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State Estimator Condition Number Analysis
Reza Ebrahimian and Ross Baldick

Abstract—This paper develops formulas for the condition
number of the state estimation problem as a function of the dif-
ferent types and number of measurements. We present empirical
results using the IEEE RTS-96 and IEEE 118 bus systems that
validate the formulas.

I. INTRODUCTION

STATE estimation in its original form is a least-squares
problem. In a practical implementation, such a problem

often may pose convergence problems. That is, it may converge
slowly, produce inaccurate solutions, or be ill-conditioned
to the point that it may never converge with finite precision
arithmetic. Furthermore, as the number of buses in a system
increases, the ill-conditioning of the state estimation problem
becomes worse. Solution methods, such as orthogonal decom-
position utilizing Givens rotations [1], [2], [9], [13], have been
introduced to overcome this ill-conditioning without loss of
sparsity.

A condition number analysis of the state estimation problem
by Gu,et al. [5] has shown that the type of measurements, for
example branch flow or bus injection measurements, will affect
the numerical conditioning of the problem. That paper showed
that branch flow measurements are better than injection mea-
surements for the numerical conditioning of the problem. Since
in practical systems a mixture of voltage, flow, and injection
measurements is used (and in the future, voltage angle measure-
ments will become available [7], [8]), we extend the results of
[5] by developing formulas to describe the dependence of the
condition number on the mixtures of voltage, flow, and injection
measurements. These formulas are approximations that provide
good qualitative correspondence with the actual condition num-
bers produced by state estimation software.

In Section II we give a description of condition number; in
Section III we present the assumptions and their effects on our
analysis; in Section IV we develop analytical formulas for con-
dition numbers when there are mixtures of different types and
number of measurements; in Section V we extend our analyzes
to qualitative descriptions of the condition numbers after orthog-
onal transformation; in Section VI we compare these analytical
approximations with actual condition numbers for two IEEE test
cases, using a state estimation software developed in MATLAB.
We conclude in Section VII.
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II. CONDITION NUMBER ANALYSIS

The condition number of a nonsingular square matrixis
defined as [6]:

Cond (1)

where any matrix norm can be used. It quantifies the sensitivity
of a system to changes in the data. A large condition number
in (1) is indicative of an ill-conditioned matrix. The largeness
of the condition number is related to available finite precision
arithmetic. The more precision in the calculations, the higher
the level of ill-conditioning that can be tolerated. For example
for double precision arithmetic, a condition number of is
indicative of a highly ill-conditioned matrix [10]. In other words
for an observable system using double precision arithmetic, the
condition number of the information matrix should be much less
than to guarantee convergence. The condition number can
also affect other functions, such as bad data detection.

In this analysis, to make the problem manageable, we use
the 1-norm to calculate the condition number for the informa-
tion matrix of the state estimation problem. Other norms such
as 2-norm would yield qualitatively similar results, however it
would make the theoretical analysis formidable.

III. A SSUMPTIONSUSED TOCLARIFY THE ANALYSIS

To clarify our analysis we use the fast decoupled load flow
assumptions [4], [12]. These assumptions give a good approxi-
mation to the power flow problem. To present a simplified anal-
ysis of the affect of different measurements, we:

1) approximate our information matrix utilizing the decou-
pled load flow assumption, which assumes that reactive
power does not vary with voltage angle and real power

does not vary with voltage magnitude [4], [12],
2) assume that is approximately equal to

where and are voltage angles of nodesand at
two ends of a branch joining nodesand ,

3) assume that the reactance to resistance ratios of the
branches are very large,

4) consider radial networks,
5) assume all branch admittance magnitudes are equal to,

all voltage error variances are equal to, and all flow
and injection measurement error variances are equal to

.
Except for our assumptions on voltage and power measure-

ment error variance values, these assumptions follow [5]. The
assumptions on voltage and power measurements error vari-
ances slightly generalize [5]. In Sections VI-A and VI-B we
will demonstrate that analysis based on a radial system provides
good insights into the effects of mixtures of measurements in
IEEE test case systems that include nonradial topology.
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Fig. 1. Radial system withn� k flow andk voltage measurements.

