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Introduction

▶ This material is based on a work by William Hogan, “A Model
for a Zonal Operating Reserve Demand Curve”, presented at
MIT in October 2009.

▶ There are two concepts we will focus:“Zonal” and “Elastic
demand curve”.

▶ Briefly introducing the operating reserves in electricity
markets.



Operating reserves

▶ Operating reserves is generation capacity available to system
operator to continuously meet the demand due to demand
fluctuation or outages of resources. It is the main part of the
ancillary services.

▶ Operating reserves are classified by how quick they could
response to the system operator: regulation(few seconds),
spinning reserve(10 minutes), non-spinning reserve(10,30
minutes).In the following materials, we treat them all as
operating reserves.

▶ System operator procures reserves through the markets
(semi-annual, day-ahead or real-time).



Why elastic demand curve?

▶ Currently, the system operator procures an fixed amount of
reserve from the market. The demand for reserves is perfectly
inelastic.

▶ Ancillary service markets is coupling with the energy markets,
higher demand of ancillary service might also drives up the
energy prices significantly.

▶ An elastic demand curve for reserves that precisely represents
the benefit of additional reserves could deploy the reserve
resource more efficiently and also mitigates the market power.

▶ Constructing the demand curve from first principles is
necessary to truthfully represent the marginal benefit of
reserves.



Energy-Reserve co-optimized market

▶ Energy and reserves are used to be procured in separate
markets, traded as different commodities.

▶ However, the energy and reserves are actually tightly coupled.
Generation resource are utilized as either energy or reserves.

▶ Nowadays, most ISOs adopted the co-optimized methodology
to procure energy and reserves at the same market clearing
process which considers the interaction of energy and reserves.



Example of co-optimized energy and reserve

▶ P̄i is the capacity of generator i , R̄i is the capacity of spinning
reserve. Note that the dispatched energy plus procured
reserve needs to be smaller than capacity of the generator.

▶ The system specification:

P̄1 = 300(MW), R̄1 = 50(MW), c ′1 = 20($/MWh)

P̄2 = 150(MW), R̄2 = 70(MW), c ′2 = 50($/MWh)

P̄3 = 50(MW), R̄3 = 30(MW), c ′3 = 80($/MWh)

Assume marginal cost of reserves are all 0.



Example of co-optimized energy and reserve

▶ Considering the case that demand is 350MW and reserve
requirement is 90MW.

▶ The optimal dispatch:

P =

⎡
⎣30050

0

⎤
⎦ (MW),R =

⎡
⎣ 0
60
30

⎤
⎦ (MW)

▶ Bold font in P implies that the capacity constraints is binding
(P + R = P̄), while bold fonts in R implies the reserve
capacity constraint is binding (R = R̄).

▶ Define the clearing price as the additional cost to procure a
unit more of energy/reserve.



Example of co-optimized energy and reserve

▶ The optimal dispatch:

P =

⎡
⎣30050

0

⎤
⎦ (MW),R =

⎡
⎣ 0
60
30

⎤
⎦ (MW)

▶ Generator 2 would be dispatched more for the additional unit
of demand. Thus the clearing price is 50 $/MWh.

▶ Generator 2 would provide for the additional unit of reserve.
The clearing price is 0 $/MWh.



Example of co-optimized energy and reserve

▶ Considering the case that demand is still 350MW but reserve
requirement is 140MW.

▶ The optimal dispatch:

P =

⎡
⎣26080
10

⎤
⎦ (MW),R =

⎡
⎣4070
30

⎤
⎦ (MW)

▶ The clearing price for energy is 80$/MWh.

▶ Only GEN 1 could provide the additional MW of reserve.
However, we need to decrease a MW of the energy output of
GEN 1 and use GEN 3 to compensate that MW. The cost to
provide the additional MW of reserve is 80-20 = 60$/MWh,
which is clearing price for reserve by definition.



Example of co-optimized energy and reserve

▶ Even though the offers of reserve are 0, the clearing price of
reserve is non-zero.

▶ The reserve price reflects the opportunity cost of GEN 1 to
provide reserve.

▶ Demand of energy is fixed, but the increase of reserve
requirement drives up both prices of energy and reserve.

▶ Therefore, an appropriate level of reserve requirements would
be desired.



Why zonal reserve?

▶ Zonal reserve requirements are aimed to allocate reserve more
precisely, considering the possible transmission congestions
that block the delivery of reserves.

▶ Considering a two bus example, where the total reserve equals
to the output of largest single generator. Assume that
reserves are provided by different generators.

