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Abstract—As the semiconductor technology scales down to
10nm node and beyond, multiple patterning has become a
competitive lithography candidate, along with other emerging
techniques including EUVL, E-Beam and Directed Self Assem-
bly (DSA). Due to the delay of EUVL, triple even quadruple
patterning may be used for the front-end of line layers and
lower metal layers with tight pitches in future technology nodes.
To enable multiple patterning, layout decomposition, as the key
step, aims at splitting the layout into various parts such that
each part can be manufactured using single patterning. In this
work, the triple and quadruple patterning layout decomposition
issue is first formulated as the integer linear programming (ILP)
problem. In order to deal with the large problem size, an iterative
rounding and LP solving scheme (IRLS) is proposed to reduce
the number of non-integers in the final solutions. Moreover, novel
stitch insertion strategies are proposed to further control the
amount of conflicts and stitches in the decomposition results.

I. PROBLEM FORMULATION AND OVERALL FLOW

A. Previous Works

Due to the resolution limits of the 193nm lithography tools,
multiple patterning (MP) has become a viable candidate to
enable the geometric scaling for advanced technology nodes
[1]–[4]. The basic principle for MP layout decomposition is
to split the original layout into several different masks to
achieve smaller pitches than the resolution limits of the 193nm
photolithography.

For general layout decomposition problem, the conflict
graph is constructed from the original layout [5]. Each node
in the graph represents a polygon feature in the layout. Then,
a conflict edge is added between a pair of nodes if the
corresponding features can not be assigned to the same mask
and a stitch edge is added if a pair of nodes belong to the same
polygon feature before the stitch candidate generation and
conflict graph construction. Thus, the layout decomposition
issue is reduced to the conflict graph coloring problem and
the number colors allowed is equal to the number of masks
for the layout decomposition. For instance, we have 3 and 4
colors for triple patterning (TP) and quadruple patterning (QP)
lithography, respectively. The layout decomposition example
for TP and QP are demonstrated in Fig. 1(a)-(b) and Fig. 1(c)-
(d), respectively. A stitch is introduced in Fig. 1(a) to resolve
coloring conflicts and achieve legal mask assignment in Fig.
1(b). Similarly, QP decomposition results are illustrated in Fig.
1(c) and (d).
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Fig. 1. Multiple patterning layout decomposition, (a) conflict graph with one
stitch, (b) triple patterning layout decomposition, (c) conflict graph without
stitches, (d) quadruple patterning layout decomposition.

The layout decomposition problem has been well studied
for double patterning (DP) [5]–[10] and triple patterning (TP)
[11]–[16].

The ILP formulation for layout decomposition is first studied
for DP [6], [17] and further extended to TP [11]. The colors
are encoded with binary variables to in the ILP formulation
and the objective is to minimize the total cost of the conflicts
and stitches. Although some graph simplification methods have
been proposed to speedup ILP, it still suffers from runtime in
the real application. In particular, the integer linear program-
ming (ILP) solution for QP layout decomposition problem has
been ignored due to the NP-completeness of the mathematical
formulation and large problem size.

Recently, [18] proposed layout decomposition algorithms for
QP and beyond, which introduced semi-definite approximation
to trade-off with exact algorithms. Other than that, few works
have been done for the QP layout decomposition. While semi-
definite programming (SDP) based algorithms produce good
solution qualities, the runtime becomes an obstacle for its wide
usage due to the increasing layout sizes.
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In this work, we propose an algorithm to solve the ILP based
QP layout decomposition problem via an Iterative Rounding
and Linear programming Solving (IRLS) scheme [19]. In gen-
eral, if an ILP formulation is relaxed to a linear programming
problem, it can be solved much faster, usually in polynomial
time. Some of the non-integers within the LP solution are
rounded to 0/1 based on our rounding schemes. Then, the
integers in the solution will be treated as constants and the
LP problem is solved iteratively until no further improvement
on solution quality. We expect for better decomposition results
compared with previous works [18].

