net payment to the generator will be
lessthan 10 MW× $50/MWh,

– the generator is exposed to the contract quantity multiplied by the
difference in LMPs,

– the generator is exposed to “transmission price risk,” where the
transmission price is defined by the difference in LMPs.
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Financial transmission rights, continued
• To hedge this transmission price risk, “financial transmission rights”

(FTRs) were invented:
– forward financial contract for transmission prices,
– FTRs pay out based on differences in LMPs to hedge the transmission

prices,
– key insight is to use the congestion rent to fund the FTRs.

• Called “congestion revenue rights” (CRRs) in ERCOT:
– see details in “Course notes for EE394V Restructured Electricity

Markets: Transmission pricing and hedging,” Fall 2006. Available from
http://users.ece.utexas.edu/˜baldick/classes/394V/Transmission.pdf
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5.10.4 Effect on incentives
• Recall that forward financial energy contracts affect market power.
• Similarly, FTRs affect market power.
• Discussed in Manho Joung and Ross Baldick, “The CompetitiveEffects

of Ownership of Financial Transmission Rights in a Deregulated
Electricity Industry.”
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5.11 Summary
(i) Modeling market power, revisited,

(ii) Transmission constraints and geographical market power,
(iii) Shift factors and the DC power flow,
(iv) Offer-based transmission-constrained economic dispatch,
(v) Ad hoc analyses of market power with transmission constraints,

(vi) Consideration of incentives when transmission constraints bind,
(vii) Ownership of generation at multiple buses,

(viii) Pivotal offers,
(ix) Transmission and equilibrium analysis,
(x) Transmission, equilibrium, and transmission rights.
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