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Abstract—In certain electricity markets, because of nonconvexi-
ties that arise from their operating characteristics, generators that
follow the independent system operator’s (ISO’s) decisions may fail
to recover their cost through sales of energy at locational marginal
prices. The ISO makes discriminatory side payments to incentivize
the compliance of generators. Convex hull pricing is a uniform pric-
ing scheme that minimizes these side payments. The Lagrangian
dual problem of the unit commitment problem has been solved
in the dual space to determine convex hull prices. However, this
approach is computationally expensive. We propose a polynomi-
ally solvable primal formulation for the Lagrangian dual problem.
This formulation explicitly describes for each generating unit the
convex hull of its feasible set and the convex envelope of its cost
function. We cast our formulation as a second-order cone pro-
gram when the cost functions are quadratic, and a linear program
when the cost functions are piecewise linear. A 96-period 76-unit
transmission-constrained example is solved in less than 15 s on a
personal computer.

Index Terms—Convex hull pricing, electricity markets, extended
locational marginal pricing, Lagrangian relaxation, second-order
cone programming.

I. INTRODUCTION

DAY-AHEAD and some real-time electricity markets in the
US currently base their market clearing model on a unit

commitment and economic dispatch (UCED) problem [1]–[3].
The independent system operator (ISO) sends energy prices and
target quantity instructions to each generating unit (called “unit”
for short hereafter) based on a welfare-maximizing solution to
the UCED problem. Ideally, energy prices provide incentives for
profit-maximizing market participants to comply with the ISO’s
commitment and dispatch decisions. Various issues prevent this
ideal, however, including the non-convexities in the market that
arise from units’ operating characteristics. Consequently, start-
up and no-load costs of units may not be covered by sales of
energy at locational marginal prices (LMPs). More generally, in
a market with non-convexities, there might be no set of uniform
prices1 that supports a welfare-maximizing solution [4].2
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bus. Prices may vary locationally.
2A set of prices is said to support a solution if the economic agents’ profit

maximizing decisions align with this solution.

One way to address this problem is to maintain uniform en-
ergy prices based on marginal energy costs and provide side
payments to units that have an incentive to deviate from the
ISO’s solution. This side payment is also known as an “uplift”
payment. In principle, the amount of uplift payment to a unit
should cover its lost opportunity cost, the gap between its maxi-
mum possible profit and the actual profit obtained by following
the ISO’s solution. For example, the cost of a fast-start unit dis-
patched at its minimum limit may not be covered by sales of
energy at its marginal cost. If revenues are based solely on LMP,
then the profit-maximizing decision of this unit is to shut down.
An uplift payment is needed to keep this unit online [5]. Unlike
energy prices, uplift payments are non-uniform (discriminatory)
in that the amount of payment is unit-specific. These side pay-
ments make it harder for a potential entrant to determine if new
entry would be profitable, particularly if the uplift payments are
not disclosed publicly.

Transparency of the market can be improved by keeping up-
lift payments as low as possible. To this end, several alternative
pricing schemes have been proposed. For example, an ad-hoc
method to reduce uplift payments to fast-start units is to re-
lax their minimum generation limits to zero, so that they can
set the LMPs [6]. Keeping marginal prices as uniform energy
prices, the pricing scheme proposed in [7] introduces artifi-
cial constraints that set the commitment variables at a welfare-
maximizing solution and create discriminatory side payments
for commitment decisions based on the optimal dual variables
associated with these artificial constraints. Different from the
pricing schemes that aim at supporting a welfare-maximizing
solution, pricing schemes such as [8] have been proposed to
incentivize a commitment and dispatch solution that is close,
but not necessarily equal to the ISO’s welfare-maximizing solu-
tion. In these methods, allocative efficiency is traded off against
transparency. Instead of focusing on unit-commitment based
markets that are typical in the US, Ortner and Huppmann [9]
define a quasi-equilibrium for a self-committed electricity mar-
ket, and determine prices through a mathematical program with
equilibrium constraints. See [10] for a comprehensive review of
different pricing schemes for markets with non-convexities.

Convex hull pricing [4], [11], [12] is a pricing scheme that
minimizes certain uplift payments over all possible uniform
prices, and has received much attention. The Midcontinent ISO
(MISO) has implemented an approximation of convex hull pric-
ing, and refers to convex hull prices as extended locational
marginal prices (ELMPs) [5]. Convex hull prices are slopes of
the convex envelope of the system cost function, and are thus
non-decreasing with respect to demand. These prices minimize
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the total uplift payment defined by the duality gap between the
UCED problem and its Lagrangian dual.

The Lagrangian dual problem of the UCED problem in
which the system-wide constraints are dualized has been used
to determine convex hull prices. This3 problem is convex
but non-smooth. Algorithms such as sub-gradient methods,
bundle methods [13], and cutting plane methods [14] have
been proposed to solve the Lagrangian dual problem of
mixed-integer programming problems. In the context of convex
hull pricing, the focus is on the optimality of dual variables,
rather than obtaining primal solutions. Therefore, in addition
to general-purpose methods, an outer approximation method
[4], a sub-gradient simplex cutting plane method [15], and an
extreme-point sub-differential method [16] have been designed
specifically for convex hull pricing.

None of the above-mentioned methods guarantees conver-
gence in polynomial time. For non-smooth optimization tech-
niques like the sub-gradient method for which no certificate of
optimality exists, the algorithm is often terminated before an
optimal value is attained [17, Chapter 10.3]. Obtaining exact
dual maximizers of the Lagrangian dual problem is computa-
tionally expensive [5], [18]. Consequently, MISO implements a
single-period approximation of convex hull pricing that is based
on a version of the UCED problem in which integer variables
are relaxed to being continuous [5].

Efficient computation of convex hull prices remains challeng-
ing. This paper proposes a polynomially-solvable formulation
for convex hull pricing. Section II introduces convex hull pric-
ing. Section III presents a primal formulation of the Lagrangian
dual problem of the UCED problem. In this formulation, we
explicitly describe convex hulls of individual unit’s feasible
commitment and dispatch decisions and convex envelopes of
individual cost functions. We cast the primal formulation as a
second-order cone program if the cost functions are quadratic,
and a linear program if the cost functions are affine or piecewise
linear. Our formulation gives exact convex hull prices in the
absence of ramping constraints.