B. Problem Formulation
Given the target layout, the first step of layout decompo-

sition is to generate stitch candidates and construct conflict
graph with conflict edges and stitches edges. Stitch candidate
generation schemes are discussed in detail in [11], [12], [14].
In this work, we assume the stitch candidates are given as
the input for our coloring framework. To represent three/four
colors in the TP/QP layout decomposition problem, two binary
variables are introduced for each node. The ILP formulation
is shown in Formulation (1). For each conflict edge in the
edge set Ec, the possibility of identical colors on both vertices
are forbidden by Constraints (1d)-(1e). Constraint (1a) is only
used to eliminate the fourth color for TP layout decomposition.
Different from the ILP formulation in [11], additional conflict
or stitch edge variables are not introduced for the simplicity
of the formulation. Instead of minimizing the total cost from
conflicts and stitches, the target of our ILP formulation is
to seek a feasible color assignment to the variables while
optimizing the changeable objective function. We deal with
stitch insertions in a separate step in our coloring framework.

min Objective (1)
s.t. xi1 + xi2 ≤ 1 (1a)

xi1 + xi2 + xj1 + xj2 ≥ 1 ∀eij ∈ Ec (1b)
xi1 + x̄i2 + xj1 + x̄j2 ≥ 1 ∀eij ∈ Ec (1c)
x̄i1 + xi2 + x̄j1 + xj2 ≥ 1 ∀eij ∈ Ec (1d)
x̄i1 + x̄i2 + x̄j1 + x̄j2 ≥ 1 ∀eij ∈ Ec (1e)
x̄i1 = 1− xi1 ∀i ∈ V (1f)
x̄i2 = 1− xi2 ∀i ∈ V (1g)
xi1, xi2 ∈ {0, 1} ∀i ∈ V (1h)

C. Overall Flow
The overall flow for our coloring framework is demonstrated

in Fig. 2. The framework starts with the LP solving with zero
objective. To deal with the non-integers in the solution from
LP, additional constraints are introduced and objective function
is changed for the original LP formulation. In particular,
these additional constraints and objective function change will
not break the feasibility of possible coloring assignment. We
continue the iterative rounding and LP solving (IRLS) until
no further improvement. Based on the IRLS solution, novel
stitch insertion schemes are proposed to achieve final coloring
assignment for each polygon feature.
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Fig. 2. Overall flow for our coloring framework.

II. ITERATIVE ROUNDING AND LINEAR PROGRAMMING

The details for this section will be added in the final report.

A. Linear Programming Solving

The ILP formulation in (1) is relaxed to LP by removing
constraint (1h). The critical issue from LP solving is that it
may introduce many non-integers in the solution. For instance,
with the constraint (1h), a trivial feasible solution with xi1 =
0.5, xi2 = 0.5 ∀i ∈ V can be achieved. As shown in Fig. 3, the
feasible region for the LP solving is denoted as the dash light
green. The dash red line denotes the objective function with
optimal value. The grids consisting of dashed black lines are
possible solutions with integer bits. We can see that the optimal
solution from LP solving is (0.5, 0.5). Efficient techniques are
needed to push the LP solution to those blue dots in the feasible
region with integer while being close to the optimal point.

(0.5, 0.5) 

Fig. 3. The polyhedron for feasible linear programming solutions.
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B. Iterative Rounding
1) Odd cycle constraints: An odd cycle in a graph needs at

least three colors. For the odd cycle example shown as Fig. 4,
if the first bits of the vertices are equal, i.e. xi1 = xj1 =
xk1, it is not possible to obtain a solution without conflicts
by adjusting xi2, xj2, xk2. The LP relaxation will produce all
0.5 solutions for xi2, xj2, xk2. To avoid such kind of solutions,
the first bits of the vertices should not be equal. We can avoid
the situation of equality of the first bits by adding constraints
in Eqn. 2, which forbids the cases of all zeros and all ones.
Similar techniques can be applied to the second bits.

xi1 + xj1 + xk1 ≥ 1 (2a)
(1− xi1) + (1− xj1) + (1− xk1) ≥ 1 (2b)

For a general odd cycle (cycle), we have the following
constraints.∑

l∈cycle

xl1 ≥ 1,
∑

l∈cycle

(1− xl1) ≥ 1 (3a)∑
l∈cycle

xl2 ≥ 1,
∑

l∈cycle

(1− xl2) ≥ 1 (3b)

These constraints prune invalid solutions without losing the
feasibility of the LP problem.
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Fig. 4. One possble odd cycle in the conflict graph.

2) Anchoring highest degree vertex: During color assign-
ment, one coloring solution can actually rotate to generate
another coloring solution. To reduce the solution space, it will
not do harm to the optimality if one vertex of the graph is
pre-colored. In the layout of a modern design, power/ground
wires are usually assigned with the same color, shown as
Fig. 5(a). These wires will be merged into one vertex which
eventually results in a high-degree vertex, shown as Fig. 5(b),
for power/ground wires are usually very long; As a high-degree
vertex has a large set of neighbors, the solution space will be
largely reduced if its color is pre-determined. Therefore, when
constructing the mathematic formulation, we anchor the color
of the vertex with highest degree.