▶ When forced outage occurs at generator at bus 2, the
transmission congestion limits the shipment of reserves from
bus 1. Some demand has to be involuntarily curtailed.

� Bus 1 �Bus 2

Limit=50MW

��
��
∼

Gen=50MW
Reserve= 50MW

��
��
∼

Gen=100MW
Reserve=50MW

Demand=150MW
�



Probability of lost load

▶ Ignore the network features for the first illustration. The
amount of unserved load is defined as:
Max(0,ΔLoad + Outage− Operating Reserves).

▶ This produces the familiar loss of load probability (LOLP)
calculation:

LOLP = Pr(ΔLoad + Outage ≥ r) = F̄LOL(r)

▶ A common characterization of a reliability constraint is that
there is a limit on the LOLP. This imposes a constraint on the
required reserve r : F̄LOL(r) ≤ LOLPmax .



Expected value of lost load

▶ An alternative approach is to consider the expected unserved
energy (EUE) and the value of lost load (VOLL).

▶ Suppose the VOLL per MWh is v , and the probability density
function of change of net demand during an hour
(demand+outage) is f , then we can obtain the EUE and its
total value (VEUE) as:

EUE (r) =

∫ ∞

r
f (x)(x − r)dx

=

∫ ∞

r
F̄LOL(x)dx

VEUE (r) = vEUE(r)



Model of locational operating demand curve

▶ A difficulty with defining a locational operating reserve
demand curve is the complexity of the interactions among
locations plus interactions with the transmission grid.

▶ Given the value of expected unserved energy as a function of
reserve at each zone and the transmission capacity reservation
between zone, we could formulate the economic dispatch
problem as follows:

maximize
y0,d0,g0,r,r̄

B(d0)−Cg (g0)−Cr (r)−ZVEUE(r ,r̄ )

subject to y0=d0−g0 (net import at each bus)

1†y0=0 (power balance constraint)

H0y0≤b0 (transmission constraints)

g0+r≤Cap0 (generator capacity constraints)



Model of locational operating demand curve

▶ With sufficient regularity assumptions, we linearize the
ZVEUE at some point (r̂ , ˆ̄r). So the problem now comes to
how to evaluate the gradient of ZVEUE function efficiently.

maximize
y0,d0,g0,r,r̄

B(d0)−Cg (g0)−Cr (r)−∇ZVEUE(r̂ ,ˆ̄r)
t
(r ,r̄)

subject to y0=d0−g0

1†y0=0

H0y0≤b0

g0+r≤diag(û)Cap0

A0y0+r̄≤r̄int



Locational operating reserve demand curve

▶ The characteristics of Hogan’s locational reserve demand
curve model:

1. It uses the simple model of loss of load from random changes
in demand as a starting point.

2. It considers the tradeoffs between normal energy dispatch and
reservation of interface capacity (the effects of r̄ ).

3. Under some conditions, reserves in one location can support
outages in another location.
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Zonal Interface Limit on Emergency Transfers

Zone 1
Rest of System

Reserves 0r
1r

Closed Interface Limit 1r

Reserves

0yNet Load Change 1yNet Load 
Change

ELECTRICITY MARKET Locational Operating Reserve 
 
The task is to define a locational operating reserve model that approximates and prices the dispatch 
decisions made by operators.  To illustrate, consider the simplest case with one constrained zone 
and the rest of the system.  The reserves are defined separately and there is a known transfer limit 
for the closed interface between the constrained zone and the rest of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( )0 1

0 0 1 1 0 0 0 0 1 1 1 1 1, , ,
y y

oy f y f F y f x dx F y f x dx
−∞ −∞

= =∫ ∫∼ ∼  
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Loss of Load Probability Structure

Rest of System

0r
1 1 1, ,r r y

0y

0l

1l
+

+

0

0

( )1 1 1F r r+( )1 1 1F r r+

Path Dependent

( ) ( ), iy

i i i i i i iy f F y f x dx
−∞

= ∫∼

( ) { }0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 10
, , ,

i
y l

ZVEUE r r r E Min v l v l y y l l r r y l r r
≥

⎡ ⎤= + + − − ≤ + − ≤ +⎢ ⎥⎣ ⎦

0 0 1 1.VOLL v VOLL v= ≤ =

ELECTRICITY MARKET Locational Operating Reserve 
 
The zonal value of expected unserved energy (ZVEUE) would be an added component of the 
objective function in economic dispatch.  The basic problem determines the configuration of lost 
load.  The derivatives of ZVEUE define the demand curves for operating reserves. 