Section IV considers several extensions to our model. We
show that exact convex hull prices can still be obtained when
ancillary services or any linear system-wide constraints (such
as the transmission constraints) are introduced. Ramping con-
straints lead to an exponential number of valid inequalities in
the convex hull representation. In this case, we approximate the
convex hulls using valid inequalities developed in [19], [20].
Since only a linearly-constrained convex program needs to be
solved to obtain convex hull prices, our approach is robust and
scalable. Section V reports numerical tests conducted on sev-
eral examples found in the literature, and conclusions follow in
Section VI.

II. CONVEX HULL PRICING

This section formulates a unit commitment and economic dis-
patch (UCED) problem. We refer to coupling constraints that en-

3More precisely, they are sub-gradients of the convex envelope of the system
cost function. The system cost function here is the value function of the UCED
problem parametrized by demand. The convex envelope of a function is the
largest convex under-estimator of the given function.

force system-wide requirements (e.g., demand and transmission
constraints) as system-wide constraints. In contrast, constraints
that an individual unit faces are called private constraints.

We first consider a UCED problem in which the only type
of system-wide constraint is supply-demand balance constraint.
We define the uplift payment to a unit to be its lost opportunity
cost. We then introduce the concept of convex hull pricing and
describe the Lagrangian dual problem of the UCED problem.
This simple model suffices to illustrate the basic ideas of convex
hull pricing and our primal formulation.

A. The UCED Problem

We consider a T -period offer-based UCED problem with |G|
units. For unit g ∈ G at time t ∈ {1, . . . , T}, the commitment
variable xgt is 1 if the unit is online and is 0 if the unit is offline.
The start-up variable ugt is 1 if unit g starts up at period t and
is 0 otherwise.

Denote unit g’s dispatch-level (dispatched power output) vec-
tor by pg ∈ RT

+ , whose t-th component is the dispatch level at
time t. Similarly, xg ∈ {0, 1}T denotes the commitment vector,
and ug ∈ {0, 1}T −1 is the start-up vector.4 Let unit g’s offer
cost function be Cg (pg ,xg ,ug ), which may include energy,
start-up, and no-load costs. As in [21], [22], we assume that
Cg is convex piecewise linear or convex quadratic in pg . We
assume that the start-up and no-load costs are constant. Let
Xg ⊆ RT

+ × {0, 1}T × {0, 1}T −1 be the set of feasible com-
mitment and dispatch decisions for unit g. We assume that pri-
vate constraints that define Xg are specified by linear inequali-
ties; these constraints may include generation limits, minimum
up/down time, and perhaps ramping constraints [21].

Let d ∈ RT
+ be a demand vector, whose t-th component de-

notes system demand at time t. The UCED problem makes a set
of commitment and dispatch decisions that minimizes the total
cost, while satisfying physical and operational constraints:

v(d) = min
pg ,xg ,ug , g∈G

∑

g∈G
Cg (pg ,xg ,ug ) (1)

s.t.
∑

g∈G
pg = d (2)

(pg ,xg ,ug ) ∈ Xg ∀g ∈ G. (3)

In addition, we view the UCED problem as parametrized by
the demand vector d, and denote the value function of the UCED
problem by v(d).

B. Non-convexity and Uplift Payments

Suppose that an energy price vector π is specified by the
independent system operator (ISO). Assume that unit g is a
price-taker.5 Its profit maximization problem is:

wg (π) = max
pg ,xg ,ug

πᵀpg − Cg (pg ,xg ,ug ) (4)

s.t. (pg ,xg ,ug ) ∈ Xg , (5)

4The start-up variables ug are defined from period 2 to T . For simplicity
we do not consider the initial conditions of the units. Our formulation can be
extended to consider these conditions.

5We assume that the units are prices takers in the economic sense that they
cannot affect prices.
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where wg (π) is the value function of this problem.
From a microeconomic viewpoint, the ISO’s UCED problem

(1)–(3) is a social planner’s problem whose solution is welfare-
maximizing. Problem (4)–(5) is the profit maximization problem
of a rational agent. If the ISO’s problem is convex and satisfies
strong duality, we can set π to be the optimal dual vector associ-
ated with the supply-demand balance constraints in the planner’s
problem. As a result, there exist individual profit-maximizing
decisions that align with the welfare-maximizing solution, but
the ISO may need to specify which solution is welfare maximiz-
ing. If the ISO’s problem were strictly convex, then prices alone
would provide sufficient information for the units to determine
an efficient decision [23, Chapter 16].

However, the UCED problem is non-convex because of the
integer decision variables xg and ug . Thus, in general, there
does not exist a set of prices that support the ISO’s decisions.
In particular, revenues from locational marginal prices (LMPs)
may not cover the offered costs of a unit, and the unit may prefer
to deviate from the ISO’s commitment and dispatch decisions,
unless there is additional incentive to follow those decisions.
LMPs are determined as the optimal dual variables associated
with the supply-demand balance constraints in a continuous
convex economic dispatch problem with commitment decisions
fixed at ISO-determined optimal values.

One way to address the above-mentioned problem is for the
ISO to maintain uniform energy prices and provide side pay-
ments to units whose individually rational decision is different
from ISO’s. In principle, these side payments, also known as
“uplift,” should cover the gap between the maximum possible
profit (the optimal objective function value of problem (4)–(5)),
and the profit made by following the ISO’s decision (the value
of objective function (4) evaluated at the ISO’s decisions).

Mathematically, given a set of uniform energy prices π and
an ISO’s welfare-maximizing decision (p∗,x∗,u∗), the amount
of uplift payment needed for unit g equals its lost opportunity
cost:

Ug (π,p∗,x∗,u∗) = wg (π) − (πᵀp∗
g − Cg (p∗

g ,x
∗
g ,u

∗
g )),

(6)
Since the ISO’s decision (p∗,x∗,u∗) is a feasible, but not nec-
essarily optimal solution to problem (4)–(5), Ug (π,p∗,x∗,u∗)
is non-negative.

