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Abstract
Coincident peak pricing is used in several electricity markets to recover the embedded
cost of infrastructure, such as transmission. In this approach, measured consumption at
the time of the peak is used to set charges for that pricing period or a subsequent period.
If transmission costs are truly sunk, then such a recovery is unlikely to be efficient.
However, in the context of growing peak demand, new additions must be built. We
consider the incentive properties of coincident peak pricing when related investments
are not considered to be sunk, finding that it can reproduce the incentive properties of
an ideal time-varying price. We also consider several variations on this assumption.

Keywords Coincident peak pricing · Transmission systems · Electric power system
expansion

JEL Classification D45 · D47 · L94 · Q41

List of symbols
Y Number of hours in a year
t ∈ [0,Y ] Time over year
qt Power at time t
pt Energy price at time t
CG ,CGi Generator operating cost functions per unit time
aG Linear coefficient of generator operating cost function
D, Dj Demand functions
W ,Wi Inverse demand functions
N Load-duration characteristic
T Transmission capacity
CT Annualized transmission cost function
aT Linear coefficient of annualized transmission cost function
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PG , PGt Energy price functions
PT Transmission price function
pT Volumetric adder per unit energy for transmission

1 Introduction and literature review

Retail electric customers in restructured electricity markets pay for their consumption
under tariffs that are designed to recover the energy, transmission and distribution,
and per customer components of costs of delivered electricity. Typically, the energy is
purchased by retail customers under a volumetric, that is, per kWh, tariff component
that directly or indirectly reflects wholesale energy market prices. On the other hand,
the charges for transmission and distribution and per customer costs are recovered in a
variety ofways.At one extreme, these chargesmight be included in a volumetric charge
based on the ratio of the total transmission, distribution and per customer costs divided
by total energy sales. We will refer to this type of approach as a “volumetric adder per
unit energy.” At the other extreme, the charges for transmission and distribution could
be unbundled into specific tariff components. For recent discussions of such tariffs,
see Abdelmotteleb et al. (2018), Borenstein (2012), Faruqui and Aydin (2017), Haro
et al. (2017), Passey et al. (2017).

In this context, coincident peak pricing is used in several electricity markets to
recover annualized capital costs of electricity assets from end-use consumers. The
charge to the end-use consumers is in proportion to their measured consumption at
the times of overall system peaks or at the times of the peaks of a particular sub-
system. The assets could, in principle, be generation, transmission, or distribution
related; however, coincident peak pricing is most typically used for transmission and
distribution assets. In the context of transmission,measured consumption at the time of
the system peak in one year may be used to set the required payment for transmission
that year or for the following year. The total payment is designed to recover the total
annual “revenue requirements” of the transmission system to finance the existing
capacity and potentially to finance the building of necessary new capacity to meet the
peak demand forecast for the following year or years.

For example, coincident peak pricing is used for recovering some transmission sys-
tem costs in the Electric ReliabilityCouncil of Texas (ERCOT) for, among others, large
commercial and industrial consumers (Zarnikau 2017b). In ERCOT, the transmission
charges for each large consumer over a particular calendar year are assessed on the
average of its 15-min electrical demands occurring at the time of the four monthly 15-
min peak demands of the entire ERCOT system for the months of June, July, August,
and September during the prior year (Electric Reliability Council of Texas 2017, Sec-
tion 9.17.1). The resulting charges are referred to as “four coincident peak” (4CP)
charges, and the intervals when these peaks occur are called “4CP events.”

In other regions of theUnitedStates, several other tariffs are also basedon coincident
peak consumption, differing in detail but broadly similar to the ERCOT 4CP charges.
(See openei.org/wiki/Utility_Rate_Database for a database of tariffs in the United
States.) For example, other regions in the United States use a different number of
intervals to assess the coincident peak.
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Coincident peak pricing is also used in theUnitedKingdom,where the transmission
network use of system charges for each large consumer are based on the average of
its 30-min electrical demands occurring at the time of the three highest 30-min peak
demandsof the entire system that are separatedby at least 10days (NationalGrid 2015).
The resulting charges are referred to as “Triad” charges. To summarize, coincident
peak pricing is utilized in a variety of electricity markets to recover transmission (and,
in some cases, distribution) system costs.

In some jurisdictions, customer non-coincident peak demandmaybeused as a proxy
to evaluating the contribution to coincident peak. For a discussion of the relationship
between the number of intervals used in evaluating the customer non-coincident peak
and the contribution to the coincident peak, see Passey et al. (2017). In this paper,
we will assume that the contribution to the coincident peak of each end-user can be
directly measured without error.

Several researchers have criticized the use of coincident peak pricing and similar
charging methods to recover sunk costs. For example, see Borenstein (2012) for a
general criticism of such approaches and (Hogan and Pope 2017) for specific criticism
in the context of ERCOT. For a numerical simulation of this effect in conjunction with
options for self-generation, see Schittekatte et al. (2018).

While not disputing the observations in Borenstein (2012), Hogan and Pope (2017),
Schittekatte et al. (2018) that capacity-based charges are not appropriate for recovering
investments that do not depend on the level of consumption, it should be understood
that annual load growth together with necessary replacement and maintenance costs
imply that at least some transmission and distribution investment is not sunk and that
the necessary annual investments therefore depend on the (forecast) demand levels.
That is, continuing investments must be made each year to increase capacity or even
to maintain capacity at a fixed level. In these circumstances, some of the investment
going forward in transmission is potentially “avoidable” in the sense that the amount
of expenditure depends on the forecast peak demand level.

For example, in regions with population growth and growth in peak demand, such
as in ERCOT, there are ongoing investments in transmission and distribution that
could be avoided in the absence of that peak demand growth. A recent case in point
is the “Houston Import Project” built for anticipated load growth in the Houston area
and to compensate for retirements of generation within Houston (Electric Reliability
Council of Texas 2014). The Houston Import Project involves approximately half a
billion dollars in transmission investment.

The collective value of such incremental investments can add significantly to the
annual “revenue requirements” for transmission. This is particularly the case in United
States, European, andAustralian networkswheremuch of the existing systemwas built
decades ago and the costs of these prior investments have been mostly recovered in the
past, so that costs associated with existing transmission are mostly due to maintenance
costs, whereas costs associated with new transmission include land and construction
costs. Moreover, the real cost of building transmission and distribution has increased
significantly compared to past epochs of construction due to the cost of land and
environmental restrictions.

An important motivation for this paper is therefore that in several markets the
transmission and distribution charges are becoming a significant fraction of the total
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retail bill, prompting concerns that resulting high retail prices may result in ineffi-
cient reduction in consumption at the time of the peak or inefficiently high levels of
self-generation at the time of the peak. See Hogan and Pope (2017, p. 80) for a dis-
cussion of this in the context of ERCOT and Agency for the Cooperation of Energy
Regulators (2017, p. 13) for a discussion in the European context. This is particularly
of concern in systems where there is significant investment or potential investment in
renewables (Schittekatte et al. 2018). A large “wedge” between wholesale and retail
prices due to charges for sunk transmission investments embedded in volumetric retail
tariffs implies that the avoided wholesale production cost at peak times due to self-
generation may be lower than the cost of self-generation, even if this self-generation
cost is itself lower than the effective retail price. This situation will tend to result in
over-investment in self-generation resources.