3) Objective function bias: To eliminate the non-integer
results in an LP solution, one heuristic is to push the corre-
sponding variables to 0 or 1 by adjusting the objective function.
For example, if xi1 turns out to be 0.6, it indicates that xi1

has the tendency to 1; hence, we add (1−xi1) to the objective
function so that xi1 tends to be pushed to 1 during the next
iteration. The generalized rule is as follows.

1) If xi > 0.5, obj← obj + (1− xi).
2) If xi < 0.5, obj← obj + xi.
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Fig. 5. An example of (a) pre-colored VDD/GND and (b) anchored vertex.

4) Binding constraints analysis: One drawback for the ob-
jective function biasing technique cannot handle non-integers
like 0.5. Therefore, we propose a method to round those vertex
with coloring solution (xi1, xi2) = (0.5, 0.5) pairwisely by
analyzing the related binding constraints. For a constraint in
LP, if the inequality turns out to be equality according to the LP
solution, we call it binding and this constraint is called binding
constraint. Fig. 6 shows an example of constraints for a vertex
whose solution is (0.5, 0.5). Let Si1 be the set of constraints
only related to xi1, Si2 be the set of constraints only related
to xi2 and the set of shared constraints are Sic. Assume each
constraint is formatted in a way that all variables are on the left
side of the inequality operator and only constants are on the
right side. At the same time, the coefficient for xi1 is positive.
If all constraints in Si1 share the same kind of operators (all
“≤” or “≥”), then these constraints will not be violated if xi1

is pushed from 0.5 to 1. The condition also holds for xi2 by
checking all constraints in Si2. With the analysis above, we
can generate a candidate rounded solution for (xi1, xi2). The
solution will not be accepted unless the rounded solution also
satisfies all constraints in Sic. For the example in Fig. 6, we can
generate a candidate rounded solution (0, 1) and then check if
constraints in Sic are satisfied as well. If true, (xi1, xi2) are
rounded to (0, 1). This technique will not affect the feasibility
of the LP.

 ii 

 xi1 = 0.5xi1 = 0.5 
 xi2 = 0.5xi2 = 0.5 

 . . . + xi1 + . . .  c1. . . + xi1 + . . .  c1  
 . . . + xi1 + . . .  c2. . . + xi1 + . . .  c2  
 . . . + xi1 + . . .  c3. . . + xi1 + . . .  c3  
 . . . + xi1 + . . .  c4. . . + xi1 + . . .  c4  

 . . . + xi2 + . . . � c5. . . + xi2 + . . . � c5  
 . . . + xi2 + . . . � c6. . . + xi2 + . . . � c6  
 . . . + xi2 + . . . � c7. . . + xi2 + . . . � c7  
 . . . + xi2 + . . . � c8. . . + xi2 + . . . � c8  

 Si1Si1  Si2Si2 

Fig. 6. An example of binding constraints analysis.

III. STITCH INSERTION SCHEMES

A. Stitch Insertion
Non-integer may still exist in the solution from IRLS. With

the help from stitch insertions, we can further obtain feasible
coloring solutions. An example is demonstrated in Fig. 7. The
IRLS solution yields the non-integer bits, namely (0.5, 0.5),
for node a. However, the stitch candidate for node a can be
applied to achieve legal color assignment in Fig. 7(b).
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After IRLS, the coloring solution for the graph without stitch
edges is mapped back to the original graph which contains both
conflict and stitch edges. For vertices with non-integer color
assignments in the original graph (usually comes from vertices
with stitches), we sort them by the number of conflict edges.
Vertices with larger number of conflict edges are greedily
assigned legal colors before that with fewer conflict edges.
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Fig. 7. Stitch insertion to resolve non-integer bits. (a) Non-integer bits from
IRLS. (b) Stitch insertion to obtain a feasible coloring solution.

B. Post Refinement
After stitch insertion, it is still possible to improve the results

by locally flipping colors. For each vertex pair with conflicts,
we check the neighbors of these two vertices and re-assign
colors for these two vertices to resolve conflicts. For each
vertex pair with stitches, similar approach is applied to resolve
stitches.

