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Abstract—A generation firm in an electricity market may own
multiple generators located at multiple locations. This paper gen-
eralizes the concept of transmission-constrained residual demand
from a single generator’s perspective to that of a generation firm.
We calculate the derivative of a generation firm’s inverse residual
demand function, i.e., the Jacobian matrix, based on a multi-pa-
rameter sensitivity analysis of the optimal power flow solution,
and characterize some of its properties. This Jacobian matrix pro-
vides valuable information, such as in characterizing a generation
firm’s profit maximizing strategy. We apply the bundle-Newton
method utilizing the Jacobian matrix to find a generation firm’s
maximum profit. The effectiveness and performance of the algo-
rithm is demonstrated with the IEEE 118-bus system example.
The Jacobian matrix and the profit maximizing algorithm are
helpful for market participants to bid into electricity markets, and
for market monitors to analyze firm-based strategic behaviors.

Index Terms—Electricity market, optimal offer, residual de-
mand.

NOMENCLATURE

Set of generators, with each segment of an offer
represented by a distinct element.

Set of loads.

Set of generators owned by firm A.

Set of generators not owned by firm A, .

Set of generators with binding/fixed quantity
offers.

Set of generators with offers having nonzero
slopes.

Set of generators with binding/fixed price offers.

Power injection vector.

Generator ’s total offer cost function, whose
derivative, , is generator ’s offer function.

Generator ’s production cost function.

Shift factor matrix with rows corresponding
to the transmission constraints and columns
corresponding to power injections.
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Vector of generator operating lower limits.

Vector of generator operating upper limits.

Vector of the transmission capacity limits.

Lagrange multiplier for the energy balance
constraint.

Lagrange multiplier vector for the transmission
constraints.

Set of binding transmission constraints.

Vector or matrix of all zeros.

Vector or matrix of all ones.

I. INTRODUCTION

A SUPPLIER’S residual demand function is defined as
the total system demand minus the total supply from all

competitors at each given price. The residual demand has been
widely used by economists and researchers to analyze strategic
behaviors in oligopoly markets, such as electricity markets
[1]–[6]. However, these analyses did not rigorously account for
the impact of the transmission network in electricity markets
on the market prices and the residual demand.

Transmission constraints play a central role in electricity mar-
kets [7], [8]. Locational marginal prices (LMPs) are designed to
properly value the transmission network through the electricity
prices. LMPs have gained great popularity in electricity market
design in the last decade. Currently all electricity markets in the
U.S. are LMP based.

The concept of residual demand needs to be redefined to rep-
resent LMPs. Reference [8] characterized the concept of trans-
mission-constrained residual demand for LMP-based electricity
markets. The transmission-constrained residual demand is im-
plicitly defined through the market clearing engine, which is an
optimal power flow (OPF) program, and thus it can rigorously
capture the impact of transmission networks on a generator’s
residual demand function.

Conceptually, if a generator offers a fixed supply quantity
offer , and the OPF solves at LMP for , then
is a point on ’s residual demand function. Tracing out the
whole transmission-constrained residual demand function in-
volves solving the OPF multiple times with different levels.
Repeatedly solving the OPF can reveal the implicit residual
demand function, but computationally it is not a practical ap-
proach. Production level OPFs can have thousands of variables
and hundreds of constraints [9], and are not easy to solve.
Solving the OPF hundreds of times may be computationally
overwhelming.
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Without tracing out the whole residual demand function, [8]
characterizes locally the derivative of a generator’s residual de-
mand function, i.e., the transmission-constrained residual de-
mand derivative (TCRDD). The TCRDD provides very valuable
information. Reference [10] proposes a framework to utilize the
TCRDD to find the profit maximizing strategies for a generator.
The TCRDD method decouples the overall profit maximization
problem into two subproblems: the OPF and TCRDD calcula-
tion, and the profit maximization based on TCRDD. The two
subproblems are solved iteratively, which captures the network
characteristics accurately.