Such over-investment in self-generation could also potentially occur with coinci-
dent peak pricing if used to recover sunk costs. For example in ERCOT, the anticipation
of a 4CP event, which typically occurs due to high air-conditioning load during high
temperature days, and the implications for the transmission charge in the following
year, results in significant reduction in net consumption (Zarnikau 2017b). As dis-
cussed in Zarnikau (2017a, b), large market participants in ERCOT are actively and
successfully forecasting the times of 4CP events and are able tomodulate their demand
during these periods to reduce 4CP charges the following year. Effectively, the peak of
net consumption is “clipped” (Zarnikau 2017a). At least some of this apparent reduc-
tion is likely due to self-generation. To the extent that the 4CP prices send incorrect
incentives for net consumption by reflecting sunk costs, they are also distorting the
demand side of the market and thereby resulting in poor overall investment decisions,
including in self-generation.

Although there is a clear concern that 4CP and similar charges will result in ineffi-
cient decisions when they are used to recover sunk costs, this paper seeks to understand
under what circumstances 4CP and similar charges would actually lead to efficient
consumption decisions. A key methodological issue is that the time-varying demand
and non-storability of electricity implies that efficiency of capital decisions must be
assessed on the basis of the benefits accruing over time, not just at the time of the peak
demand.

Building on the foregoing, in this paper we will primarily consider the case that is
polar opposite to sunk costs and model the transmission capacity as being effectively
“rented” on an annual basis. While this assumption, and the opposite assumption
of fully sunk costs, is not perfectly realistic, we explore the situation for rentable
transmission capacity as applied to coincident peak pricing. In a practical context, the
assumed rental cost in this paper could be construed as being based on an estimate of
the annualized average incremental cost of building additional transmission capacity
to meet forecast demand that is growing over time.

In Sect. 5, we return to the consideration of sunk costs in the light of the formulation
in this paper, observing that a hybrid approach could be used to recover some of the
costs using coincident peak pricing based on the incremental costs and with recovery
of the rest of the costs using a non-distorting tariff component. A recent example of
this approach is described in Abdelmotteleb et al. (2018).
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As well as analyzing coincident peak pricing, we will also compare it to other
charging methodologies and variations. For example, we will consider the case where
some of the transmission costs are recovered on the basis of a volumetric adder per unit
energy. Such a volumetric adder tends to increase the on-peak consumption compared
to the welfare optimal level, all else equal, which acts in the opposite direction to the
effect of 4CP charges.

As mentioned above, an important aspect of this work is the consideration of an
extended time horizon considering temporal variation of demand to assess welfare.
This type of analysis is necessary because considering just a snapshot of time, for
example at peak demand conditions, cannot reveal the welfare optimal level of trans-
mission capacity. While models that consider welfare over an extended horizon have
antecedents such as Stoft (2003), Klemperer and Meyer (1989), Green and Newbery
(1992), Green (1996, 1999), the application to coincident peak pricing is novel.

Throughout, the setting will abstract from reality along several dimensions. First,
we will consider a single capacitated transmission line, whereas practical transmission
systems are meshed and there are multiple limiting elements in the system whose con-
straints are binding at different times of the day or during different seasons. Second,
in meshed systems, locational marginal prices translate transmission limitations and
generator marginal costs into time-varying prices to demand that increase when trans-
mission limits are reached, reflecting increasing marginal delivered costs. However,
we abstract from this to consider peak levels of demandwhere, because of transmission
limitations, there is no available additional generation capacity that can be delivered,
and no storage capacity available at the demand to mitigate peak consumption. Third,
both transmission and distribution capacity is required to deliver electricity to con-
sumers, but we conflate all such constraints into a single capacitated transmission line.
Fourth, although we will consider variation of demand over time, the analysis will be
deterministic. In practice, transmission and distribution capacity is typically built to
meet extreme conditions that may occur relatively rarely, requiring some adjustment to
our analysis to be utilized in practice. Fifth, we will evaluate equilibria in prices, con-
sumption, and capacities assuming that these are simultaneously determined, although
markets such as ERCOT set transmission prices for a given year based on consumption
in the prior year. Sixth, we ignore strategic behavior, assuming that the demand-side
is a price-taker and that the entity designing and building transmission has welfare
optimization as its goal.

The contributions of this paper are as follows. We formulate a planning problem
in welfare-optimal transmission capacity that considers the variability of underlying
demand over time enabling an annualized assessment of welfare contributions in order
to balance capital and operating costs with willingness-to-pay. As an ideal for com-
parison, we first consider energy-only prices that would induce the welfare optimizing
consumption over time, assuming price-taking behavior. We highlight the informa-
tional difficulty in setting such prices. We then consider how coincident peak pricing
for transmission could provide the coordinating signal in a more decentralized fash-
ion. To the best of the author’s knowledge, this is the first demonstration of economic
efficiency of coincident peak pricing of capacity with non-sunk costs. A numerical
example highlights the issues and comparisons are made to other approaches to charg-
ing for capacity under the same underlying formulation.
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The rest of this paper is organized as follows. Section 2 formulates the basic problem
and Sect. 3 considers ideal energy-only prices that provide incentives for welfare
optimal behavior and then discusses energy and transmission prices as a model of
coincident peak pricing that reproduces the incentives for welfare optimal behavior
in a more decentralized fashion. An extended example in Sect. 4 is used to illustrate
the results. Section 5 considers several variations, including a comparison to the case
where network costs are recovered by an adder to energy prices, as is customary for
most small consumers such as residential retail customers in the United States and
Europe.1 Section 6 concludes.

2 Formulation

There are several possible approaches to analyzing the effect of tariffs on consumption
and efficiency. For example, an analytical approach is taken in Li (2007), simulation
based on aggregate demand and supply models is used in Abdelmotteleb et al. (2018),
and agent-based simulation is used in Manuel de Villena et al. (2017). We will take
an analytical approach based on aggregate demand and supply models, using a model
that is similar to that used in the supply function equilibrium literature (Klemperer and
Meyer 1989; Green and Newbery 1992; Green 1996, 1999), but which is also similar
to other related literature on the economics of transmission expansion (Léautier 2000).
We do not, however, consider strategic behavior on the part of market participants.

In the rest of this section, we discuss the representation of time, the demand side,
the supply (that is, generation) side, the transmission line, the combined model of the
industry, welfare, and welfare optimization. The formulation is deliberately abstracted
to enable a focus on transmission pricing.

2.1 Time

Because of the non-storability of electricity and the significant variation in demand
over time due to human rhythms and seasons, we must explicitly consider the repre-
sentation of temporal issues into the model. We primarily consider variation over a
year, with time measured in hours, and with time represented by t ∈ [0,Y ], where
Y = 8760 h. For convenience in the examples in Sect. 4, we will assume that time has
been re-ordered so that highest demand corresponds to t = 0, and lowest to t = Y in the
format of a “load-duration curve.” However, for the initial theoretical analysis no such
assumption is required and we will tacitly assume that t simply represents time mea-
sured in hours over a year. We ignore the fact that electricity markets are cleared on an
hourly, 15-minutely, or 5-minutely basis and, instead, view t as a continuous variable.

2.2 Demand side

We initially consider an undifferentiated demand sidewith aggregate demand function,
D : R+ × [0,Y ] → R, such that for each price p ∈ R+ and each t ∈ [0,Y ], D(p, t)

1 In some regions, the prevalence of rooftop solar in residential areas is prompting a move to peak charges
for residential customers. See, for example Ergon Energy (2018).
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evaluates the net electrical demand power (measured in GW) at time t given price p (in
$/MWh). We assume a corresponding inverse demand function or willingness-to-pay,
W : R × [0,Y ] → R+, that evaluates the marginal benefit of consumption per hour
and satisfies:

∀p ∈ R+,∀t ∈ [0,Y ],W (D(p, t), t) = p.