IV. EXPERIMENTAL RESULTS

We implemented the ILP and IRLS based coloring schemes
in C++ and all experiments are performed on the Linux ma-
chine with 3.4GHz Intel(R) Core and 32GB memory. Gurobi
[20] is used as the ILP and LP solver.

Table I shows the results without stitches. We can see that
for small benchmarks (benchmarks with the name start with C)
IRLS carries out almost the same number of conflicts as ILP
and similar runtime. But for large benchmarks, IRLS produces
slightly more conflicts than ILP with smaller runtime. The
difference is not very obvious in TPL, but QPL shows the
effectiveness of IRLS in the speedup of coloring. For QPL,
IRLS achieves more than 200 times speedup than ILP with
1.3% more conflicts.

To explain the reason why IRLS works better in QPL than
in TPL, we draw an example of cut planes for the solution
spaces, illustrated as Fig. 8. Since TPL only has three colors,
the corresponding binary variables are only allowed to be (0,
0), (0, 1) and (1, 0). The solution space is constrained by
45 degree and 135 degree cutlines, because the coefficients
for all variables are 1 for all the constraints. The example in
Fig. 8(a) shows that with one 45 degree cut line, a non-integer
boundary point is generated. However in QPL, both 45 degree
and 135 degree cut line are necessary to generate a non-integer
boundary point. In other words, it is more likely for TPL to
have non-integer boundary points than QPL. Considering that

LP solver usually goes through the boundary points and finds a
legal solution, the number of non-integer boundary points will
affect the solution quality. If there are large number of non-
integer boundary points, IRLS needs to spend more iterations
to resolve these non-integer solutions as well. This explains
why the runtime of IRLS in TPL is very close to that of ILP,
while it outperforms ILP significantly in QPL.

(0.5, 0.5)

(a)

(0.5, 0.5)

(b)

Fig. 8. An example of (a) TPL solution space and (b) QPL solution space.

Table II shows the results when stitch insertion is allowed.
Due to the existence of stitches, there is performance degra-
dation for IRLS. For TPL, it produces an average of 37.5%
more conflicts and 50% more stitches than ILP with 1.3 times
speedup. For QPL, although the speedup is more significant,
the performance degradation cannot be ignored. On average,
there are about 6 times more conflicts than ILP and 2 times
more stitches. We also compare our results with that of SDP
[21] in Table II. The SDP approach produces almost the
same results as ILP with much smaller runtime. We can see
the trade-off between IRLS and SDP in conflicts and stitch
numbers and speed.

V. CONCLUSION

To the best of our knowledge, this is the first work to
propose the IRLS based decomposition framework for both TP
and QP patterning lithography. Novel stitch insertion schemes
are presented to further resolve the coloring conflicts and
control the amount of stitches in the decomposition results. The
experimental results show that this appoach is very suitable for
graphs without stitches in QPL.
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C1908 0 0 0.257 0 0 0.242 0 0 0.242 2 2 0.565 2 2 0.208 2 2 0.208
C2670 2 0 0.381 4 0 0.337 2 0 0.337 2 0 0.329 3 0 0.296 3 0 0.296
C3540 4 1 0.519 4 1 0.483 4 1 0.483 1 1 0.419 1 1 0.419 1 1 0.419
C5315 5 0 0.709 5 0 0.696 4 2 0.696 6 1 0.679 7 2 0.557 6 2 0.557
C6288 111 0 1.981 139 19 0.945 120 11 0.945 0 9 0.66 3 9 0.58 1 9 0.58
C7552 10 0 1.069 9 1 1.021 8 1 1.021 9 2 0.905 6 12 0.808 5 11 0.808
S1488 1 0 0.231 1 0 0.213 1 0 0.213 0 0 0.197 0 0 0.179 0 0 0.179
S38417 20 27 3.026 28 35 2.588 17 36 2.588 66 20 15.937 50 66 2.65 42 53 2.65
S35932 42 77 8.613 86 102 7.401 44 96 7.401 257 46 887.633 259 261 6.728 173 201 6.728
S38584 45 81 7.216 78 99 6.924 39 96 6.924 N/A N/A N/A 173 183 9.946 114 137 9.946
S15850 57 57 6.783 75 73 6.414 52 71 6.414 N/A N/A N/A 185 148 9.185 107 123 9.185

avg. 20 16 2.098 30 22 1.848 20 21 1.84 27 7 69.835 46 46 2.130 31 36 2.13