C. Convex Hull Pricing and the Lagrangian Dual Problem

Convex hull prices can be determined through a Lagrangian
relaxation [13] of the UCED problem. We dualize the supply-
demand balance constraints (2) and obtain the Lagrangian dual
function

q(π) =
∑

g∈G

(
min

(pg ,xg ,ug )∈Xg

Cg (pg ,xg ,ug ) − πᵀpg

)
+ πᵀd,

(7)
where π ∈ RT is now the dual vector associated with the supply-
demand balance constraints. The Lagrangian dual problem is

max
π

q(π). (8)

The convex hull prices are defined to be the dual maximizers
π∗. The value function of the Lagrangian dual problem (8) as
a function of d is the convex envelope of v(d) [24]. The price
vector is a sub-gradient of the convex envelope of v(d).

The duality gap between the UCED problem and its dual (7)
is exactly the total lost opportunity costs,

∑

g∈G
Ug (π,p∗,x∗,u∗). (9)

Consequently, convex hull pricing as a uniform pricing scheme
minimizes total uplift payment as defined by (9); that is, it
minimizes the total lost opportunity costs of all participating
units. This is a special case of a more general result on the type
of uplift payments convex hull pricing minimizes, as shown in
[4], [25], [26], since the only type of system-wide constraint
considered for now is the supply-demand balance constraint.

III. A PRIMAL FORMULATION FOR CONVEX HULL PRICING

This section proposes a convex primal formulation for the
Lagrangian dual problem of the UCED problem. In this formu-
lation, the feasible set for each unit is replaced by its convex hull,
and the individual cost functions are replaced by their convex
envelopes.

A. A Primal Formulation for the Lagrangian Dual Problem

We make the following:
Assumption 1: The set Xg is compact for all g ∈ G, and all

system-wide constraints are linear.
Let conv(·) denote the convex hull of a set.6 Let C∗∗

g ,Xg
(·)

be the convex envelope of Cg (·) taken over Xg . The function
C∗∗

g ,Xg
(·) is the largest convex function on conv(Xg ) that is an

under-estimator of Cg on Xg . It is also the conjugate of the
conjugate of Cg .

Note that the UCED problem is separable across g absent the
system-wide constraints. We have:

Theorem 1: Under Assumption 1, (a) the optimal objective
function value of the Lagrangian dual problem (8) equals the
minimum of the following problem denoted by CHP-Primal:

min
pg ,xg ,ug ,g∈G

∑

g∈G
C∗∗

g ,Xg
(pg ,xg ,ug ) (10)

s.t.
∑

g∈G
pg = d (11)

(pg ,xg ,ug ) ∈ conv(Xg ) ∀g ∈ G, (12)

and (b) an optimal dual vector associated with (11) is an optimal
solution to (8).

Proof: Since the private and system-wide constraints are de-
fined by linear equalities and inequalities, strong duality holds
between CHP-Primal and its Lagrangian dual problem. There-
fore, Theorem 1 holds by Theorem 3.3 in [24] �.

Theorem 1 suggests that if we have an explicit characteriza-
tion of C∗∗

g ,Xg
(pg ,xg ,ug ) and conv(Xg ), we can solve CHP-

Primal to obtain the dual maximizers of (8). The convex hull

6The convex hull of a set is all convex combinations of points in that set.
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prices are the optimal dual variables associated with the supply-
demand balance constraints (11). Another equivalent primal for-
mulation is proposed in [26].

B. Characterization of the Convex Hulls

The convex hull of a compact set defined by linear inequalities
and integrality requirements is a bounded polyhedron. In gen-
eral, it is difficult to obtain an explicit description of the convex
hull of a mixed-integer set defined by arbitrary linear constraints.
The number of valid inequalities needed is typically exponential
in the size of the input [27]. A general-purpose method proposed
in [28] is used in [26] to obtain a convex hull description of a
unit’s feasible set. This method applies to a feasible set defined
by arbitrary linear constraints. All feasible commitment deci-
sions are enumerated in this method, and both the number of
variables and number of constraints in the resulting description
are exponential in the number of time periods.

Recent polyhedral studies of a unit’s feasible set [19], [20],
[29] exploit its structure. We use special-purpose valid inequal-
ities proposed in these studies to obtain a tractable description
of conv(Xg ).

Let Lg and lg , respectively, be the minimum up and minimum
down times for unit g, and let p

g
and pg be the minimum and

maximum generation levels for unit g. We consider feasible
commitment and dispatch decisions of a unit limited by:

1) state-transition constraints that represent the relationship
between binary variables:

ugt ≥ xgt − xg,t−1 , ∀t ∈ [2, T ], (13)

2) minimum up/down time constraints [29]:

t∑

i=t−Lg +1

ugi ≤ xgt , ∀t ∈ [Lg + 1, T ], (14)

t∑

i=t−lg +1

ugi ≤ 1 − xg,t−lg , ∀t ∈ [lg + 1, T ], (15)

3) dispatch level limits:

xgtpg
≤ pgt ≤ xgtpg , ∀t ∈ [1, T ]. (16)

Ramping constraints are not considered until Section IV-C.
Therefore, a unit’s feasible set is

Xg = {pg ∈ RT ,xg ∈ {0, 1}T ,ug ∈ {0, 1}T −1 |
(13)–(15), (16)}. (17)

The set of feasible binary decisions alone is:

Dg = {xg ∈ {0, 1}T ,ug ∈ {0, 1}T −1 | (13)–(15)}. (18)

The following trivial inequalities are valid for Dg :

ugt ≥ 0, ∀t ∈ [2, T ]. (19)

It is claimed in [29] that

conv(Dg ) = {xg ∈ RT ,ug ∈ RT −1 |(13)–(15), (19)}. (20)

While this statement is true, the proof of it relies on a lemma
that states that all the extreme points of the polytope defined in

(20) are integral, Lemma 2.9 in [29]. The proof of Lemma 2.9
given in [29] is flawed, however.7 We identify the flaws and give
our own proof in an online appendix [30, Appendix].

