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Abstract— In this paper, I use an example from the liter-
ature to compare Cournot and supply function equilibrium
models of bid-based electricity markets both with and with-
out transmission constraints. I will demonstrate that the
parametrization of the supply function model has a signifi-
cant effect on the calculated results. In particular, several
results reported in the literature are artifacts of assump-
tions in the parametrization of the model.
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I. INTRODUCTION

In recent papers discussing electricity markets [1], [2],
[3], [4], [5], [6], [7] the authors present “supply function
equilibrium” models of bidder interaction. This approach,
pioneered by Green and Newbery [1], takes the develop-
ment of supply function equilibrium by Klemperer and
Meyer [8] and applies it to a bid-based pool (BBP) model.
The BBP model is representative of energy market struc-
ture in a number of restructured electricity markets, such
as England and Wales (until 2001), New Zealand, Aus-
tralia, the (now defunct) Power Exchange in California,
and the Pennsylvania-New Jersey-Maryland (PJM) inter-
connection.

The supply function equilibrium (SFE) models presented
in [1], [2], [3], [4], [5], [6], [7] contrast with Cournot models
of the electricity system [9], [10], [11], [12] in that SFE mod-
els of interaction better match what is explicitly required
in the bid formats of typical BBP markets, which typically
require the bidding of a supply function or a cost function.
That is, the natural definition of economic equilibrium in
a BBP market is the SFE condition that no player wants
to unilaterally change its bid supply function.

Nevertheless, this literal connection between SFE mod-
els and BBP models does not necessarily imply that an
SFE model is the best way to predict the likely outcome
of strategic interaction between players. In the case that
there are multiple SFEs, for example, the calculation of
one SFE (of perhaps many) does not provide a convincing
prediction of market outcome.

In the case of a BBP model applying to a single pricing-
period with no uncertainty of demand, there are almost
inevitably multiple SFEs when players:

« have full discretion in choosing the parameters specifying
their bid supply functions and

« are not constrained to bid the same supply function over
multiple pricing-periods.

This observation is well-known in the economics literature
and is explicit in the work of Klemperer and Meyer [8];

however, the implications do not seem to have been under-
stood in the engineering literature. This paper attempts
to clarify this issue in the context of a BBP.

In modeling the England and Wales BBP, Green and
Newbery [1] modeled each player as specifying a single sup-
ply function bid that applied to all pricing-periods over an
extended length of time. This requirement was true on a
daily basis in the England and Wales pool until 2001.

However, in several BBP markets that were developed
subsequently to the England and Wales market, such as the
(now defunct) California PX, a different supply function
can be specified for each half-hour or hour long pricing-
period. That is, the assumption in [1] of a single supply
function applying across multiple pricing-periods is not a
feature of all BBP markets. Assuming consistency of bid
supply functions across multiple periods severely restricts
the flexibility of bids compared to the true flexibility in
these markets.

Furthermore, many of the results in the SFE literature
involve restrictive parametrization of the bid cost functions.
I will demonstrate with an example that the parametriza-
tion is critical to the results. In particular, with unre-
stricted parametrizations of the convex quadratic bid cost
function, there are multiple equilibria.

The example serves to illustrate Klemperer and Meyer’s
general observation about multiple equilibria in the context
of a BBP. In this sense, the result is not unexpected. How-
ever, there is a further and somewhat surprising effect of
parametrization: a transmission constrained example will
show that the existence or not of pure strategy equilibria
can depend on assumptions about the parametrization of
the bid cost functions.

It has been observed [13] that actual bids in the England
and Wales pool resulted in price levels below that implied
by the SFE model used by Green and Newbery and even
further below that implied by Cournot models. This is an
extremely important issue, but beyond the scope of this
paper. See [14], [15] for a discussion of this issue.

The organization of the paper is as follows. Notation and
the model are developed in the next section, with a detailed
literature survey in section III. In section IV, I extend the
transmission unconstrained version of an example by We-
ber and Overbye [4]. The transmission constrained version
of the example system is then considered in section V. I
conclude in section VI.



II. NOTATION AND MODEL

To fix some notation, consider a player k that controls
generation or demand at a bus. The net injection into the
system by generation or demand under the control of player
k is denoted by z € R, where R is the set of real numbers.