Consider the maximum likelihood weighted least-squares
state estimation problem:

(2)

where,
is the objective function,

diag ,
is a vector of variances of the measurement
errors,
is a vector of functions describing the
measurements,
is a vector of the measurements,
is a vector of the voltage magnitudes and
angles, and

the superscript denotes transpose.
If the system is observable, then the Gauss–Newton update

equations [14] for this nonlinear optimization problem are:

(3)

(4)

where:
is the Jacobian of vector ,
is a diagonal matrix formed by the mea-
surement error variances,

and are vectors of voltage magnitude and
angles

superscript in
parenthesis

indicates the iteration count, so that is
the value of iterate at theth iteration.

Now consider a radial system such as the one in Fig. 1. With
fast decoupled load flow assumptions, the state estimator’s Ja-
cobian can be approximated as:

(5)

where: corresponds to voltage angle, real flow, and real in-
jection measurements, and corresponds to voltage magni-
tude, reactive flow and reactive injection measurements.

With the above assumptions, we can write the state estimator
information matrix as follows:

where,
,

and
.

If for every real power measurement there is a corre-
sponding reactive power measurement with equal measurement
error variance, and for every voltage magnitude there is a

corresponding voltage angle measurement, with equal mea-
surement error variance then the information matrix is
approximately the same as the information matrix and
their condition numbers using 1-norm are both equal to the
condition number of . We have , and for
convenience we define, .

In Section IV we develop equations for the condition number
of the information matrix using the information matrix .
Hence, the condition numbers calculated in Section IV include
the real and reactive flow and injection, as well as voltage mag-
nitude and angle measurements.

We should emphasize that approximating the condition
number of the information matrix utilizing the matrix is
based on the assumptions listed earlier in this section. In partic-
ular the assumption concerning radial networks which makes
these developments possible is a very rough approximation of
looped networks presently in place.

In the calculation of the condition number of ,
since branch admittance magnitudeis assumed equal for all
branches, can be factored out of the matrix and
canceled out in the computation of its condition number. There-
fore to clarify our presentation we set equal to one.

IV. EFFECTS OFCOMBINATION OF DIFFERENTMEASUREMENTS

ON THE CONDITION NUMBER

In this section we develop formulas to describe the depen-
dence of the condition number on the mixtures of voltage, flow,
and injection measurements. We place a minimum number of
measurements on radial networks, such that the system is ob-
servable. Thus, all of the measurements are critical, and removal
of any measurement would render the system unobservable.

The results of [5] show the effects of flow-only measurements
and injection-only measurements on the condition of the state
estimation problem. Reference [5] demonstrates that flow mea-
surements provided to the state estimator program yields much
better condition number of the information matrix than injection
measurements.

A. Effects of Flow Measurements in the Presence of Voltage
and Absence of Injection Measurements

To assess the effect on the condition number of flow measure-
ments in the presence of voltage and absence of injection mea-
surements, we consider the system given in Fig. 1, for the case
where there are voltage measurements on buses to
bus and flow measurements on the branches starting
from the branch after bus one to the branch before bus .

For the system shown in Fig. 1 we calculate the Jacobian ma-
trix , given the Section III assumptions. Then the information
matrix is:

(6)

where: is the information matrix given in [5] for the case of
flow-only measurements, and is an identity matrix of size .
The inverse of the matrix in (6) is:
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Fig. 2. Radial system withl flow, k voltage andn � k � l injection measurements.

We can show that if:

then:

and if:

then we can show that:

The assumptions on , and are reasonable. In summary, if
, and if , then

the condition number is:

(7)

for . It is obvious from (7) that for a given, as
the number of voltage measurementsincreases, the condition
number decreases. Reference [5] arrives at the conclusion that
the flow-only measurements will result in a condition number on
the order of . Here, we have shown that with flow and

voltage measurements the condition number is on the order of
.