For convenience, we assume that W is continuous and that it is non-increasing in the
quantity argument.

2.3 Supply side

Abstracting from the reality of electric generation, we model aggregate supply as a
single generation resource. We assume that the aggregate capacity is larger than the
largest possible demand level maxt∈[0,Y ]{D(0, t)}, and that the aggregate operating
cost is specified by CG : R+ → R+ with interpretation that the operating cost per
hour of generating at power level q is CG(q). We assume that CG is differentiable,
non-decreasing, and convex. We ignore unit commitment issues.

2.4 Transmission

As discussed in Sect. 1, we assume that transmission capacity T is effectively available
for annual rental. In particular, we assume that the annualized rental cost of transmis-
sion is described by a function CT : R+ → R+ so that the annual rental cost for
transmission capacity T in a particular year is CT (T ).2 For analytic convenience, we
assume that CT is differentiable, non-decreasing, and convex, although we acknowl-
edge that this may not hold in practice due to lumpiness of transmission expansion and
economies of scale in transmission capital costs (Baldick and Kahn 1993; Léautier
2000, Section 3; Dixit and Baldick 2003). We return to this briefly in Sect. 3.3.

We assume that to deliver power generation level q to the demand side, there must
be transmission capacity of at least q. That is, with capacity equal to T , the level of
generation q (and therefore the level of consumption net of any self-generation) would
be limited by the constraint q ≤ T .

2.5 Industry model

Figure 1 shows the conceptual configurationwhere a generator located at the left injects
power into the capacitated transmission line at the generator electrical bus symbolized
by the thick vertical line. The transmission line allows delivery to the bus at the right,
also symbolized by another thick vertical line. Electricity is locally reticulated on a
distribution system that is not explicitly modeled, and the total demand D, modeled as

2 We do not address the appropriate regulatory regime to induce a transmission company to build efficiently.
See, for example, Bushnell and Stoft (1997), Léautier (2000), Kristiansen and Rosellón (2006), Léautier and
Thelen (2009), Rosellón and Weigt (2011) for discussion of such mechanisms. We also do not discuss the
technical issues involved with efficient planning. See, for example, Majidi-Qadikolai and Baldick (2016a, b,
2018) for a discussion of optimization-based approaches to transmission expansion planning.
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Fig. 1 Industry model

Fig. 2 Figure showing maximum demand over a week

the sum of the distribution system loads, is equal to generation q, ignoring electrical
losses. The transmission line capacity implicitly limits the production by the generator
and the delivery to the demand to be no more than the transmission capacity T .3

Conversely, the transmission capacity must be at least as large as the largest value of
generation qt over the time interval of interest. Figure 2 shows an example where the
time interval is a week, of duration 168 h. The solid curve shows the realized supply,
or equivalently, demand, qt , over this period. The value of qt varies over the week and
the transmission capacity must be at least as large as max

t∈[0,168]{qt }, which is indicated

by the height of the dashed line, with the maximum occurring at the time indicated by
the bullet.

As mentioned in Sect. 1, this model does not capture the complications of an actual
power system for several reasons. For example, while self-generation at a demand
location can be represented in terms of the net demand function, the main results
will not immediately generalize to the presence of economically separated generation
offering into the market at the receiving end of the transmission line. The setting
should be seen as characterizing the case where all such local generation is generating
at its maximum capacity and there are no other sources that can deliver power to the
demand. Moreover, the notion of loading on the line is much more complicated in a
realistic meshed transmission system, where there are many thousands of transmission

3 Given the simple configuration of the industry, the capacity constraint could also represent a constraint on
generation, which in turn could be used to endogenously represent generation expansion instead of or aswell
as transmission expansion. However, we have assumed that the aggregate generation supply is exogenous
with large capacity in order to focus on transmission and transmission costs and expansion. Extension to a
model with multiple potentially binding capacity constraints is mentioned in the Conclusion.
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lines and the specific location of both demand and supply will affect the loading on
any particular transmission line (Bergen andVittal 2000;Wood andWollenberg 1996),
and where the cost to increase transmission capacity of individual lines may exhibit
lumpiness and economies of scale.

2.6 Welfare

The welfare is, by definition, the benefits of consumption minus the costs. The costs
are assumed to be due both to the operating costs of the generator and to the rental of
the transmission. Assume that generation and consumption at time t is qt , while the
transmission capacity is T . Then the annual welfare is:

A =
∫ t=Y

t=0

[∫ q=qt

q=0
W (q, t)dq − CG(qt )

]
dt − CT (T ).

Welfare optimization is, by definition:

A� = max
T ≥ 0,

qt ≥ 0, ∀t ∈ [0, Y ]

⎧⎨
⎩

∫ t=Y

t=0

[∫ q=qt

q=0
W (q, t)dq − CG(qt )

]
dt − CT (T )

∣∣∣∣

qt ≤ T ,∀t ∈ [0,Y ]
⎫⎬
⎭ . (1)

A transformation of problem (1) is more convenient for characterizing welfare
optimality. In particular, we observe that problem (1) is equivalent to optimizing the
objective over choices of T in an outer problem, with an inner problem representing
the optimum over choices of qt ≤ T ,∀t ∈ [0,Y ]. That is, problem (1) is equivalent to:

max
T≥0

{
max

qt≥0,∀t∈[0,Y ]

{∫ t=Y

t=0

[∫ q=qt

q=0
W (q, t)dq − CG(qt )

]
dt

∣∣∣∣ qt ≤ T ,∀t ∈ [0,Y ]
}

− CT (T )

}
. (2)

Moreover, we note that because of the continuity of the integrand in the objective
of (2), and since there are no coupling constraints between qt and qs for t �= s, we
can swap the order of the maximization over qt with the integration over t to obtain
another equivalent problem:

max
T≥0

{∫ t=Y

t=0
max
qt≥0

{[∫ q=qt

q=0
W (q, t)dq − CG(qt )

]∣∣∣∣ qt ≤ T

}
dt − CT (T )

}
. (3)

We have now expressed welfare maximization as the integral of a collection of inner
problems each of which is a pointwise maximum over 0 ≤ qt ≤ T . The form of
problem (3) facilitates characterization of conditions for welfare optimality.
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Consider the objective of the inner problem for a given t in problem (3):
∫ q=qt

q=0
W (q, t)dq − CG(qt ). (4)

By assumption, W is continuous and non-decreasing and CG is differentiable and
convex. Therefore, for each t , the unconstrained maximizer of this inner objective is
obtained by differentiating the inner objective with respect to qt and setting equal to
zero, resulting in the condition:

W (qt , t) − ∂CG

∂q
(qt ) = 0, (5)

Consider particular values of time t and of transmission capacity T . If the solution
of (5) is no larger than T then the corresponding constrained maximizer of the inner
problem for t and the given T is the same as the solution of (5). On the other hand, if
the solution of (5) is larger than T then the corresponding constrained maximizer of
the inner problem for t and the given T is T itself. We can summarize this observation
by defining q̂t : R+ → R+,∀t ∈ [0,Y ] to be:

∀T ∈ R+, q̂t (T ) = max{0,min{T , solution of (5)}}. (6)

This expression characterizes the optimal production decisions, given a transmission
level T .

Substituting the optimal production decisions into the welfare maximization for-
mulation (3), we obtain:

max
T≥0

{∫ t=Y

t=0

[∫ q=q̂t (T )

q=0
W (q, t)dq − CG(q̂t (T ))

]
dt − CT (T )

}
.