I assume that for player k the true costs of generation (or
the negative of its true benefits in the case of a demander)
are given by a quadratic function fk : R — R of the form:

Vi, € R, fu(zr) = dap Ry, + épan,

where R, € R and ¢, € R are, respectively, the coefficients
of the quadratic and linear terms in the true cost function.
That is, a caret over a function or parameter means the
true value of that function or parameter.

I will also assume that the pool bidding rules require the
bidding of a convex quadratic bid cost function f; : R — R
of the form:

Vay, € R, fr(xr) = 3axRexy + cry, (1)

where R, € R, is non-negative and c; € R. The values
of Ry and c¢j specify the parametrization of the bid cost
function. The condition that R; be non-negative enforces
convexity of fir. The pool performs economic dispatch or
transmission constrained economic dispatch based on the
bid cost functions. In terms of the SFE literature [8], the
corresponding supply function Sy : R — R is defined by:

Vi € R, Sk(pk) = [Ri] " pr — ci-

I will develop the analysis in terms of bid cost functions
since this fits most naturally with the BBP definition; how-
ever, I will refer to the resulting equilibrium as an SFE.
Typical BBP markets actually require either:
e a convex piecewise linear bid cost function (or equiva-
lently, a piecewise constant, non-decreasing supply func-
tion) or
e aconvex piecewise quadratic bid cost function (or equiva-
lently, a piecewise linear, non-decreasing supply function.)
In the former case, the convex quadratic function (1) can
be interpreted as a smooth approximation to the piecewise
linear function. Using a smooth approximation facilitates
the application of first order optimality conditions to the
pool optimization problem without resorting to considering
the multiple segments in the bid. In the latter case that
the BBP market requires a piecewise quadratic bid cost
function, then the quadratic function (1) can be interpreted
as matching a quadratic piece of the bid cost curve. As
discussed by von der Fehr and Harbord, the assumption of
a differentiable bid cost function may not be innocuous [16].
There are other possible ways to parameterize a bid cost
function that are considerably more general than the con-
vex quadratic function presented here. I will assume that a
convex quadratic bid cost function is specified in the rules
of the BBP market or that a convex quadratic function is
a reasonable approximation to the possible bid functions.
In recent papers on SFE, the choice by player k of the pa-
rameters Ry or ¢ is often further restricted in some way in

addition to requiring that Ry be non-negative. The param-
eters that can be adjusted at will by the “strategic players”
in a particular model are called the “strategic variables.”
To distinguish the previous literature in SFE models, I will
describe four alternative specifications of the strategic vari-
ables, corresponding to different restrictions on the choices
of the bid cost functions:

1. c-parametrization, where player k can choose the linear
coefficient ¢, in (1) arbitrarily but is required to specify a
fixed, pre-chosen value of Rj. Sometimes, the fixed value of
the quadratic coefficient Ry is further assumed to be equal
to the true value Rk.; however, I will also explore at length
the case where the value of Ry differs from Rj.

2. R-parametrization, where player k can choose Ry to be
an arbitrary non-negative value, but is required to specify
a fixed, pre-chosen value of ¢;. Sometimes the fixed value
of ¢, is set to be zero.

3. (R x c¢)-parametrization, where player k can choose Ry,
and ¢y, subject to the condition that Ry and c; have a fixed
linear relationship. That is, there is a fixed pre-chosen
ar € R and player & must then choose Ry and c¢; such
that Rp = agck. Typically, the linear relationship is the
same as that between the true parameters Rk and ¢g, SO
that ap = ]:Zk/ék In this case, the parametrization can be
interpreted as allowing player k to multiply its true cost
function by an arbitrary non-negative constant.

4. (R, ¢)-parametrization, where player k can choose both
R, and ¢, arbitrarily.

Given the assumption that the BBP market requires convex
quadratic bid functions (or that this is a reasonable approx-
imation to the required bid format) then only the (R, c¢)-
parametrization with Rj non-negative represents the true
flexibility available to bidders. The first three parametriza-
tions restrict bidding compared to the true flexibility. As
I will demonstrate, results from such restricted models
may not be very good predictors of behavior under (R, ¢)-
parametrization. In particular, the results from c-, R-, and
(R x ¢)-parametrization can be artifacts of the assumed val-
ues of the fixed parameters. In markets where bids can be
even more general than allowed by (R, ¢)-parametrization,
the results of ¢-; R-, and (R c¢)-parametrization are likely
to be even less predictive of the true range of equilibrium
outcomes.