Compared with other approaches such as the mathematical
program with equilibrium constraints (MPEC) method [11],
which solves the profit maximization integrated with the OPF,
the TCRDD approach solves the profit maximization problem
separately using the TCRDD instead of jointly with the com-
plicated full network model. In addition, the existing advanced
OPF solvers could be reused in the TCRDD calculation. Due to
these advantages, the TCRDD method is a promising alternative
to the MPEC method. However, one limitation in [8] and [10] is
that the transmission-constrained residual demand and TCRDD
only applies to a single generator (physical unit or generation
portfolio) located at one pricing location (node or zone).

In an electricity market, a generation firm may own multiple
generators at different pricing locations. The residual demand
needs to be generalized from a single generator’s perspective
to that of a generation firm to be more useful in an LMP-based
electricity market. We make this generalization in this paper.
Specifically, we derive a generation firm’s transmission-con-
strained inverse residual demand Jacobian (TCIRDJ) matrix.1
Unlike [8], we choose to work on a generation firm’s inverse
residual demand function instead of the residual demand func-
tion, because it might be more natural to consider the prices
as functions of quantities in electricity markets. This is consis-
tent with the convention in [12]. The TCIRDJ can be used in
the framework in [10] to replace the TCRDD, and makes the
framework also applicable to generation firms. We implement
the framework with the bundle-Newton method to find the profit
maximizing strategy for a generation firm. The performance of
this method will be tested with an IEEE 118-bus system.

The organization of the rest of the paper is as follows.
Section II characterizes a generation firm’s inverse residual
demand and derives the TCIRDJ based on sensitivity analysis
of the OPF. Section III characterizes some of the TCIRDJ
properties. Section IV proposes applying the bundle-Newton
method to find a generation firm’s profit maximizing strategy.
Section V tests the proposed bundle-Newton method in the
IEEE 118-bus system, and compares its performance with the
MPEC method, and Section VI concludes.

II. GENERATION FIRM’S TRANSMISSION-CONSTRAINED

INVERSE RESIDUAL DEMAND AND THE TCIRDJ

The transmission-constrained inverse residual demand and
the TCIRDJ characterization in this paper can be viewed as a
generalization of [12]. Reference [12] makes the following as-
sumptions: the OPF only models DC power flow constraints,

1Reference [12] refers to the TCIRDJ as the price response matrix.

there are no generator output capacity bounds, and the gener-
ator offers are strictly monotonic and smooth functions. As dis-
cussed in [10], production level OPF models more constraints
than just DC power flow, including generator output capacity
bounds, security constraints, and nomograms. In addition, gen-
erators can submit constant price offer segments, which are not
strictly monotonic. We deal with all these constraints and issues
in this paper.

We consider an offer-based electricity market cleared by an
OPF program minimizing the total generation offer cost. To be
consistent with most electricity markets in the U.S., we assume
piecewise quadratic offer cost functions, so the offer functions
are piecewise linear. The OPF model follows (5)–(8) in [10]:

(1)

(2)

(3)

(4)

where
• (2) consists of transmission constraints;
• (3) is the power balance constraint.

The meaning of the variables and parameters are explained in
the Nomenclature section. As a general convention in this paper,
we use a subscript on a vector or matrix to represent its specific
meaning and dimension. For example, represents the shift
factor matrix from generators in set to all transmission con-
straints; represents the transpose of an all-one vector of di-
mension , the cardinality of set .

As discussed in [10], (2) can model not only pre-contingency
transmission constraints, but also post-contingency security
constraints, nomogram constraints, and all kinds of other linear
constraints. Denote the OPF solution by .

After the OPF is solved, we know which offers are binding at
constant quantities, not binding, or binding at constant prices,
so we partition set into three subsets: so that

where , and are the sub-vectors of corresponding
to offers at binding quantities, not binding, and binding at con-
stant prices, respectively. After the OPF is solved, we also know
which transmission constraints are binding, and denote them by
the set .

Now we re-construct a special OPF based on (1)–(4) in the
following way:

• view as a parameter vector;
• view as a constant vector, and omit the generation

capacity constraints;
• view and as the decision variable vectors;
• include power balance constraint and binding transmission

constraints.
The so-constructed OPF is called the residual OPF, and its

Karush-Kuhn-Tucker (KKT) conditions are
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(5)

where
• ;
• ;
• and are the shift factor matrices from gen-

erators in set , and , respectively, to the binding con-
straints.