B. Effects of Injection in the Presence of Voltage and Flow
Measurements

We place injection measurements on buses to ,
flow measurements on branches starting from the branch after
bus one to the branch before bus , and we place voltage mea-
surements on buses to as shown in Fig. 2. The
resulting information matrix assuming equal error variances for
all the measurements leads to a condition number which is in-
dependent of error variances [3]. However, with different values
of error variances for power and voltage measurements the in-
formation matrix is:

(8)

where, the matrix is an identity matrix of size and the
matrix is similar to the information matrix given in [5]
for the case of injection-only measurements, except matrixis
augmented with an additional row and column of the following
forms:

and

The inverse of the information matrix is:

(9)

The 1-norm of can be calculated from . If:

then we can show that:

This assumption on and is reasonable. If we let
, then the 1-norm of can be calculated from ,

and we can show that:

In summary, if , and if we let ,
then the condition number is:

(10)

for: , and . The condition number is now on the order
of . We can conclude that the lower the proportion of
injection measurements the better the condition of the informa-
tion matrix, in the presence of voltage and flow measurements.

Now consider the same analysis in the absence of flow mea-
surements; then we would have injection and voltage measure-
ments. The information matrix in the absence of flow measure-
ments using similar placements of measurements as given in
Fig. 2 would be the same as of (8) except that the partition of
the matrix corresponding to the flow measurements is removed.
The inverse of the information matrix would be similar to (9) ex-
cept that the first partition of the matrix (upper left hand) will be
different. However the last partition (lower right hand), which
is the partition used in the calculation of the condition number
using the 1-norm, remains the same. The condition number
for this case therefore is the same as (10) whereis set equal to
zero, so that .

This equation is written in terms of in order to
demonstrate that the condition number is on the order of

. In [5] the condition number for a case with injection-only
measurements at all buses is . No-
tice that the condition number for the case of injection-only
measurements increases aswhereas the condition number
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with voltage measurements and injection measurements
increases as .

V. ORTHOGONAL TRANSFORMATION AND THE CONDITION

NUMBER

Since, in practice, orthogonal transformation is used to
improve the condition number of the matrices involved in the
state estimation problem, we also present results for condition
number analysis of these matrices. We can write the informa-
tion matrix described in Section III as follows:

where: . Applying orthogonal factorization to ,
yields . The update (3) is transformed to:

where: . Therefore the condi-
tion number of the transformed linear system is the condition
number of matrix , which is an upper triangular matrix. If in
(1) we use the 2-norm [6]:

Cond Cond

Cond Cond

Therefore:

Cond Cond

or,

Cond Cond (11)

In Section III, we described that using 1-norm, Cond
Cond . Although (11) is developed using the 2-norm,
from that we canqualitativelyapproximate Cond(), using the
1-norm as:

Cond Cond

Therefore we can write:

(12)

(13)

(14)

where, superscript denotes the equivalent condition numbers
for . The estimates in (12)–(14), provide a better indication of
the condition number of the linear systems solved in practical
implementations compared to using the condition numbers of
the information matrices evaluated in (7) and (10).

VI. RESULTS

To make the development of the formulas described in
Section IV possible, we have only considered radial networks.
In practice networks are always looped. In this section we
calculate the condition number of the information matrix of
looped networks and compare the results with our developments
using radial networks. To qualify our theoretical development
describing the relative effects of different types and number of

Fig. 3. The solid curves are condition numbers ofU for IEEE RTS-96
system withn � k flow measurements andk voltage measurements for
20 random placements of the measurements. The dot-dashed curve represents
an ordered placement of the measurements. The dashed curve is the plot of the
approximation in (12).

measurements, we present two case studies in Sections VI-A
and VI-B. These cases are: the IEEE RTS-96 [11] and the
IEEE 118 bus systems. These IEEE systems differ from our
assumptions given in Section III in that they contain loops
and have different admittances on different branches. Further,
since practical state estimators consider a reference bus voltage
angle, these cases contain a reference voltage angle. We assume
a standard deviation of 0.02 for all branch power flow and bus
injection measurement errors, and a standard deviation of 0.002
for all bus voltage magnitude measurement errors.