Making the reasonable assumption that the constraint T ≥ 0 is not binding, then
differentiating this expression with respect to T yields the conditions for the optimal
transmission level T �:

∫ t=Y

t=0

[
W (q̂t (T

�), t) − ∂CG

∂q
(q̂t (T

�))

]
∂q̂t
∂T

(T �)dt − ∂CT

∂T
(T �) = 0, (7)

where we note that, strictly speaking, there will be values of t for which q̂t is not
differentiable, but so long as the set of such times is of measure zero this will not affect
the integral. The optimal production decisions are then given by q�

t = q̂t (T �),∀t ∈
[0,Y ].

Summarizing, note that if (T �; q�
t ,∀t ∈ [0,Y ]) is a solution of (1), then for t

such that q�
t < T �, the value q�

t is the corresponding unconstrained maximizer of∫ q=qt
q=0 W (q, t)dq−CG(qt ) over qt ≥ 0. Furthermore, again because of the assumption
thatW is continuous and non-decreasing and the assumption that CG is differentiable
and convex, and further assuming that the non-negativity constraint onqt is not binding,
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then q�
t satisfies W (q�

t , t) = ∂CG

∂q
(q�

t ) if 0 < q�
t < T �. Note that since W is non-

increasing, we have that W (q�
t , t) ≥ W (T �, t) in this case, so we could also write the

condition on q�
t as W (q�

t , t) = max

{
∂CG

∂q
(q�

t ),W (T �, t)

}
if 0 < q�

t < T �.

On the other hand, if the unconstrained maximizer of
∫ q=qt
q=0 W (q, t)dq − CG(qt )

equals or exceeds T � then we have that q�
t = T �, so that W (q�

t , t) = W (T �, t).

Moreover, we have that
∂CG

∂q
(q�

t ) < W (q�
t , t) since, otherwise, q�

t would be the

unconstrained maximizer of
∫ q=qt
q=0 W (q, t)dq − CG(qt ). That is, in this case, we

again have that q�
t satisfies W (q�

t , t) = max

{
∂CG

∂q
(q�

t ),W (T �, t)

}
.

To summarize, given thewelfare optimal value of transmission, T �, then thewelfare
optimal consumption, q�

t , is characterized by:

W (q�
t , t) − PGt (q

�
t ) = 0, (8)

where PGt : R+ → R+ is defined for each t ∈ [0,Y ] by:

∀t ∈ [0,Y ],∀qt ∈ R+, PGt (qt ) = max

{
∂CG

∂q
(qt ),W (T �, t)

}
. (9)

and with welfare optimal consumption:

∀t ∈ [0,Y ], q�
t = min{T �, solution of (8)}.

As we will see in the next section, at each time t , PGt (q�
t ) is the welfare inducing

price.

3 Welfare inducing prices

In this section, we first consider energy prices that will induce behavior consistent with
welfare maximization, given a known solution T � of the welfare-optimizing transmis-
sion capacity. Unsurprisingly, the prices will involve the function PGt defined in (9). It
should be emphasized that to the best of the author’s knowledge, no jurisdiction uses
such prices to recover transmsission costs. This analysis is used simply to exhibit how
energy prices could induce welfare maximizing consumption and to provide a point
of comparison for coincident peak pricing, which we will argue is more practically
implementable.

3.1 Energy-only prices

We claim that energy prices of the following form will induce welfare optimality:

∀t ∈ [0,Y ], pt = max

{
∂CG

∂q
(q�

t ),W (T �, t)

}
.
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Moreover, if both the demand side and the supply side cannot affect energy prices, that
is, if they are “energy price takers,” then we claim that the collection of energy price
functions PGt : R+ → R+,∀t ∈ [0,Y ], defined in (9), induce an equilibrium that
maximizes welfare. Although the price function PGt is defined for all qt ∈ R+, only
values of qt that are less than or equal to T � will be realized at equilibrium. The energy
price function PGt requires explicit knowledge of the marginal cost of production of
the generator and the aggregate willingness-to-pay of the demand. We consider the
supply-side and the demand-side in turn.

Since the price functions PGt depend explicitly on the marginal cost of production
of the generator, implementation of (9) as a mechanism for setting prices implicitly
assumes that marginal generating cost information is available to evaluate the price
function. In principle, an electricity system“independent systemoperator” (ISO) could
implement the price function as the outcome of so-called offer-based economic dis-
patch. In general, such mechanisms involve:

– the supply-side specifying offers to the ISO,
– the ISO making short-term forecasts of the demand (for a “real-time market”),
– the ISOfinding the dispatch levels for the generator tomeet the short-term forecast,
and

– the ISO then setting the energy prices.

Modeling the supply side as consisting of a larger number of small (in principle,
infinitesimal) generators, then we have the standard result that each generator will
maximize its profits by setting its offer equal to its marginal costs. This then validates
the assumption that the marginal cost can be evaluated by the ISO to form the price
functions: the marginal cost function is equal to the aggregation of the generation offer
functions under competitive conditions and the aggregation of offers is a proxy to the
marginal cost under more practical conditions of imperfect competition.

Wenow turn to the demand-side. First, to see that the price function results inwelfare
maximizing consumption for a price taking demand-side, note that the demand-side
would choose consumption q�

t that maximizes demand-side benefits minus energy
charges. That is, q�

t maximizes, over choices qt , the following objective:∫ q=qt

q=0
W (q, t)dq − PGt (q

�
t )qt , (10)

where we have applied the price taking assumption that the energy price at each time
is not affected by consumption decisions at that time, by substituting the welfare-
optimizing value q�

t into the price function PGt for each time t ∈ [0,Y ].
By assumption on W , the objective (10) is concave and differentiable. Taking the

derivative of (10) with respect to qt , we obtain:

W (qt , t) − PGt (q
�
t ).

Setting this derivative equal to zero to maximize the demand-side benefits minus
energy charges, we obtain precisely the same condition as (8) for welfare optimality.
We observe that if W has a region of zero derivative about qt = T � then the maxi-
mizer of (10) may not be unique and there will be a need for the ISO to specify the
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welfare optimal demand to be q�
t = T � so that the transmission flow is within the

transmission limit T �. That is, by analogy with a similar situation for dispatch of gen-
eration, we might say that the prices “support” welfare optimal consumption in that
there is a maximizer of demand-side benefits minus energy charges that is consistent
with welfare maximization. However, in the case that there is a non-unique maximizer
of demand-side benefits minus energy charges, then the prices do not “strictly sup-
port” the welfare optimal solution in that the ISO must select the value of demand
q�
t = T � among those maximizers. To summarize, given the optimal level of transmis-
sion capacity T �, energy prices based on the energy price functions PGt will support
welfare optimal generation and consumption decisions. Note that the result is simi-
lar to generic results on peak load pricing, except that we have explicitly considered
variation in willingness-to-pay over the horizon.

Although these energy-only prices would induce welfare optimal behavior, they
suffer from several drawbacks. For example, in practical electricity markets, even if
marginal costs of generation are revealed by offers, the function W representing the
demand sidemay only be approximately known, andmay not be explicitly exhibited to
themarket. Consequently, theremay be insufficient information to perform thewelfare
maximization in detail for each time t to determine the price functions. That is, the ISO
would require specific, time varying information about the willingness-to-pay of the
demand side. Moreover, the resulting price functions vary with time, even though the
generator cost function is assumed here to be independent of time.4 Indeed, as men-
tioned above, there do not appear to be any jurisdictions that use energy prices based
on willingness-to-pay to induce welfare-optimizing behavior in this manner, although
locational marginal prices use time and location varying prices to reflect variations in
marginal generation costs as they relate to transmission limitations. In the next section,
we will consider an alternative approach to inducing welfare-optimal behavior.