One can verify that (5) is a subset of the original OPF’s KKT
conditions. Therefore, satisfies (5).

The inverse residual demand function is a price function of
supply quantities that specifies the LMPs for all generators in the
set . It is implicitly defined by the residual OPF in the vicinity
of as characterized in the following proposition.

Proposition 1: If the columns of are linearly indepen-
dent, i.e.,

(6)

and the binding constraints of the residual OPF are linearly in-
dependent, i.e.,

(7)

then there exists a vector price function in the vicinity
of that specifies the LMPs for the generators in set .

Proof: The KKT conditions (5) can be viewed as

where is a continuously differentiable function. The Jaco-
bian of evaluated at is

where

We first prove the Jacobian of evaluated at
is invertible.

Let us assume

(8)

and prove

which proves that the column vectors are linearly independent,
and thus the matrix is invertible.

Multiplying both sides of the first two row equations in (8) by
, we have

(9)

The last two row equations in (8) are

(10)

Transposing both sides of (10), we have

which zeros out the second term on the left-hand side of (9).
Therefore, (9) becomes

(11)

Because is positive definite by definition, (11) implies
.
Setting in (10) results in

which implies by (6).
Setting in the first two row equations of (8) results in

(12)

which implies

by (7).
We have proved the Jacobian of evaluated at

is invertible. By the implicit function the-
orem, there exist unique functions , and

in the vicinity of . Similar to [10], the LMPs for the
generators in the set are specified by an implicit function

as follows:

(13)

Generally, (6) is satisfied if we only include generators in
set such that the rows are linearly independent; (7) is
satisfied if we only include linearly independent constraints in
the residual OPF. By doing so, we can guarantee the existence
of the function .

The price function in (13) is the inverse residual de-
mand function, and its Jacobian is the TCIRDJ.
The TCIRDJ is a constant for each specific combination of

, so is piecewise linear with each piece corre-
sponding to a specific combination of .

The element of the matrix is defined by differentiating
both sides of the th row of (13) with respect to
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(14)

We calculate and by a sensitivity anal-
ysis on (5).

Differentiating both sides of (5) with respect to ,
we get

(15)

We can calculate each element of the TCIRDJ by solving (15)
for and , and substituting them into
(14).

As a special case, if , then and
have clean closed form solutions. In this case, (15) becomes

(16)

(17)

(18)

Now define

By assumption (7), with , so is
invertible.

Multiplying both sides of (16) on the left by ,
substituting in (17), and then multiplying both sides on the left
by , we get

(19)

Multiplying both sides of (16) on the left by , substi-
tuting in (18), we get

(20)

Solving (19) and (20), we get

(21)

where

(22)

The derivative can be calculated by substituting
(21) into (19).

After simplification

(23)

where

If the generation firm has only one generator, and the gener-
ator is located at the slack bus , then , and . In
this case

where V is the TCRDD formula [8, (29)]. This verifies that, for
this special single generator case, the TCIRDJ is equal to the
inverse of the TCRDD, which is true by the inverse function
theorem.

III. PROPERTIES OF THE TCIRDJ

In this section, we are going to prove that the TCIRDJ is sym-
metric and negative semi-definite, generalizing the special case
proved in [12].

Proposition 2: The TCIRDJ is symmetric and
negative semi-definite.

Proof: The proof consists of two parts: first we prove
is symmetric and negative definite under the

condition , and then prove it is symmetric and negative
semi-definite for .

1) Under the condition . Directly from the TCIRDJ
formula (23)

so it is symmetric.
Because is positive definite, is also positive

definite. Therefore, we only need to prove to prove
is negative definite.

Similar to [8] where the TCRDD was proved to be less than
or equal to zero, we prove by a weighted least squares
(WLS) formulation. Consider the WLS problem2 specified by

The least sum of squares error (SSE) is

Therefore, , and the formula of in (23) is
negative definite.