For most cases, we evaluated condition numbers for 21 dif-
ferent placements of measurements. The first, ordered place-
ment, used the numbering of the buses and branches as pro-
vided in the data file to place the various measurements. Twenty
others, random placements, were based on random permutations
of bus and branch numbers. All condition numbers were calcu-
lated using the 1-norm.

A. The IEEE RTS-96 System

In this section we place measurements on the IEEE RTS-96
system [11] and calculate condition numbers for the matrix.
For the ordered placement, we place the flow measurements
on the lowest numbered branches, voltage measurements on
the buses following the last flow measurement, and injection
measurements on the last series of buses following the last
voltage measurement. Because of the nonradial configuration
of the IEEE RTS-96 system, the placements of measurements
according to the bus numbers affects the Jacobian matrix
differently compared to the radial case. For the random place-
ments, we use random permutations of the buses and branches.

Fig. 3 shows a plot of the condition number ofusing or-
dered and random placements of the measurements together
with a plot of (12) for voltage measurements and flow
measurements. These curves are all qualitatively similar. The
condition number decreases as the number of voltage measure-
ments increases and it increases as the number of flow measure-
ments increases. When the number of voltage measurements is
greater than about 40, all of the curves are qualitatively similar.
When there are less than 40 measurements, the curve with the
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Fig. 4. The solid curves are condition numbers ofU for IEEE RTS-96 system
with n�k injection measurements andk voltage measurements for 20 random
placements of the measurements. The dot-dashed curve represents an ordered
placement of the measurements. The dashed curve is the approximation in (14).

Fig. 5. The unshaded surface is condition number ofU for IEEE RTS-96
with n � k � l injection measurements,k voltage measurements, andl flow
measurements. The shaded plane is the plot of the approximation in (13).

ordered placement of measurements describing the condition
number of follows the approximation in (12) more closely
than the curves with the random placement of the measure-
ments. Reference [5] shows that the effect of the branch reac-
tance to resistance ratio on the condition number is very small.
Thus we attribute the differences in magnitudes primarily to the
nonradial topology of the IEEE RTS-96 system and the detailed
placement of the measurements.

Fig. 4 shows a plot of the condition number offor the IEEE
RTS-96 versus the numberof voltage measurements, given

injection measurements for ordered and random place-
ments of the measurements, and also shows the approximation
(14). Although the curve of the condition number ofwith
ordered measurements contains some variations, it essentially
matches the curve describing (14) to a large extent. The curves
representing the random placements of the measurements are
at lower magnitudes. The curve with the ordered placement of
the measurements is closer to the approximation in (14). Nev-
ertheless, the approximation in (14) is a reasonable guide to the
qualitative dependence of condition number for all placements
considered.

Fig. 5 shows a plot of the condition number offor the IEEE
RTS-96 versus the numbers injection measurements,

Fig. 6. The solid curves are condition numbers ofU for IEEE 118 bus system
with n � k flow measurements andk voltage measurements for 20 random
placements of the measurements and the dot-dashed curve represents an
ordered placement of the measurements. The dashed curve is the plot of the
approximation in (12).

and flow measurements, given voltage measurements for
ordered placement of measurements. The surface describing
the condition number of is the unshaded one, and cuts
the plane of the approximation (13) in several locations.
Overall (13) gives a good approximation to the magnitude of
the condition number of . The actual condition number is
mostly higher than the approximation as the number of flow
measurements increases and slightly lower as the number of
injection measurements increases. When both the number of
injections and flow measurements decrease, approximation
(13) is slightly higher than the actual condition number of.
The variations and differences are predominantly attributed to
the nonradial topology of the IEEE RTS-96 system, and the
placement of the measurements.