3.2 Energy and transmission prices

In this section, we explore an alternative approach that partiallymitigates the problems
of energy-only prices by providing a more decentralizable solution through coincident
peak pricing of transmission. The implications for information needed by the demand-
side is discussed in Sect. 3.3.

Consider an annual rental price for using transmission levied on the maximum
power level over the year and based on a transmission price function PT : R+ → R+
of the form PT = ∂CT

∂T
, together with an energy price function PG : R+ → R+ of the

form PG = ∂CG

∂q
. That is, there is a charge for energy based on energy consumption

integrated over time, together with a charge for transmission based on peak power
consumption. The latter implements the coincident peak pricing.

4 A time-varying energy price could be used to reflect time varying energy prices, but the point here is that
energy and transmission prices must vary over time to represent the effect of transmission capacity even
when marginal costs for energy production are constant.
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Note that, as distinct from PGt defined in (9), the energy price function PG is inde-
pendent of time. However, in addition to paying for energy based on the energy price
PG , there is an additional charge for transmission capacity. The charge for transmis-
sion capacity is based on the transmission price function PT evaluated at the welfare
optimal level of transmission and is applied to the maximum consumption over the
year. That is, over a year, the total payment by the demand is:

∫ t=Y

t=0
PG(q�

t )qtdt + PT (T �) max
t∈[0,Y ]{qt },

where we have maintained the energy price taker assumption on the demand-side by
substituting q�

t into the energy price function PG and additionally assumed that the
demand-side is a “transmission price taker” by also substituting T � into the transmis-
sion price function PT . That is, the charge for transmission capacity uses coincident
peak pricing with price defined by the marginal cost of transmission.

To see that these prices for energy and transmission result in welfare maximizing
consumption for an energy and transmission price taking demand side, note that the
demand side would choose consumption q�

t that maximizes demand-side benefits
minus energy and transmission charges. That is, q�

t maximizes, over choices qt , the
following problem:

max
qt≥0,∀t∈[0,Y ]

{∫ t=Y

t=0

[∫ q=qt

q=0
W (q, t)dq − PG(q�

t )qt

]
dt − PT (T �) max

t∈[0,Y ]{qt }
}

= max
qt≥0,∀t∈[0,Y ]

{∫ t=Y

t=0

[∫ q=qt

q=0
W (q, t)dq − ∂CG

∂q
(q�

t )qt

]
dt

− ∂CT

∂T
(T �) max

t∈[0,Y ]{qt }
}

,

by definition of PG and PT ,

= max
T ′≥0

{
max

qt≥0,∀t∈[0,Y ]

{∫ t=Y

t=0

[∫ q=qt

q=0
W (q, t)dq − ∂CG

∂q
(q�

t )qt

]

dt − ∂CT

∂T
(T �)T ′

∣∣∣∣ qt ≤ T ′,∀t ∈ [0,Y ]}
}}

,

introducing a new variable T ′that represents the maximum demand,

recognizing that the realized transmission capacity will be no larger than

the demand at the optimal solution,

= max
T ′≥0

{∫ t=Y

t=0

[∫ q=q̂t (T ′)

q=0
W (q, t)dq − ∂CG

∂q
(q�

t )q̂t (T
′)
]
dt − ∂CT

∂T
(T �)T ′

}
,

where the function q̂t was defined in (6). Differentiating the objective of the last prob-
lem with respect to T ′ results in the same conditions on T ′ as for optimal transmission
in (7). Therefore, again assuming that there is some non-zero consumption and that the
optimality conditions have a unique solution, then the optimal value of the maximum
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demand T ′ will match the welfare optimal transmission capacity T � and the demand
side will consume at the welfare optimal levels q�

t = q̂t (T �),∀t ∈ [0,Y ].
To summarize, we have shown that if demand is an energy price taker and a trans-

mission price taker then the resulting consumption choices are consistent with welfare
maximization. That is, we have shown conditions under which coincident peak pricing
induces welfare optimal consumption decisions.

3.3 Discussion

As shown in the previous section, energy and transmission prices can induce welfare
maximizing consumption decisions without the ISO needing to know asmuch detailed
information about the willingness-to-pay as required for the energy-only prices. In
practice, even with energy and transmission prices, the marginal cost of transmission,
and the times and level of maximum demandmay not be known with certainty ex ante.
Consequently, efficiency in practice should be understood in an expected sense, relying
on rational beliefs about transmission cost functions and the timing and level of coinci-
dent peak demand. Transmission cost prediction can be obtained from historical data,
although this is subject to variation based on the specifics of particular lines (Dixit and
Baldick 2003). However, even if average cost per unit capacity is well-characterized,
designed transmission capacities are subject to lumpiness.Moreover, there are inherent
uncertainties in levels of peak demand due to, for example, ambient conditions at the
time of peak demand. Nevertheless, as mentioned in Sect. 1, the timing of coincident
peak demand events seem to be well forecasted by market participants in ERCOT,
particularly since they are primarily driven by residential air-conditioning load and
therefore are highly correlated with weather phenomena, which are themselves pre-
dicted fairly accurately (Zarnikau 2017a, b). Consequently, coincident peak pricing
using, for example, average incremental costs of transmission capacity and forecasted
levels of peak demand, could provide a workable approximation to inducing close to
welfare optimal behavior.

4 Example

In this section, we develop an example, based on Green (1996), Day and Bunn (2001)
and further explored in Baldick and Hogan (2002). Although we are not focused
on competition in the generation sector in this paper, similar models are typically
used in the supply function equilibrium literature (Klemperer and Meyer 1989; Green
and Newbery 1992; Green 1996, 1999). Following the supply function equilibrium
literature, and as mentioned in the introduction, rather than considering demand
chronologically as illustrated in Fig. 2, we will consider that time has been re-ordered
so that D represents a load-duration curve. The example in Green (1996), Day and
Bunn (2001), Baldick and Hogan (2002) assumed quadratic generation costs, but to
simplify the example and implicitly enforce the energy and transmission price taker
assumptions, we will consider linear costs; that is, constant marginal costs for both
energy and transmission.
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4.1 Undifferentiated demand side

FollowingGreen (1996), Day andBunn (2001), Baldick andHogan (2002), we assume
that D : R+ × [0,Y ] → R+ has the specific form:

∀p ∈ R+,∀t ∈ [0,Y ], D(p, t) = N (t) − γ p, (11)

where:

– the function N : [0,Y ] → R+ is the non-increasing load-duration characteristic,
and

– the parameter γ ∈ R+ is minus the slope of the demand curve.

We will use a value of γ = 0.125 GW/($/MWh). A slight deviation from Green
(1996), Day and Bunn (2001), Baldick and Hogan (2002) is that we model time in
hours over a year, so that t ∈ [0,Y ] in the argument of the load-duration characteristic
N , instead of a normalized time range [0, 1] as in Green (1996), Day and Bunn (2001),
Baldick and Hogan (2002). This involves only cosmetic changes to the model.

Although the highest value of N occurs for t = 0, we will not a priori assume
that the highest demand actually occurs at t = 0; this will depend on the outcome of
prices, but will indeed turn out to be true. The specific form of N that we will consider
is:

∀t ∈ [0,Y ], N (t) = 7 + 20(1 − t/Y ),

= N (0) − δt,

where N (0) = 27 and δ = (20/Y ) GW/h, with quantities measured in GW. That
is, N varies linearly from 27 GW at t = 0 to 7 GW at t = Y . This load-duration
characteristic is illustrated in Fig. 3.

The corresponding willingness-to-pay W is the inverse of D. That is,

∀q ∈ R+,∀t ∈ [0,Y ],W (q, t) = (N (t) − q)/γ = (N (0) − δt − q)/γ.