2) Under the condition . Denote the TCIRDJ solved
from (15) by . We construct a sequence as follows.
Start with all positive bid slopes for generators in set , and
cut the slope values in set by half each time. This process re-
sults in a sequence that the slope values in set are all pos-

2See [8] Appendix A for basics about the WLS interpretation of TCRDD.
More detailed discussion about WLS can be found in [13].
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itive, and monotonically approaches . For the th point in
the sequence, a corresponding can be calculated by
solving (23), and it is symmetric and negative definite as proved
in 1). This TCIRDJ sequence con-
verges to , because the sequence of the coefficients
of (16)–(18) converges to the coefficients of (15). Therefore, the
limit matrix is symmetric and negative semi-definite
by continuity.

IV. MAXIMIZING A GENERATION FIRM’S

PROFIT USING THE TCIRDJ

A generation firm’s profit depends on the competitors’ bid-
ding strategies as well as the transmission network constraints.
Given the competitors’ bidding strategies and the network
model, a generation firm’s profit is a function of its own bid-
ding strategies. Under this assumption, the bidding strategy
that maximizes the profit function is called the “best response”
in a Game Theory context. The section calculates the “best
response” for a generation firm.3

Reference [10] proposed a framework to use the derivative of
the inverse residual demand to find a generator’s profit maxi-
mizing strategy. This framework avoids solving the profit opti-
mization coupled with the full network model as in the MPEC
method [11], and thus has a computational advantage. In ad-
dition, existing advanced OPF solvers could be reused in the
framework. In [10], the implementation of the framework is
limited to the special case of a single generator located at one
pricing location. With the TCRDD for a single generator being
generalized to the TCIRDJ for a generation firm, the framework
can also be implemented to find a generation firm’s profit max-
imizing strategy.

As demonstrated in [10], the inverse residual demand func-
tion for a single generator may have kinks. For a generator firm
owning multiple generators at multiple pricing locations, there
will be kinks on the inverse residual demand function when
the combination of changes. Similar to optimizing
a single generator’s profit based on TCRDD, one major chal-
lenge is to deal with these kinks on the inverse residual demand
function. The special bisection search algorithm proposed in
[10] does not work for a higher dimensional inverse residual
demand function for a generation firm. We are going to apply a
bundle-Newton method proposed in [14] to optimize a genera-
tion firm’s bidding strategy based on the TCIRDJ.

A. Bundle Newton Method

The bundle idea and bundle Newton method are reviewed in
the Appendix. Without loss of generality, we assume that the de-
cision variables are the output quantities of firm A’s generators,
i.e., .4

The objective function is the negative profit function

3Typically, the network model is available from independent system opera-
tors. For example, CAISO and ERCOT make their network model available to
their market participants. The competitors’ strategies can be estimated based on
production costs and historic bid data. How to make these estimates accurately
is out of the scope of this paper.

4Reference [10] discussed different choices of strategic variables, and the im-
plications in profit maximizing versus Nash Equilibrium.

Because is piece-wise linear, if we assume is
piecewise quadratic for any , then is piecewise
quadratic.

One subgradient of is

(24)

where

and one approximation to the Hessian is

(25)

where

B. Algorithm

The bundle-Newton algorithm to find a generation firm’s
maximum profit given other firms’ bids using the TCIRDJ is as
follows.
Parameters:

• is the parameter used in (30) to define ;
• is the convergence tolerance;
• is the relative objective function value im-

provement threshold; and
• is the starting point.

Procedure:
Step 1) Set initial value , and iteration number

.
Step 2) Solve OPF with , and calculate and

TCIRDJ.
Step 3) Calculate from (24) and from (25), and add

them to the bundle.
Step 4) Solve (31), and denote the solution by .
Step 5) If , optimal solution found with

, and stop.
Step 6) Solve OPF with , and calculate

and TCIRDJ.
Step 7) If , make a serious

step, ; otherwise, make a null step
.