B. The IEEE 118-Bus System

To further demonstrate the closeness of our formulas to the
actual condition numbers as a function of the relative mixture of
types and number of measurements, we apply similar measure-
ments to the IEEE 118 bus system and calculate the condition
numbers of and the corresponding approximations. Again,
we place the flow measurements on the first series of branches,
voltage measurements on the buses following the last flow mea-
surement, and injection measurements on the last series of buses
following the last voltage measurement.

Fig. 6 shows a plot of the condition number offor the IEEE
118 bus system versus the numberof voltage measurements,
given flow measurements for ordered and random place-
ment of measurements. Although the plot of (12) and the con-
dition number of match qualitatively, the condition number
of is mostly at a higher magnitude for a nonradial topology.
However, the condition number of for the IEEE 118 bus
system follows the approximation (12) more closely for the or-
dered placement of the measurements. This may suggest that the
closeness of the approximation to the actual condition number
is a function of topology of the system.

Fig. 7 shows a plot of the condition number offor the IEEE
118 bus system versus the numberof voltage measurements,
given injection measurements for ordered and random
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Fig. 7. The solid curves are condition numbers ofU for IEEE 118 bus system
with n�k injection measurements andk voltage measurements for 20 random
placements of the measurements and the dot-dashed curve represents an
ordered placement of the measurements. The dashed curve is the plot of the
approximation in (14).

Fig. 8. The unshaded surface is condition number ofU for IEEE 118 bus
system withn� k� l injection measurements,k voltage measurements, andl
flow measurements. The shaded plane is the plot of the approximation in (13).

placement of the measurements. The plot of (14) and the condi-
tion number of are close particularly for the ordered place-
ment of the measurements and intersect close to the smaller
number of flow measurements, with the plot of the condition
number of being mostly at a lower magnitude than the plot
of (14). It can be seen that as the number of voltage measure-
ments increase the condition number rapidly decreases, and as
the number of injection measurements increases the condition
number increases.

Fig. 8 shows a plot of the condition number ofand (13) for
the IEEE 118 bus system versus the number of injec-
tion measurements andflow measurements, given voltage
measurements for ordered placement of the measurements. The
magnitudes of the condition number ofmatches the magni-
tudes described by the plane of the approximation (13). They
are roughly at the same magnitude in most places.

VII. CONCLUSIONS ANDFURTHER STUDIES

This paper extends the results presented in [5] by developing
formulas to describe the dependence of the condition number
on the mixture of voltage, flow, and injection measurements.

Furthermore, it slightly generalizes the assumptions by intro-
ducing different measurement error variances for voltage and
power measurements.

Besides the size of the system and variation of measurement
error’s standard deviations, the condition number of the state
estimation information matrix and are predominantly a
function of the placement, type, and number of measurements
and network topology. In this paper we have investigated
the relative effects of flow measurements in the presence of
voltage and absence of injection measurements; injection
measurements in the presence of voltage and absence of flow
measurements, and injection measurements in the presence of
flow and voltage measurements. We show that the presence of
voltage measurements improves the condition number in the
presence of flow or injection measurements, and the lower the
proportion of the injection measurements in the presence of
voltage and flow measurements the better the condition number
of the information matrix. Since the state estimator solves for
the voltage magnitudes and angles, increasing the proportion
of these measurements always improves the condition number.
Furthermore, the smaller the measurement error variances of
the voltage and angle measurements the smaller the condition
number of the information matrix.

The results of the examples presented in Section VI
corroborate the formulas developed in Section IV, and demon-
strate that the trends identified under restrictive assumptions,
also qualitatively predict the trends for realistic systems. We
suggest that the differences are predominantly the result of the
system topologies and placement of the measurements. The
approximation for the condition number of are generally
closer for the ordered placements than the random placements
of the measurements.