We also note that the minimum up/down time constraints in
[29] have been used in recent literature on tight formulations of
the UCED problem, such as [22], [31], [32].

The following theorem extends the result in (20) to also in-
clude the dispatch decisions:

Theorem 2: The result shown in (20) implies that

Cg = {pg ∈ RT ,xg ∈ RT ,ug ∈ RT −1 | (13)–(16), (19)}

describes the convex hull of Xg .8

Proof: Since all the inequalities that describe Cg are valid, it
suffices to prove that all extreme points of Cg have binary values
for commitment and start-up variables.

Suppose that (p̂g , x̂g , ûg ) is an extreme point of Cg . By defi-
nition, among constraints (13)–(16), (19), 3T − 1 linearly inde-
pendent constraints are active at (p̂g , x̂g , ûg ). Only constraints
(16) involve vector pg . Therefore, out of the 3T − 1 active con-
straints, T of them must be of type (16).

For the T active constraints of type (16), either p̂gt = x̂gtpg

or p̂gt = x̂gtpg . Let {T , T } be a partition of the set {1, . . . , T},
so that p̂gt = x̂gtpg

, ∀t ∈ T , and that p̂gt = x̂gtpg , ∀t ∈ T . It
is easy to show that these active constraints are linearly inde-
pendent.

More importantly, the projection of

{pg ∈ RT ,xg ∈ RT ,ug ∈ RT −1 |
pgt = xgtpg

, ∀t ∈ T , pgt = xgtpg , ∀t ∈ T } (21)

onto the (xg ,ug )-space is the whole of RT × RT −1 . To see
this, consider any point (x′

g ,u
′
g ) ∈ RT × RT −1 . Let p′gt =

x′
gtpg

, ∀t ∈ T , and let p′gt = x′
gtpg , ∀t ∈ T . By construction,

the point (p′
g ,x

′
g ,u

′
g ) is in set (21).

In addition to the T active constraints of type (16), 2T −
1 other linearly independent constraints must be active at
(p̂g , x̂g , ûg ). These 2T − 1 constraints can only be of type
(13)–(15) or (19). Because the projection of the set (21) onto the
(xg ,ug )-space is RT × RT −1 , and because the number of such
active constraints equals the number of variables, the values
of (x̂g , ûg ) are completely determined by these 2T − 1 active
constraints. Lemma 2.9 in [29] implies that any such 2T − 1
constraints lead to binary (x̂g , ûg ). �

C. Characterization of the Convex Envelopes

In CHP-Primal, each cost function Cg (·) is replaced by its
convex envelope taken over the non-convex feasible set Xg .
When a unit has a constant marginal cost, Cg (·) is affine, and
the convex envelope of Cg (·) has the same functional form as
Cg (·) itself.

7We thank Dr. Dane A. Schiro and Dr. Eugene Litvinov for pointing this out
to us.

8For T = 2 and T = 3, the convex hull of a more general Xg with ramping
constraints has been characterized in [20]. The result here does not consider
ramping constraints, but holds for an arbitrary T .
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When Cg (·) is not affine (piecewise linear or quadratic in
pg ), its convex envelope has a different functional form. We
first discuss the convex quadratic case.

Let the start-up and no-load cost of unit g be hg and cg ,
respectively. Define the following set:

Xgt = {pgt ∈ R, xgt ∈ {0, 1}, ugt ∈ {0, 1} |
xgtpg

≤ pgt ≤ xgtpg}.

Suppose the offer cost function Cg : Xg → R is defined by:

Cg (pg ,xg ,ug ) =
T∑

t=1

Cgt(pgt , xgt , ugt), (22)

where for each period t, Cgt : Xgt → R is a convex quadratic
function defined by a single-period cost function:

Cgt(pgt , xgt , ugt) = agp
2
gt + bgpgt + cgxgt + hgugt , (23)

where we assume ag > 0.
Theorem 3: The convex envelope of the quadratic cost func-

tion Cg taken over Xg is the function C∗∗
g ,Xg

: conv(Xg ) → R
defined by the following:

C∗∗
g ,Xg

(pg ,xg ,ug ) =
T∑

t=1

C∗∗
gt,Xg t

(pgt , xgt , ugt),

where C∗∗
gt,Xg t

: conv(Xgt) → R is defined by the following:

C∗∗
gt,Xg t

(pgt , xgt , ugt)

=

{
ag

p2
g t

xg t
+ bgpgt + cgxgt + hgugt , xgt > 0,

0, xgt = 0.

Proof: We first show that C∗∗
gt,Xg t

is the convex envelope of
the single-period cost function Cgt . Consider the value of the
function C∗∗

gt,Xg t
with ugt fixed at zero:

C∗∗
gt,Xg t

(pgt , xgt , 0) =

{
ag

p2
g t

xg t
+ bgpgt + cgxgt , xgt > 0,

0, xgt = 0,
(24)

as (pgt , xgt) varies over {pgt ∈ R, xgt ∈ [0, 1] |xgtpg
≤ pgt ≤

xgtpg}. At points with xgt ∈ {0, 1}, the graph of this func-
tion is the same as Cgt(pgt , xgt , 0). The graph of this function
at any point (pgt , xgt) with xgt ∈ (0, 1) is determined by the
line segment connecting (0, 0, 0) and ( pg t

xg t
, 1, Cgt(

pg t

xg t
, 1, 0)).

This function is continuous and convex on {pgt ∈ R, xgt ∈
[0, 1] |xgtpg

≤ pgt ≤ xgtpg}, as can be verified by taking its
Hessian in this domain.