4.2 Undifferentiated supply side

For simplicity, we assume that the marginal cost for energy is constant, with:

∀q ∈ R+,CG(q) = aGq,

with aG = 10 $/MWh.

4.3 Transmission cost

Again for simplicity, and to implicitly enforce that transmission price taker assumption,
we will assume that the marginal cost for transmission is constant, with:

∀T ∈ R+,CT (T ) = aT T ,
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Fig. 3 Load-duration characteristic for example

with aT = 106 $/GW year = 103 $/MW year. The transmission cost was chosen so
that the annualized cost was a relatively small fraction of the total costs; however, the
actual cost depends on the particulars of the transmission investment requirements to
access generation resources.

4.4 Welfare maximization

The Appendix derives the conditions for welfare maximization in detail. It follows
the analysis in Sect. 2.6, first considering the objective (4) of the inner problem in
problem (3) for each t and finding the conditions for welfare maximization. The
welfare maximizing level of transmission, T �, and the maximum welfare, A�, are
given, respectively, by:

T � = N (0) − γ aG − √
2δγ aT , (12)

A� = [(N (0) − aGγ )3 − (N (0) − aGγ − δY )3]/(6γ δ)

−(
√
2δγ aT )3/(6γ δ) − aT T

�, (13)

assuming that: √
2γ aT /δ < Y . (14)

The first term in the expression (13) for optimal welfare is independent of transmission
costs and represents the optimal welfare if the transmission were costless. The last
two terms represent the reduction in welfare due to the non-zero costs of transmission,
with the last term being the direct cost of the transmission and the second-last term
being the reduction in welfare due to the transmission limit.
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4.5 Numerical evaluation

For the assumed values N (0) = 27, δ = (20/Y ) GW/h, γ = 0.125 GW/($/MWh),
aG = 10 $/MWh, aT = 106$/GW year = 103 $/MW year, we have that

√
2γ aT /δ ≈

330 h < 8760 h = Y , satisfying (14), so that indeed we have that the optimal level of
transmission is given by (12): T � = N (0) − γ aG − √

2δγ aT ≈ 25 GW. The optimal
welfare is, according to (13):

A� = [(N (0)−aGγ )3−(N (0)−aGγ−δY )3]/(6γ δ)−(
√
2δγ aT )3/(6γ δ) − aT T

�

= 9.86 × 109 − 2.5 × 10−1 − 2.50 × 107,

= 9.835 × 109 $/year.

Note that for this example the direct cost of the transmission is much larger than the
reduction in welfare due to the transmission limit.

4.6 Prices and quantities

In this section, we evaluate prices that induce welfare-optimality, and the correspond-
ing consumption quantities.

4.6.1 Energy-only prices

From the analysis in Sect. 3.1, the energy-only prices are defined in (9):

∀t ∈ [0,Y ],∀qt ∈ R+, PGt (qt ) = max

{
∂CG

∂q
(qt ),W (T �, t)

}
,

= max{aG , aG + (
√
2δγ aT − δt)/γ }.

by assumption on CG and (18). The resulting equilibrium consumptions q�
t and prices

p�
t are:

q�
t = min{T �, N (0) − δt − γ aG},
p�
t = max{aG , aG + (

√
2δγ aT − δt)/γ }. (15)

We note that the energy-only price is given by the marginal cost of generation
whenever the transmission constraint is not binding, but when the transmission con-
straint is binding, the prices rise to constrain consumption to within the transmission
limit.

4.6.2 Equilibrium quantities

The equilibrium quantities are illustrated in Fig. 4. Note that the demand is constant
during the highest 330 h of demand: the peak of the load-duration characteristic has
been clipped.
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Fig. 4 Equilibrium consumption for example
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Fig. 5 Equilibrium prices for example

4.6.3 Equilibrium energy-only prices

The equilibrium energy-only prices are illustrated as the solid line in Fig. 5. They
are high at the time of the peak of the load-duration characteristic in order to clip the
demand to the level of the optimal transmission capacity. Note that these prices depend
on explicit knowledge of the demand willingness-to-pay, W . We have argued that in
typical electricity market arrangements this information may not be easily accessible
to the ISO.
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4.6.4 Energy and transmission prices

Because of the assumed linear form of the generation and transmission cost functions,
the energy and transmission prices are, respectively, equal to aG = 10 $/MWh and
aT = 103 $/MW year. The equilibrium consumption is as specified in (15) and the
same as illustrated in Fig. 4. The equilibrium energy prices are constant over all time
and do not display the peak that is observed in the energy-only price case illustrated
in Fig. 5. As observed in Zarnikau (2017a), the coincident peak prices clip the peak
of the demand, but without an explicit increase in the energy price.

4.6.5 Heterogenous demand-side

Althoughwehavemodeled a single, undifferentiated demand side, different consumers
have different characteristics. For example, residential customers may be inelastic to
wholesale prices, and have demand that varies significantly on a seasonal basis, while
industrial customers may be elastic, but with underlying demand that is less dependent
on seasons. This is intended to stylistically represent characteristics of the demand in
ERCOT.

For example, suppose that the demand function in (11) is actually due to the sum
of an elastic sector with time-invariant demand function DE : R+ × [0,Y ] → R+
and an inelastic sector with time-varying demand function DI : R+ × [0,Y ] → R+,
defined as:

∀p ∈ R+,∀t ∈ [0,Y ], DE (p, t) = 5 − γ p,

∀p ∈ R+,∀t ∈ [0,Y ], DI (p, t) = 22 − δt,

where as before, γ = 0.125 GW/($/MWh) and δ = (20/Y ) GW/h. That is, we are
considering an extreme example where the elastic demand has a demand characteristic
that is invariant over time and where the inelastic demand exhibits all of the overall
variation in the load-duration characteristic.

The welfare optimal decisions are similar to the previous case, with overall demand
the same. The welfare optimal level of demand of the elastic sector is illustrated by
the dotted line in Fig. 4. The demand of the inelastic sector is the difference between
the solid and the dotted line in Fig. 4. As in the previous cases of undifferentiated
demand-side, optimal energy-only and optimal energy and transmission prices induce
welfare-optimizing behavior.

5 Variations

In this section we consider several variations on the basic model, making qualitative
observations. In some cases, we also analyze quantitatively based on the example. The
first two cases continue to assume that transmission capacity is being built in response
to exhibited needs and is not sunk. The third case will consider where capacity is not
directly related to maximum consumption. The fourth considers the hybrid situation
where there are both sunk costs and avoidable costs of transmission. We return to
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analyzing the undifferentiated demand function (11) and do not distinguish different
demand sectors in the following.

5.1 Monopsonymarket power

5.1.1 Assumptions

We continue to assume that transmission capacity must be built to accommodate
maximum demand and that the supply side is an energy price taker. However, we
consider the case that the demand side is a monopsonist, and that the transmission
costs are strictly convex in the required transmission.

5.1.2 Qualitative observations

With a concentrated demand-side and with transmission costs strictly convex then,
by withholding some demand at the peak, a monopsonist could improve its profits
compared to the competitive solution. That is, by reducing consumption it reduces the
clearing price for transmission. In general, this would result in an equilibrium with
too little transmission capacity compared to welfare optimal.