Step 8) Add to the bundle.
Step 9) Set , and repeat steps 3) to 7).
Step 7) makes the decision between a serious step and null

step. If there is relatively significant (compared with threshold
) objective function value decrease, update to ,

then proceed to ; otherwise, stay at current solution ,
and add into the bundle in step 8). The algorithm above
is a special implementation of the standard algorithm in [14].
The parameter in [14] is set at 1, which avoids the line search
part in the standard algorithm. The line search can find a better
step size in the direction at the cost of multiple objective
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TABLE I
GENERATOR DATA (EXCERPT)

function evaluations. In our case, the objective function evalu-
ation is computationally intensive, because it involves solving
the OPF. The bundle information is more important, because
the objective function is piecewise quadratic, so if the bundle is
large enough to include the relevant pieces at the optimizer, then
locally exactly models . Therefore, in terms of per-
formance, it is more efficient to enrich the bundle information
than it is to seek a better step size. Similar to other nonlinear
programming algorithms such as algorithms for MPECs, this
algorithm aims at finding a local optimum. Similar to [10], one
can run the algorithm with different starting points to explore a
broader region to get closer to the global optimum.

V. COMPUTATIONAL EXAMPLE

We use the MATPOWER package [15] as our OPF solver,
and apply the algorithm to the IEEE 118-bus test system in-
cluded in the package. Similar to [10], we enforce 200-MW ca-
pacity limits on branches 30–17, 26–30, and 38–37 on the IEEE
118-bus base case from [15] so they are likely to be binding. All
other branches have sufficiently large capacity limits. The total
system load is 4242 MW.

A. Results for a Two-Generator Firm

We optimize the profit for a fictitious generation firm A,
which owns two generators: generator 5 located at bus 10
with 550-MW capacity, and generator 30 located at bus 69
with 805.2-MW capacity. Part of the generator data is listed in
Table I. Assume all generators other than generators 5 and 30
offer at their true marginal cost.

We test our algorithm with four different starting points: (200,
200), (300, 500), (450, 250), and (450, 550). The optimization
trajectories are listed in Table II. The “step” column indicates
a serious step by “S”, a null step by “N”, and optimal solution
by “O”. We also plot the contour of the profit function and the
optimization trajectory with starting point (200, 200) in Fig. 1
to visually check the results.

The algorithm reliably finds the optimizer for each of the
starting points within 3 to 6 total steps including both serious
steps and null steps. The number of steps also implies the
number of OPFs solved, because there is exactly one OPF
solved in each step in order to evaluate the profit function, and
calculate the TCIRDJ. For large scale problems, iteratively
solving the OPF is the most computationally intense part for
this algorithm, so the effort to find the optimizer is roughly
proportional to the number of steps taken.

Another observation is that because the bundle method de-
pends on history, even if different optimization paths intersect
at a certain iteration, their subsequent trajectories may not be the
same. For example, the solution at iteration 1 starting from (300,

TABLE II
OPTIMIZATION TRAJECTORIES WITH DIFFERENT STARTING POINTS

Fig. 1. Optimization trajectory starting from (200, 200).

500) coincides with the solution at iteration 1 starting from (450,
250) as observed in Table II, but after that, the two trajectories
diverge. Nevertheless, finally they approach the same optimizer.

Similar to [10], for benchmarking purpose, we also solve
the same problem using the MPEC method with the NLPEC
solver [16], which solves an MPEC problem as an equivalent
sequence of nonlinear programming problems parameterized by
a scalar . The NLPEC execution time is dependent on the ini-
tial value of . Based on our experience, an initial value of 1
for achieves good performance and robustness, and we use
it for all the MPEC tests in this section. The comparison is
listed in Table III. Although both approaches could find the op-
timizer with different starting points, the average run time of
the TCIRDJ approach is about 1 s versus 10 s for the MPEC
approach. We are going to further explore the performance dif-
ference between the TCIRDJ approach and the MPEC approach
in the next section.
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TABLE III
COMPARISON WITH MPEC

TABLE IV
PERFORMANCE TEST

B. Performance Test

We test the performance of the algorithm by increasing the
number of generators owned by generation firm A from five gen-
erators to 20 generators. All tests start from competitive output
levels. The results are summarized in Table IV. The TCIRDJ
approach finishes each of these scenarios within 2.5 s with less
than six total steps. Although the number of generators has in-
creased by five to ten times compared to the previous section,
the algorithm only takes about twice the run time of the two-gen-
erator case. The performance of the algorithm depends less on
the number of generators owned by the generation firm, and
more on how kinky the profit function is. Generally speaking,
a smooth profit function with more decision variables can be
much easier to optimize than a profit function with many kinks
but less decision variables. Because of this, the 20-generator
case requires even less steps than the two-generator case.