We prove by contradiction that among the convex
under-estimators of Cgt(pgt , xgt , 0) on the given domain,
C∗∗

gt,Xg t
(pgt , xgt , 0) is the largest one. Suppose not, then

there exists a convex under-estimator of Cgt(pgt , xgt , 0),
denoted by C ′

gt(pgt , xgt , 0), for which there exist a point
(p′gt , x

′
gt) with x′

gt ∈ (0, 1) such that C ′
gt(p

′
gt , x

′
gt , 0) >

C∗∗
gt (p

′
gt , x

′
gt , 0). Consider the line interval connecting

(0, 0, 0) and ( p ′
g t

x ′
g t

, 1, Cgt(
p ′

g t

x ′
g t

, 1, 0)). We have C ′
gt(p

′
gt , x

′
gt , 0) >

C∗∗
gt (p

′
gt , x

′
gt , 0) = 0 + x′

gtCgt(
p ′

g t

x ′
g t

, 1, 0), which implies that

Fig. 1. Convex envelope of a single-period cost function. The figure shows
the graph of a single-period cost function 0.2p2

g t + pg t + 4xg t defined on
{xg t ∈ {0, 1}, pg t ∈ R |xg t ≤ pg t ≤ 5xg t} (black dot and black curved
line), together with its convex envelope (the colored surface).

C ′
gt is not convex when restricted to this line. This contradicts

the convexity of C ′
gt , since a function is convex if and only if it

is convex when restricted to any line that intersects its domain
[33, Chapter 3]. Therefore, C∗∗

gt,Xg t
(pgt , xgt , 0) is the convex

envelope of Cgt(pgt , xgt , 0).
Fig. 1 shows an example of Cgt(pgt , xgt , 0) and its convex

envelope. Since Cgt is affine in ugt , C∗∗
gt,Xg t

(pgt , xgt , ugt) is the
convex envelope of Cgt(pgt , xgt , ugt).

Now consider the time-coupled domain Xg . Let X ′
g =∏T

t=1 Xgt , so that Xg ⊆ X ′
g . The set X ′

g\Xg contains the com-
mitment and dispatch decisions that satisfy generation limit con-
straints (16) but not constraints (13)–(15). Because constraints
(13)–(15) restrict the binary variables xg and ug , (X ′

g\Xg ) ∩
conv(Xg ) = ∅. Consequently, X ′

g ∩ conv(Xg ) = Xg .
By the separability of Cg and X ′

g across t, we have that the
convex envelope of Cg taken over X ′

g is the function C∗∗
g ,X ′

g
:

conv(X ′
g) → R defined by:

C∗∗
g ,X ′

g
(pg ,xg ,ug )

=
T∑

t=1

{
ag

p2
g t

xg t
+ bgpgt + cgxgt + hgugt , xgt > 0,

0, xgt = 0.

Note that taking the convex envelope of a function is
equivalent to taking the convex hull of its epigraph. Because
X ′

g ∩ conv(Xg ) = Xg , on conv(Xg ), the convex hull of the
epigraph of Cg taken over Xg is the same as the convex
hull of the epigraph taken over X ′

g . Therefore, on conv(Xg ),
C∗∗

g ,X ′
g
(pg ,xg ,ug ) = C∗∗

g ,Xg
(pg ,xg ,ug ). �

Using the convex envelopes gives us a better lower bound
than simply keeping the functional form of Cgt,Xg t

and relaxing
its domain. Given g ∈ G, t ∈ [1, T ], and pgt > 0, when xgt is
binary, C∗∗

gt,Xg t
(pgt , xgt , 0) = Cgt,Xg t

(pgt , xgt , 0); when xgt is

fractional, we have
p2

g t

xg t
> p2

gt .
We next consider convex piecewise linear cost functions. Sup-

pose the interval [p
g
, pg ] is partitioned into |K| intervals:

[p
g
, pg ] =

⋃

k∈K
Ik , (25)

where k is the index for the partitioned intervals.
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Recalling that hg denotes the start-up cost of unit g, suppose
at each period t, when pgt ∈ Ik , the operating cost (excluding
start-up cost and no-load cost) is

C̃gt(pgt , 1, 0) = agkpgt + bgk . (26)

Introducing an auxiliary variable sgt ∈ R+ , the single-period
piecewise linear cost function can be implemented as

C̃gt(pgt , xgt , ugt) = sgt + cgxgt + hgugt , (27)

sgt ≥ agkpgt + bgk ,∀k ∈ K. (28)

The convex envelope of a convex piecewise linear cost func-
tion taken over Xg is also piecewise linear. The proof is similar
to that for Theorem 3.

Theorem 4: The convex envelope of the convex piecewise
linear cost function C̃gt taken over Xg is the function C̃∗∗

g ,Xg
:

conv(Xg ) → R defined by:

C̃∗∗
g ,Xg

(pg ,xg ,ug )

=
T∑

t=1

{
agkpgt + (cg + bgk )xgt + hgugt , if

pgt

xgt
∈ Ik

}
.

Typically, bgk is non-positive. Therefore, similar to the
quadratic case, using the convex envelopes gives us a better
lower bound than the implementation shown in (27) and (28).

D. Reformulation and Polynomial-Time Solution

Theorems 1–4 imply that, if each unit faces only genera-
tion limits and minimum up/down constraints, exact convex
hull prices can be determined by solving CHP-Primal with
the convex hulls and convex envelopes explicitly described. All
variables are continuous in CHP-Primal.

When the cost functions are quadratic, non-linearity of the
convex envelope comes from the quadratic-over-linear terms

ag
p2

g t

xg t
which are known to be convex. Moreover, we can move

these terms from the objective into constraints and cast CHP-
Primal as a second-order cone program (SOCP).

For each g and t, we replace ag
p2

g t

xg t
by a new variable sgt ∈ R+

and introduce the following constraint:

sgtxgt ≥ agp
2
gt . (29)

Since we are minimizing, when xgt = 0, the optimal value for
sgt is zero, which is consistent with the convex envelope. For
xgt ≥ 0 and sgt ≥ 0, constraint (29) is equivalent to

‖(2√agpgt , xgt − sgt)‖2 ≤ xgt + sgt , (30)

which is a second-order cone constraint [34]. With this reformu-
lation technique, CHP-Primal can be cast as an SOCP, which
can be solved in polynomial time using off-the-shelf interior-
point solvers, e.g. GUROBI [35].

In the case where the cost functions are piecewise linear, the
convex envelope of the cost function is convex piecewise linear.
The resulting CHP-Primal is a linear program (LP).