Comparing the IEEE RTS-96 system and the IEEE 118 bus
system, the condition numbers for the IEEE RTS-96 system
match more closely with the developed formulas of Section IV
for the ordered placement of the measurements. We attribute this
to the systems’ topologies. Comparing the random placements
with the ordered placements of the measurements, it appears
that for the case of presence of injection and voltage measure-
ments and absence of flow measurements, depicted in Figs. 4
and 7, the random placement of the measurements yields a sim-
ilar trend that is always less than the approximation in (14). This
may suggest that the order of placement employed for the devel-
opment of (14) yields a maximum for condition number in the
presence of voltage and injection measurements and absence of
flow measurements. A future subject of research would be to
describe the kind of variations in the topology and placement of
measurements that would have significant effects on the condi-
tion number of the information matrix and.

REFERENCES

[1] A. J. A. Simoes Costa and V. H. Quintana, “An orthogonal row pro-
cessing algorithm for power sequential state estimation,”IEEE Trans.
on Power Apparatus and Systems, vol. 100, pp. 3791–3800, Aug. 1981.

[2] , “Robust numerical technique for power system state estimation,”
IEEE Trans. on Power Apparatus and Systems, vol. 100, no. 2, pp.
69–698, Feb. 1981.

[3] R. Ebrahimian, “Power system operations: State estimation distributed
processing,” Ph.D. dissertation, University of Texas at Austin, Austin,
1999.



EBRAHIMIAN AND BALDICK: STATE ESTIMATOR CONDITION NUMBER ANALYSIS 279

[4] M. E. El-Hawary, Electrical Power Systems Design and Anal-
ysis. Piscataway, NJ: IEEE Press, 1995.

[5] J. W. Gu, G. R. Krumpholz, K. A. Clements, and P. W. Davis, “The
solution of ill-conditioned power system state estimation problems via
the method of Peters and Wilkinson,”IEEE Trans. on Power Apparatus
and Systems, vol. PAS-102, no. 10, pp. 3473–3480, Oct. 1983.

[6] S. G. Nash and A. Sofer,Linear and Nonlinear Programming, 2nd
ed. New York, NY: Wiley, 1996.

[7] E. W. Palmer and G. Ledwich, “Optimal placement of angle transducers
in power systems,”IEEE Trans. on Power Systems, vol. 11, no. 2, pp.
788–793, May 1995.

[8] A. G. Phadke, “Synchronized phasor measurements in power systems,”
IEEE Computer Applications in Power, vol. 6, no. 2, pp. 10–15, Apr.
1993.

[9] R. C. Pires, A. S. Costa, and L. Mili, “Iteratively reweighted
least-squares state estimation through Givens rotations,”IEEE Trans.
on Power Systems, June 1998.

[10] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Nu-
merical Recipes The Art of Scientific Computing. New York, NY: Press
Syndicate of the University of Cambridge, 1989.

[11] Reliability Test System Task Force of the application of probability
methods subcommittee, “The IEEE reliability test system-1996,” in
IEEE/PES Winter Meeting, Baltimore, MD, Jan. 21–25, 1996, 96 WM
326-9 PWRS.

[12] B. Stott and O. Alsac, “Fast decoupled load flow,”IEEE Trans. on Power
Apparatus and Systems, vol. PAS-93, no. 1, pp. 859–869, May/June
1974.

[13] N. Vempati, I. W. Slutsker, and W. F. Tinney, “Enhancements to Givens
rotations for power system state estimation,”IEEE Trans. on Power Sys-
tems, vol. 6, no. 2, pp. 842–849, May 1991.

[14] A. J. Wood and B. F. Wollenberg,Power Generation, Operation, and
Control, 2nd ed. New York, NY: Wiley, 1996.

Reza Ebrahimianreceived the B.S. and Masters in electrical engineering from
Texas A&M University, and the Ph.D. degree from the University of Texas at
Austin. He is currently a Consulting Engineer at Austin Energy.

Ross Baldick received the B.Sc. and B.E. degrees from the University of
Sydney, Australia and the M.S. and Ph.D. degrees from the University of
California, Berkeley. He is currently an Associate Professor in the Department
of Electrical and Computer Engineering at the University of Texas at Austin.