5.2 Allocation based on energymark-up

5.2.1 Assumptions

We continue to assume that transmission capacity must be built to accommodate
maximumdemand. Itmay be the case that not all of the cost of transmission is allocated
through coincident peak charges but instead is “spread” across energy consumption in
a volumetric adder per unit energy. For example, in ERCOT, although large industrial
and commercial consumers are exposed to 4CP charges, the situation for residential
retail consumption is different. In particular, the cost allocated to residential consumers
for transmission is generally charged as a fixed volumetric adder per unit energy, rather
than a peak demand charge. For simplicity, we will assume that all transmission costs
are recovered using a volumetric adder per unit energy, pT .

5.2.2 Qualitative observations

In contrast to consumers exposed to 4CP charges, consumers that are charged on the
basis of a volumetric adder to the energy price will therefore typically consume higher
than efficient levels of energy on peak, necessitating more transmission capacity. That
is, charging on the basis of energy results in too much transmission capacity compared
towelfare optimal. Theywill also consume lower than efficient levels at off-peak times.
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5.2.3 Quantitative analysis

Given an assumed adder to the energy price, pT , the price to demand for energy is
changed from aG to aG + pT , resulting in a quantity consumed qeat . Equating the price
to the inverse demand function at each time results in:

∀t ∈ [0,Y ], aG + pT = W (qeat , t),

= (N (0) − δt − qeat )/γ.

Re-arranging this expression results in:

∀t ∈ [0,Y ], qeat = N (0) − γ (aG + pT ) − δt .

The largest value of consumption occurs at t = 0, and this determines the required
transmission capacity:

T ea = N (0) − γ (aG + pT ),

The annual cost of this capacity is aT T ea = aT (N (0) − γ (aG + pT )).
The total energy in the year is given by:

∫ t=Y

t=0
qeat dt =

∫ t=Y

t=0
[N (0) − γ (aG + pT ) − δt]dt,

= [N (0) − γ (aG + pT )]Y − δ(Y )2/2,

with units ofGWh, and resulting the annual payment for transmission1000pT ([N (0)−
γ (aG + pT )]Y − δ(Y )2/2), for pT in $/MWh. This payment must recover the annual
cost aT (N (0) − γ (aG + pT )). Equating the payment and annual cost results in a
quadratic equation that must be satisfied by pT :

1000pT ([N (0) − γ (aG + pT )]Y − δ(Y )2/2) = aT (N (0) − γ (aG + pT )).

Re-arranging, this results in:

1000γY (pT )2 + [1000(γ aGY − N (0)Y + δ(Y )2/2) − γ aT ]pT
+aT (N (0) − γ aG) = 0.

Solving this quadratic equation in pT yields pT = 0.187$/MWh, and T ea = 25.7GW,
slightly more transmission capacity than welfare optimal. The price charged for all
consumption is aG + pT = 10.187 $/MWh and the resulting consumption is shown
in Fig. 6. The main qualitative difference compared to welfare optimal consumption
is that the peak is not clipped, but instead is linearly related to t throughout the load-
duration curve. The consumption is above the welfare optimal value in the vicinity
of the peak, but below welfare optimal for most of the time. The main qualitative
difference compared to the welfare optimal energy-only prices is that the on-peak
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Fig. 6 Equilibrium consumption for example when transmission is charged volumetrically through an
energy adder

prices are lower than needed to induce welfare optimality, and the off-peak prices are
higher than needed to induce welfare optimality.

This example exhibits only slightly more transmission than optimal, reflecting the
relatively small distortion on-peak, and the relatively small contribution to overall
energy price of the volumetric transmission cost adder for the assumed cost parameters.
The welfare is given by:

∫ t=Y

t=0

[∫ q=qeat

q=0
W (q, t)dq − aGq

ea
t )

]
dt − aT T

ea

= Y
[
(N (0))2 − 2N (0)γ aG − (γ )2((pT )2 − (aG )2) − (N (0) − γ ag)δY + (δY )2/3

]
/(2γ ) − aT T

ea ,

= 9.86 × 109 − 2.57 × 107,

= 9.834 × 109 $/year,

which is almost as high as the optimal welfare.
With higher incremental transmission costs, the distortion of recovering transmis-

sion costs with an energy adder becomes more evident. However, with the linear
model used, the reduction in welfare is still not extremely substantial. For example,
even with annual transmission costs increased fifty-fold to $50,000/MW, the optimal
welfare becomes $8.84 × 109 per year, and this is only reduced by just under 3% to
$8.58 × 109 per year using an energy adder. For these assumed values, the energy
adder is pT = $9.63/MWh, which is nearly as large as the energy price alone. This
suggests that the policy choice for cost recovery of transmission costs may not be
extremely critical if inefficient bypass is not feasible. On the other hand, with high
transmission costs and higher elasticity of demand, the welfare losses can be much
larger (Schittekatte et al. 2018). Since rooftop solar photovoltaics allow bypass by res-
idential retail customers, the risk of inefficient bypass will be much more significant
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as the costs of rooftop solar decrease but nevertheless remain above the underlying
wholesale costs of energy.5

5.3 “Reliability” investment

5.3.1 Assumptions

In some cases, new transmission constructionmaynot be driven by an equilibrium level
of exhibited peak demand, but may be built to accommodate extreme, and unlikely,
conditions. In an extreme case of such “reliability” investment, a transmission capacity
of T is built that exceeds essentially any possible realizable demand.

5.3.2 Qualitative observations

If the costsCT (T ) of the transmission investment are allocated on the basis of the share
of the coincident peak then, aswith other examples of recovering sunk costs on the basis
of peak consumption levels, this allocation will tend to depress elastic consumption
compared to the optimal consumption for any given level of transmission, which in
turn means that the actual consumption may be significantly depressed compared to
the built capability of the system.Alternatively, if the cost of the investment is allocated
on the basis of energy, it is indeterminate as to whether these combined effects result
in more or less transmission than welfare optimal.

5.4 Hybrid case

5.4.1 Assumptions

In practice, there are likely to be costs associated with the transmission system that
are sunk, and other costs that are avoidable going forward depending on the level
of (forecast) peak demand. We assume that coincident peak pricing is used for the
avoidable costs, and another tariff mechanism is used for the sunk costs.

5.4.2 Qualitative analysis

The main results in this paper suggest that coincident peak pricing is appropriate for
the avoidable costs that depend on the level of demand going forward. In principle,
a non-distorting complementary charge, such as a per customer charge, possibly dif-
ferentiated by customer class, could be used to recover the remaining sunk costs. A
recent example of this approach is described in Abdelmotteleb et al. (2018).

5 I am indebted to Tim Schittekatte of the Florence School of Regulation for this observation.
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6 Conclusion

Coincident peak pricing has been analyzed in this paper. In the case of avoidable trans-
mission capacity represented as having a cost that depends on the peak of net demand,
coincident peak pricing can, in principle, be efficient. Other approaches, such as a
volumetric adder per unit energy, will typically result in inefficient consumption and
transmission levels, although the distortion for the numerical cases examined was not
large. In cases where high energy prices may result in inefficient bypass, however, the
effect of recovering costs with an energy adder may be more deleterious (Schittekatte
et al. 2018). In the practical case where some of the costs are sunk and some are
avoidable, a hybrid approach may be workably efficient.