Since the number of constraints in our explicit formulation
is polynomial in T and |G|, the convex hull pricing problem
can be solved as a convex program in polynomial time in both
cases. Note that in an optimal solution to CHP-Primal, the

commitment and start-up variables can be fractional. In convex
hull pricing, we focus on the optimality of dual variables. The
ISO’s commitment and dispatch decisions are still determined
by the UCED problem.

IV. EXTENSIONS

A. Transmission and Other Linear System-Wide Constraints

To determine locational convex hull prices, we consider a lin-
ear approximation to the transmission constraints and augment
CHP-Primal with angle-eliminated transmission constraints in
terms of the shift factors. The locational prices can be derived
as a function of the dual variables associated with the supply-
demand balance constraints and the transmission constraints,
as in locational marginal pricing [36, Chapter 8.11]. Other lin-
ear system-wide constraints (e.g., contingency constraints, con-
straints that approximate loss in the transmission system) can
be treated in a similar fashion. Theorem 1 does not apply to
nonlinear system-wide constraints [37].

Note that in the presence of system-wide constraints that
do not necessarily hold as equalities at a welfare-maximizing
solution, such as the transmission constraints, the gap between
the UCED problem and its dual includes not only the total lost
opportunity cost of the units, but also another type of uplift that
addresses the ISO’s revenue insufficiency [25], [26].

B. Ancillary Services

In markets where energy and ancillary services are co-
optimized, a set of variables are introduced to represent the
ancillary services provided by market participants. We use spin-
ning reserve as an example.

Let vector rg denote the amount of spinning reserve provided
by generator g in each time period. Let rg and rg be the lower
and upper limits on spinning reserve. We include the following
constraints:

xgtpg
≤ pgt + rgt ≤ xgtpg , ∀t ∈ [1, T ], (31)

xgtrg ≤ rgt ≤ xgtrg , ∀t ∈ [1, T ]. (32)

The feasible set for each unit is redefined to be

Xg = {pg ∈ RT , rg ∈ RT ,xg ∈ {0, 1}T ,ug ∈ {0, 1}T −1 |
(13)–(15), (31), (32)}. (33)

We can show that

conv(Xg ) = {pg ∈ RT , rg ∈ RT ,xg ∈ RT ,ug ∈ RT −1 |
(13)–(15), (19), (31), (32)}.

The proof is similar to that for Theorem 2.
Since the convex envelope of a convex function taken over

a convex domain is the convex function itself, and since the
additional constraints (31) and (32) define a convex feasible
set, introducing ancillary services does not alter the convex
envelope. Since we explicitly characterize both the convex hulls
and convex envelopes, we can obtain exact convex hull prices
using CHP-Primal augmented with (31), (32), and system-wide
constraints for ancillary services.
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C. Ramping Constraints

Let vg denote unit g’s start-up/shut-down ramp rate limit, and
let vg be unit g’s ramp-up/down rate when committed. Ramping
constraints are a set of private constraints that limit the increase
or decrease of power output from one time period to the next
[20]:

pgt − pg,t−1 ≤ vgxg,t−1 + vg (1 − xg,t−1), ∀t ∈ [2, T ],

(34)

pg,t−1 − pgt ≤ vgxgt + vg (1 − xgt), ∀t ∈ [2, T ]. (35)

We redefine the feasible set for each unit to be

Xg = {pg ∈ RT ,xg ∈ {0, 1}T ,ug ∈ {0, 1}T −1 |
(13)–(15), (16), (34), (35)}. (36)

Ramping constraints define a convex feasible set, and thus
do not change the convex envelope of the cost function. They
complicate the convex hulls, however. When these time-coupled
constraints are included in the definition of Xg , equations (13)–
(15), (19), (16), together with ramping constraints (34) and (35)
themselves, do not completely characterize conv(Xg ). Addi-
tional valid inequalities are needed to describe the convex hulls.
The number of valid inequalities needed is in general exponen-
tial in T [19].

Explicit descriptions of conv(Xg ) for the case where T = 2
and T = 3 are shown in [20]. More importantly, valid inequali-
ties in these descriptions can be applied to any two or three con-
secutive time periods to tighten the approximation of conv(Xg )
for T > 3.

When considering ramping constraints, we solve an approxi-
mation of CHP-Primal that includes the above-mentioned valid
constraints for T = 2 and T = 3. Our description of conv(Xg )
is not exact. Consequently, our approximation provides a lower
bound for CHP-Primal. The gap between the approximated
CHP-Primal and the UCED problem gives an upper bound for
the duality gap between the UCED problem and its Lagrangian
dual problem.

A UCED problem only represents averaged ramping over
the length of a time period. When the time resolution is one
hour, sub-hourly ramping in opposite directions may cancel out.
Therefore, we believe that our approximation is close, especially
for a day-ahead market in which ramping constraints are less
likely to be binding compared to a real-time market. Note also
that a time-decoupled pricing problem is used in MISO’s single-
hour approximation of convex hull pricing [5]. This pricing
problem includes ramping constraints, but does not capture the
time-coupling implications of ramping.

D. Minimization of Uplift Payments to a Subset of the
Participating Units

In certain electricity markets, only a subset of the participating
units G can receive uplift payments. For example, it may be the
case that only units dispatched to a strictly positive generation
level are qualified for uplift payments; that is, units are not paid
for merely participating in the market. In this case, the duality

gap that convex hull pricing minimizes includes terms that might
not end up being paid.

Let the set of units that are qualified to receive uplift pay-
ments be G′ ⊆ G. If the qualifications can be determined prior
to computing the prices, we can solve CHP-Primal with G re-
placed by G′. The duality gap that the resulting prices minimize
includes only uplift payments to units in G′.

E. Committing to Prices

In convex hull pricing, prices that are coupled across multiple
time periods as a whole minimize uplift payments over the
specified horizon T of the underlying UCED problem. A subset
of these prices does not necessarily minimize uplift payments
over any shorter time horizon that is a subset of T . In a day-
ahead market, the whole set of 24 hourly prices is calculated and
posted at once, so that the coupling would not be problematic
insofar as the ISO commits to buying and selling at these prices.