The MPEC approach in comparison takes about 50 times
more run time than the TCIRDJ approach, and the run time
seems more sensitive to the number of decision variables. If the
number of generators increases five to ten times, the MPEC ap-
proach will need ten to 20 times the amount of the original run
time.

Through these tests, we can see the TCIRDJ method performs
better than the MPEC method, and the advantage is expected to
be more prominent as the size of the problem increases. How-
ever, we stress that more tests, especially on large scale systems,
are needed to rigorously benchmark the TCIRDJ approach and
MPEC approach.

VI. CONCLUSION

In electricity markets, especially nodal electricity markets, a
generation firm may own multiple generators located at multiple
buses and exposed to different prices. In this context, we gen-
eralize the residual demand concept from a single generator’s
perspective to a generation firm’s perspective. Particularly, the
TCRDD for a single generator is generalized to the TCIRDJ for
a generation firm. We derived the TCIRDJ based on a multi-pa-
rameter sensitivity analysis of the OPF, and characterized some
of its properties. The TCIRDJ provides useful insights about a
generation firm’s strategic behavior. Based on the TCIRDJ and
the framework proposed in [10], we apply the bundle-Newton
algorithm to optimize a generation firm’s profit. The algorithm
is tested in the IEEE 118-bus system, and it performs very well

in terms of robustness and efficiency. Compared with the MPEC
approach, the TCIRDJ approach has a significant computational
advantage, as well as the advantage of being able to reuse ex-
isting OPF solvers. The framework of finding profit maximizing
strategies based on the TCIRDJ and the bundle-Newton algo-
rithm provides an effective and promising approach for genera-
tion firms’ to bid into electricity markets, and for market moni-
tors to understand the bidding behaviors.

APPENDIX

BUNDLE NEWTON METHOD

The bundle concept is widely applied to non-differentiable
function optimization. The bundle idea is closely related to the
cutting plane method, where the objective function is approx-
imated by a piecewise linear function based on cutting planes
[17], [18]. Reference [14] proposes the bundle-Newton method
by generalizing the bundle idea to a second-order approxima-
tion, where the objective function is approximated by a piece-
wise quadratic function. The bundle-Newton method is suitable
for finding a generation firm’s maximum profit, because the
profit function of a generation firm is piecewise quadratic as dis-
cussed earlier.

Following the convention of [18], we consider a minimization
problem

(26)

where is a Lipschitz continuous non-smooth
convex function. In the following discussion, to simplify nota-
tion, we are going to exclude the bound constraints, and bear in
mind that the bound constraints can be easily incorporated into
the algorithm. Assume a subgradient of , and an ap-
proximation of the Hessian , are available. The
bundle concept has two features [18]:

1) Make use of, at iteration , the bundle information

collected so far using iterates to build a model
of the objective function .

2) If, due to the kinked structure of , this model does not
characterize accurately enough, then mobilize more sub-
gradient and second-order information.

To limit the bundle size, some of the points in the bundle can
be discarded. In other words, the points in the bundle
can include a subset of and their aggre-
gations [14].

In the bundle-Newton method [14], the bundle information at
iteration results in the piecewise quadratic approximation of

(27)

where

Define , and
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then

(28)

Similar to common bundle method, we can solve iteratively

(29)

in order to find the minimizer of , if the piecewise quadratic
function locally approximates from below. This
can be achieved by replacing with defined as follows:

(30)

where is a small positive number [14]. With this modification,
we have

which guarantees is an approximation to from
below in the vicinity of . Now we can solve iteratively

(31)

which is equivalent to (29), in order to find the minimizer of
. As discussed in [14], (31) can be solved efficiently using

sequential quadratic programming (SQP).
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