( ) { }0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 10
, , ,

i
y l

ZVEUE r r r E Min v l v l y y l l r r y l r r
≥

⎡ ⎤= + + − − ≤ + − ≤ +⎢ ⎥⎣ ⎦
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Loss of Load Probabilities
( ) { }0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 10

, , ,
i

y l
ZVEUE r r r E Min v l v l y y l l r r y l r r

≥

⎡ ⎤= + + − − ≤ + − ≤ +⎢ ⎥⎣ ⎦

Rest of System

0r
1 1 1, ,r r y

0y+

++

0

00

( )1 1 1F r r+( )1 1 1F r r+

0l

1l

0r
1r
1r 0v 1v

1v
1v
1 0v v−

0v0v

0
0
0

0
0

Reserve Incremental Values

ELECTRICITY MARKET Locational Operating Reserve 
 
The full ZVEUE is difficult to characterize and calculate.  However, inspection of the possible 
configurations of outages reveals the marginal values of the zonal value of unserved energy, which 
define the locational demand curves for operating reserves 
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Loss of Load Probabilities

Conditional Branch Probabilty

Path Probabilty

( ) { }0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 10
, , ,

i
y l

ZVEUE r r r E Min v l v l y y l l r r y l r r
≥

⎡ ⎤= + + − − ≤ + − ≤ +⎢ ⎥⎣ ⎦

Rest of System

0r
1 1 1, ,r r y

0y+

++

0

00

( )1 1 1F r r+( )1 1 1F r r+

0l

1l

ELECTRICITY MARKET Locational Operating Reserve 
 
The full ZVEUE is difficult to characterize and calculate.  However, inspection of the possible 
configurations of outages reveals the probabilities for the possible marginal values of the zonal 
value of unserved energy, which define the locational demand curves for operating reserves. 
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Rest of System

0r
1 1 1, ,r r y

0y

Demand Curve Elements
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∫

( )

( ) ( )
1 1 0 1

1
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∞ ∞
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+
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0

00
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0l

1l

Path Probabilty

ELECTRICITY MARKET Locational Operating Reserve 
 
Assuming locational independence of outages, it is straightforward to calculate the probabilities on 
each path.  The loss of load probabilities times the locational VOLL yields the operating reserve 
demand as a function of all the locational reserves and interface capacities.  
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Rest of System

0r
1 1 1, ,r r y
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Demand Curve Elements: Rest of System
( ) ( ) ( ) ( )
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ELECTRICITY MARKET Locational Operating Reserve 
 
Assuming locational independence of outages, it is straightforward to calculate the probabilities on 
each path.  The loss of load probabilities times the locational VOLL yields the operating reserve 
demand as a function of all the locational reserves and interface capacities. 
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Rest of System
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ELECTRICITY MARKET Locational Operating Reserve 
 
A similar inspection of the possible paths in the trees identifies the probability that an increment of 
operating reserve would change the unserved energy.  The possible configurations of outages 
reveals the marginal values of the zonal value of unserved energy, which define the locational 
demand curves for operating reserves. 
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Rest of System
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Demand Curve Elements: Interface
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ELECTRICITY MARKET Locational Operating Reserve 
 
A similar calculation provides the demand for interface capacity as a function of the level of 
locational operating reserves and interface capacity. 
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Demand Curve Elements
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ELECTRICITY MARKET Locational Operating Reserve Demand 
 
The loss of load probability structure defines the demand curve elements. 
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Nested Demand Curve Elements
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The nested loss of load probability structure defines the demand curve elements. 
 



 82 

Mixed Demand Curve Elements

Path Dependent
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ELECTRICITY MARKET Locational Operating Reserve Demand 
 
The mixed loss of load probability structure defines the demand curve elements. 
 



Conclusion of Hogan’s work

▶ The probability trees provide a workable means for beginning
with the locational probability distributions of load and
outages and calculating the resulting demand curves.

▶ The implied demand curve illustrate critical properties:

1. Interaction: The demand curves are interdependent.
2. Interface Demand: In addition to the demand for operating

reserves, there is an implied demand curve for the interface
transfer limit.



Conclusion

▶ One limitation of Hogan’s approach is that it can not extend
to the meshed zone model.

▶ ISO might work towards the elastic reserve demand in the
future to improve the market efficiency.

▶ To precisely estimate the benefit of reserve is non-trivial and is
an active research area.