In contrast, look-ahead real-time markets are operated on a
rolling basis where only the commitment, dispatch, and price
calculated for the upcoming interval are implemented. There-
fore, the coupling inherent across a single look-ahead dispatch
may not be represented appropriately by the sequence of convex
hull prices, each of which corresponds to the upcoming interval
in each successive look-ahead dispatch.

To make prices consistent across successive look-ahead dis-
patches, [38] suggests that the pricing model represent past in-
tervals in the convex hull pricing model, keep the commitment
and dispatch decisions in the past as variables, but constrain
prices in the past intervals to be equal to the realized prices. A
simple way to achieve this in CHP-Primal is to add in each
past interval a fictitious power source/sink to the system with
infinite generation capacity, infinite consumption capacity, and
a constant marginal cost/willingness to pay equal to the realized
price. This power source/sink constrains past prices to be equal
to the realized prices, and maintains the coupling between real-
ized and upcoming prices to minimize uplift payments given the
realized prices. In the transmission-constrained case, we can add
in each past interval a fictitious power source/sink to the slack
bus with a constant marginal cost equal to the realized price at
the slack bus, and dualize transmission constraints that corre-
spond to congested lines with a penalty equal to their realized
optimal dual variable.

V. NUMERICAL RESULTS

We implement CHP-Primal on a personal computer with a
2.2-GHz quad-core CPU and 16 GB of RAM. The optimization
problems are modeled in CVX [39] and solved with GUROBI
6.5 [35]. We consider four examples from the literature. The
time resolution in all examples is one hour.

A. Example 1

We consider an example from [26] in which two units (in-
cluding a block-loaded one) serve 35 MW of load in a single
period. We modify the original example by including a start-
up cost for each unit. Table I specifies each unit’s offers. Both
units are assumed to be off initially. The optimal (and the only
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TABLE I
SUPPLY OFFERS IN EXAMPLE 1

Unit Start-up No-load Energy p
g

pg

$ $ $/MWh MW MW

1 100 0 50 10 50
2 100 0 10 50 50

TABLE II
COMPARISON OF DIFFERENT PRICING SCHEMES FOR EXAMPLE 1

Pricing Scheme π U1 U2
$/MWh $ $

LMP 50 100 1900
CHP 12 1430 0
CHPq 52 30 -

TABLE III
UNITS IN EXAMPLE 2

Unit No-load Energy p
g

pg Ramp Rate

$ $/MWh MW MW MW/hr

1 0 60 0 100 120
2 600 56 0 100 60

feasible) solution to the ISO’s UCED problem is for unit 1 to
generate 35 MW and for unit 2 to stay offline.

Unit 1 is marginal9 and sets the LMP. Seeing the LMP, unit
2’s profit-maximizing decision is to go online and generate 50
MW, which would result in a profit of $1900. Therefore, based
on the definition of Ug in (6), unit 2 has a lost opportunity cost
of $1900. The start-up cost of unit 1 is not covered by LMP.
An uplift payment of $100 is needed to make unit 1 whole
(guarantee a non-negative profit).

CHP-Primal for this example is an LP and gives the exact
convex hull price (CHP). The resulting uplift payments are lower
than those under LMP but still quite large (Table II).

Suppose that only units dispatched to a strictly positive gen-
eration level are qualified for uplift payments. In this situation,
unit 2 does not receive any compensation for its lost opportunity
cost. As suggested in Section IV-D, to minimize the uplift pay-
ment to the qualified units, we can instead solve CHP-Primal
with unit 2 excluded. We refer to this pricing scheme as CHPq
(CHP for qualified units). Table II shows that, if only unit 1
is qualified for compensation, CHPq results in a lower uplift
payment ($30) than CHP ($1430).

B. Example 2

We investigate a three-period two-unit example from [40]
with ramping constraints but without startup costs. Table III
shows the supply offers and ramp rate limits. All units are as-
sumed to be off initially. Table IV presents the optimal com-
mitment and dispatch decisions as well as the demand in each
period. Ramping constraints require unit 2 to commit at t = 2 so

9A marginal unit has an optimal dispatch level strictly between its maximum
and minimum power output.

TABLE IV
OPTIMAL COMMITMENT AND DISPATCH FOR EXAMPLE 2

t dt x1 , t p1 , t x2 , t p2 , t

MW MW MW

1 70 1 70 0 0
2 100 1 40 1 60
3 170 1 70 1 100

TABLE V
COMPARISON OF DIFFERENT PRICING SCHEMES FOR EXAMPLE 2

Pricing Scheme π1 π2 π3 U1 U2
$/MWh $/MWh $/MWh $ $

LMP 60 60 60 0 560
aCHP1 60 60 64 120 160
aCHP2 60 60 65.6 168 0
CHP 60 60 65.6 168 0

that it can ramp up to the generation level needed at t = 3. Ta-
ble V displays energy prices and uplift payments under different
pricing schemes.

Since unit 1 is the marginal unit in all three periods, the
LMPs are set by unit 1 at $60/MWh. The payment based on
LMPs covers all of unit 1 costs. An uplift payment of $560 is
needed to “make unit 2 whole”.

We can approximate conv(Xg ) with constraints (13)–(16),
(19), and ramping constraints. We refer to this pricing method as
aCHP1 (approximate CHP). In aCHP2, we augment our formu-
lation with valid inequalities describing conv(Xg ) with T = 2.
Finally, using the description of conv(Xg ) for T = 3, we formu-
late the convex hulls in this three-period example, which results
in the exact convex hull prices.

Table V shows the energy prices and uplift payments under
different pricing schemes. For this example, as the approxima-
tion of conv(Xg ) becomes more accurate, the energy price at
t = 3 increases. Roughly speaking, unit 1 has an increasing
incentive to generate more than the ISO’s optimal dispatch, in-
creasing its lost opportunity cost, but unit 2’s no-load costs can
be better covered, decreasing its lost opportunity cost. The net
effect is a decrease in total uplift as π3 increases.

Note that the prices resulting from aCHP2 happen to equal
the exact convex hull prices. This result implies that the valid
inequalities for T = 3 are “non-binding”. The approximation of
conv(Xg ) in aCHP2 is accurate enough to yield the exact convex
hull prices for this example.