In reality, transmission costs exhibit a much more complicated structure than mod-
eled in this paper, with the required capacity in a meshed system driven by so-called
N−1 security criteria that require deliverability under any single transmission element
failure. Moreover, in addition to transmission costs, there are also electric distribution
costs. Future work includes extending the model to consider costs of meshed transmis-
sion systems under N − 1 security, distribution systems, and capacitated generation
to investigate if, for example, a collection of prices associated with peak utilization of
various transmission, distribution, and generation assets could be efficient. For exam-
ple, a tariff could consist of a transmission charge based on consumption at the time
of peaks on the transmission system plus a distribution charge based on consumption
at the time of peak utilization of the local distribution feeder, together with a time-
varying energy price and a complementary fixed charge to recover remaining costs.
Collectively, this four-part tariff may be able to capture the main drivers of transmis-
sion, distribution, energy, and per customer costs to provide efficient incentives for
consumption.
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Appendix: Welfare maximization

This Appendix presents the detailed derivation of welfare maximization for Sect. 4.4.
Repeating the analysis in Sect. 2.6, we again consider the objective (4) of the inner
problem in problem (3) for each t . Noting that CG is linear in the case of the example,
differentiating the objective (4) and setting equal to zero yields:

0 = W (qt , t) − aG ,

= (N (t) − qt )/γ − aG ,

= (N (0) − δt − qt )/γ − aG ,
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using the assumed functional form of D and the resulting form of W . Re-arranging,
we obtain the unconstrained maximizer q̂t at time t of:

q̂t = N (t) − γ aG = N (0) − δt − γ aG .

We now consider the constraint qt ≤ T ,∀t ∈ [0,Y ], in the inner problem. Following
the same argument as in Sect. 2.6, for a given t , if q̂t ≤ T , then the maximizing choice
of qt in the inner problem for t is the same as the unconstrained minimizer q̂t . On
the other hand, if q̂t > T then, because the objective is concave, we have that the
maximizing choice of qt for the inner problem is T . Combining these observations,
we obtain that the maximizer of the inner problem is:

q�
t = min{T , N (0) − δt − γ aG}.

Consider the condition on t where, given T , the transmission constraint is just binding
on the maximizing qt in the inner problem. If such a time t̂ exists for which the
constraint is just binding, it satisfies T = N (0) − δt̂ − γ aG , so that t̂ = (N (0) −
γ aG − T )/δ. Abusing notation, we now think of t̂ : R+ → [0,Y ] as a function of T
and define it by:

∀T ∈ R, t̂(T ) = max{0,min{Y , (N (0) − γ aG − T )/δ}},

and we note that:

q�
t =

{
T , if 0 ≤ t ≤ t̂(T ),

N (0) − δt − γ aG , if t̂(T ) ≤ t ≤ Y ,

so that indeed the highest value of demand occurs at t = 0 (and, in the typical case
that 0 < t̂(T ), this highest value occurs throughout the interval [0, t̂(T )].) Moreover,
we have that, for each t and for a given T , the maximum value of the objective (4) of
the inner problem in problem (3) is:

∫ q=q�
t

q=0
W (q, t)dq − CG(q�

t )

=
∫ q=q�

t

q=0
((N (t) − q)/γ )dq − CG(q�

t ),

= ((N (t)q�
t − (q�

t )
2/2)/γ ) − aGq

�
t , on integrating and using the assumed

functional form for CG,

=
{
T (N (t) − aGγ − T /2)/γ, if 0 ≤ t ≤ t̂(T ),

(N (t) − γ aG)2/(2γ ), if t̂(T ) ≤ t ≤ Y ,
(16)

substituting for the optimal value q�
t . We can now re-write problem (3) as:

max
T≥0

{∫ t=Y

t=0
max
qt≥0

{[∫ q=qt

q=0
W (q, t)dq − CG(qt )

]∣∣∣∣ qt ≤ T

}
dt − CT (T )

}
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= max
T≥0

{∫ t=Y

t=0

[∫ q=q�
t

q=0
W (q, t)dq − CG(q�

t )

]
dt − CT (T )

}
,

= max
T≥0

{∫ t=t̂(T )

t=0

[∫ q=q�
t

q=0
W (q, t)dq − CG(q�

t )

]
dt

+
∫ t=Y

t=t̂(T )

[∫ q=q�
t

q=0
W (q, t)dq − CG(q�

t )

]
dt − CT (T )

}
,

= max
T≥0

{∫ t=t̂(T )

t=0

[
T (N (t) − aGγ − T /2)/γ

]
dt

+
∫ t=Y

t=t̂(T )

[
(N (t) − γ aG)2/(2γ )

]
dt − aT T

}
,

using the assumed functional forms forW ,CG , andCT , and using (16) to evaluate the
inner integrals. We now observe that the objective of the outer problem is of the form:

∫ t=t̂(T )

t=0
f (T , t)dt +

∫ t=Y

t=t̂(T )

g(t)dt − aT T , (17)

where f : R+ × [0,Y ] → R and g : [0,Y ] → R are of the form:

∀T ∈ R+,∀t ∈ [0,Y ], f (T , t) = T (N (t) − aGγ − T /2)/γ,

∀t ∈ [0,Y ], g(t) = (N (t) − γ aG)2/(2γ ),

and we note that f (T , t̂(T )) = g(t̂(T )) = (T )2/(2γ ). The expression in (17) repre-
sents the optimal welfare given a transmission capacity T . To find the maximizer of
welfare as expressed in (17) over T , we differentiate it with respect to T and set the
derivative equal to zero:

0 = [
f (T , t̂(T )) − g(t̂(T ))

] ∂ t̂(T )

∂T
+

∫ t=t̂(T )

t=0

∂ f
∂T

(T , t)dt − aT ,

=
∫ t=t̂(T )

t=0
[(N (t) − T )/γ − aG ]dt − aT ,

since f (T , t̂(T )) = g(t̂(T )), and by differentiation of f ,

= (N (0) − γ aG − T )2/(2γ δ) − aT ,

on integrating and simplifying, assuming that 0 < t̂(T ) < Y , so that we can simplify
the evaluation of t̂(T ) to t̂(T ) = (N (0) − γ aG − T )/δ. Setting this derivative equal
to zero and noting that N (0) − γ aG − T ≥ 0 yields the optimizer:

T � = N (0) − γ aG − √
2δγ aT ,
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again assuming that 0 < t̂(T )� < Y . Noting that (N (0)−γ aG −T �)/δ = √
2γ aT /δ,

we observe that 0 < t̂(T �) < Y if:

√
2γ aT /δ < Y .

For future convenience, note that:

W (T �, t) = (N (0) − δt − T �)/γ,

= aG + (
√
2δγ aT − δt)/γ. (18)

We now evaluate the optimal welfare; that is, we evaluate (17) at the welfare opti-
mizing transmission level T �. We initially assume that the condition 0 < t̂(T ) < Y
is satisfied, but numerically verify that this condition is satisfied. From (17), we have
that the optimal welfare is (re-arranging (17)):

∫ t=Y

t=t̂(T �)

g(t)dt +
∫ t=t̂(T �)

t=0
f (T �, t)dt − aT T

�

=
∫ t=Y

t=0
g(t)dt +

∫ t=t̂(T �)

t=0
( f (T �, t) − g(t))dt − aT T

�,

where we note that the first integral does not depend on T �,

whereas the second does depend on T �,

=
∫ t=Y

t=0

[
(N (0) − γ aG − δt)2/(2γ )

]
dt

+
∫ t=t̂(T �)

t=0

[
(N (0) − aGγ − T � − δt)/(−2γ )

]
dt − aT T

�,

on evaluating the terms,

= [(N (0) − aGγ )3 − (N (0) − aGγ − δY )3]/(6γ δ) − (
√
2δγ aT )3/(6γ δ) − aT T

�,

on integrating and simplifying. As noted in Sect. 4.4, the first term in the expression
for optimal welfare is independent of transmission costs and represents the optimal
welfare if the transmission were costless. The last two terms represent the reduction
in welfare due to the non-zero costs of transmission, with the last term being the direct
cost of the transmission and the second-last term being the reduction in welfare due
to the transmission limit.6
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