C. Example 3

We consider a 24-period 32-unit example from [15]. The cost
functions for the units are linear. There are no ramping or trans-
mission constraints. CHP-Primal is an LP through which the
exact convex hull prices can be obtained. CHP-Primal solves
in 0.02 seconds, resulting in the same convex hull prices as re-
ported in [15]. The duality gap between the UCED problem and
its Lagrangian dual problem is $1 148, which equals the total
lost opportunity cost.

We also implement a standard sub-gradient method to solve
the Lagrangian dual problem in the dual space. We adopt
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TABLE VI
UCED AND APPROXIMATED CHP-PRIMAL FOR EXAMPLE 4

Case 1 Case 2

UCED Obj.($) 41 972 688 42 303 772
UCED CPU Time (s) 87.42 112.02
CHP-Primal Obj. ($) 41 946 298 42 259 962
CHP-Primal CPU Time (s) 6.22 13.04
Gap (%) 0.063 0.104

the step length update rule (c) shown in [17, Theorem 10.4].
We implement the dual updates in MATLAB, and solve the
inner-level integer programs with GUROBI. Since the standard
sub-gradient method does not have a non-heuristic stopping cri-
terion, we terminate the algorithm after 550 iterations when the
objective function shows no improvement. The resulting objec-
tive function value is 0.88% sub-optimal with respect to the
exact dual maximum we obtained from CHP-Primal, and the
total computational time is 37.3s.

D. Example 4

We consider a 96-period 76-unit 8-bus example that is based
on structural attributes and data from ISO New England [41].
We consider the start-up costs, no-load costs, minimum up/down
time constraints, and ramping constraints for the generation
units. The cost functions are quadratic. We use Scenario 1 of the
90 load scenarios provided in [41]. Minimum generation levels
for the units are not specified in the original data, so we let p =
0.8p for each nuclear plant and p = 0.6p for each coal-fired unit.
The units’ initial statuses are not provided. We solve a single-
period UCED problem to obtain the optimal commitment and
dispatch decisions for period 1. We use these optimal decisions
as the units’ initial statuses, and assume that the units have been
on/off for sufficiently long time so that the minimum up/down
time constraints are not initially binding. The flow limits of
the 12 transmission lines in the system are not defined in the
original data. Therefore, we first investigate the case without
transmission constraints (Case 1). We then set a limit of 2100
MW on the flow over each transmission line (Case 2).

For each case, we first solve the UCED problem and obtain the
LMPs. We then determine convex hull prices using two meth-
ods: an approximation of CHP-Primal and the single-period
approximation proposed in [5]. Because of the ramping con-
straints, we approximate conv(Xg ) using constraints (13)–(16),
(19), along with valid inequalities that completely characterize
these convex hulls for T = 2 and T = 3. We use the convex
envelope described in Theorem 3 and solve the primal formula-
tion as an SOCP. When solving the UCED problems, we include
above-mentioned valid inequalities a priori, and set MIPgap to
0.01%.

Table VI shows the results for the UCED problem and the
approximated CHP-Primal, as well as the relative gap between
these two problems. The approximated CHP-Primal solves in
polynomial time with respect to the number of constraints. How-
ever, if we were to solve the Lagrangian dual problem in the dual
space for Case 2, there would be 2400 dual variables. Such a
large number of dual variables due to transmission constraints
creates difficulties for non-smooth optimization methods [42].

TABLE VII
TOTAL LOST OPPORTUNITY COST ($) FOR EXAMPLE 4

LMP Primal Formulation Single-Period
for CHP Approximation of CHP

Case 1 183 473 33 965 96 938
Case 2 329 032 40 863 177 391

The relative gap between approximated CHP-Primal and
the UCED problem (called CHP gap hereafter) is 0.06% for
Case 1 and 0.10% for Case 2. This small CHP gap bounds two
other gaps from above. First, the duality gap between the UCED
problem and its Lagrangian dual problem can only be smaller
than the CHP gap. This verifies the theoretical result shown in
[43], which states that the relative duality gap of the UCED
problem and its Lagrangian dual approaches zero as the number
of heterogeneous generators approaches infinity. Second, the
approximation error (the gap between the conceptual CHP-
Primal and our approximation) is bounded from above by the
CHP gap.

Table VII compares the total uplift payment under the three
pricing schemes. We only consider units’ lost opportunity costs.
In the single-period approximation, start-up and no-load costs
are considered only for fast-start units. We classify a unit with a
minimum up/down time of one hour as a fast-start unit, and 18
units fall into this category. We allocate start-up costs to peak
usage hours. In both cases, each single-period approximation
solves in much less than a second. The convex hull prices derived
from the proposed method result in the least uplift payment in
both cases.

VI. CONCLUSIONS

This paper has proposed a polynomially-solvable primal for-
mulation for the Lagrangian dual problem of the unit com-
mitment and economic dispatch (UCED) problem. This primal
formulation explicitly describes the convex hull of each unit’s
feasible set and the convex envelope of each unit’s cost function.
We show that exact convex hull prices can be obtained in the
absence of ramping constraints, and that exactness is preserved
when we consider ancillary services or any linear system-wide
constraints. A tractable approximation applies when ramping
constraints are considered.

We cast our formulation as a second-order cone program if the
cost functions are quadratic, and as a linear program if the cost
functions are affine or piecewise linear. Convex hull prices are
thereby determined in a robust and scalable manner. A 96-period
76-unit transmission-constrained example solves in less than
fifteen seconds on a personal computer. This example shows that
prices obtained through our formulation further reduce uplift
payments compared to a single-period approximation of convex
hull pricing.

The results of our paper have important applications beyond
pricing. The convex envelopes in our paper can be used to tighten
the formulation of the UCED problem (e.g., the ones proposed
in [22] and [31]). Our primal formulation is also a tight convex
relaxation of the UCED problem. Because of computational
complexity, many planning models for the generation and/or
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transmission system currently use only an embedded economic
dispatch model for system operation, rather than a more realistic
UCED model. The proposed primal formulation should provide
a better and tractable approximation for system operation.
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