III. LITERATURE SURVEY

In this section, I review the literature in the context of
the notation and model from section II. Several issues are
raised, particularly regarding parametrization, that are in-
vestigated more fully in the latter sections.

Green and Newbery [1] and Green [2] assume that the
linear cost coefficient ¢, in the true cost function of ev-
ery player is zero (or that the coefficients are all equal to
same non-zero constant.) Green and Newbery adopt an R-
parametrization model and concentrate on the case where
cr, = 0 and, as discussed above, assume that suppliers must
bid the same function across multiple pricing-periods. This
assumption was realistic on a daily basis for the England
and Wales pool until 2001.



Rudkevich [5] also assumes that the linear cost coefficient
¢, in the true cost function of every player is zero. He also
posits that each player & must bid a single function that
applies in all pricing-periods during a day. He then uses
the observed supply response of the rest of the players over
the day to construct an approximation to the bid supply
function of the rest of the market. He then finds an optimal
(R, ¢)-parametrization response for player k to the supply
function of the rest of the market, which turns out to have
linear coefficient ¢ equal to zero.

Rudkevich proves that if the players begin by bidding
their true costs and that if each player updates according
to the strategy just described then, in the limit, the supply
functions converge to the SFE under R-parametrization.
That is, Rudkevich not only finds the equilibrium, but also
provides an explanation of how bidders might converge to
it.

There are three principal drawbacks to the approaches
in [1], [2], [5]. The first is the assumption that the true
linear cost coefficient ¢ is zero. This assumption can be
relaxed and the analysis of Green and Newbery generalized
to the case of non-symmetric players with non-zero values
of ¢, that differ from player to player [14].

The second drawback is that, in several BBP markets
other than the England and Wales pool, players can bid
different supply functions for each half-hour or hour long
pricing-period over a day and can bid piecewise constant or
piecewise linear supply functions. That is, combining data
from several pricing-periods under the assumption that the
data all corresponds to the same underlying quadratic bid
cost function is not likely to be a good model of realistic
behavior, unless other constraints, such as regulatory over-
sight, limit the ability to bid different cost functions period
by period. Finally, Green and Newbery and Rudkevich
do not explain how to incorporate transmission constraints
into their approaches.

Hobbs and his colleagues [6], [7] formulate the problem
of calculating SFE in the presence of transmission con-
straints as a “mathematical program with equilibrium con-
straints” [17]. They use a single pricing-period model; that
is, they do not assume that the supply function must be
the same across multiple pricing-periods.

Hobbs et al. [7] observe that there are likely to be mul-
tiple SFE equilibria under (R, ¢)-parametrization and then
proceed, for the transmission constrained case they con-
sider, to calculate the (apparently) unique SFE under R-
parametrization and the (apparently) unique SFE under c-
parametrization [7, Section 2]. However, as argued above,
the restriction to R- or c-parametrization is artificial, so
even when there is a unique SFE under c-parametrization,
say, this does not imply that the unique SFE under c-
parametrization will actually be observed as an outcome
of player behavior.

Younes and Ilic [3] consider an (R « c)-parametrization
model with constant demand and solve for the SFE under
(R c)-parametrization. They also consider inter-temporal
effects and transmission constraints.

Weber and Overbye [4] also consider an (R o« c¢)-
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tion IV.
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parametrization model and propose an iterative algorithm
to find the SFE under (R x ¢)-parametrization. They im-
ply that the choice of parametrization is not critical to the
outcome by observing that “It can actually be shown that
varying both slope and intercept will not result in increased
personal welfare” [4, §7]. In particular, Weber and Over-
bye implicitly argue that, given fixed bid cost functions for
everyone else, the particular parametrization of a player k’s
bid cost function is not critical.

In the rest of this paper, I will argue using Weber and
Overbye’s example that the parametrization s critical to
the results, even in the transmission unconstrained case.
The Weber and Overbye example is used because it is sim-
ple enough to be analyzed directly. Similar observations
also apply to the results reported in [3], [6], [7].

I will show that, under the apparently more realistic
(R, ¢)-parametrization, multiple Nash equilibria are almost
inevitable if players can bid different bid cost functions in
each pricing-period and there is no uncertainty. This ap-
plies to both a transmission unconstrained and a trans-
mission constrained version of the model and illustrates,
in the context of a BBP market, the observation made by
Klemperer and Meyer in [8].

As Stoft points out in [18], the existence of multiple
Nash equilibria is very problematic from the perspective
of trying to predict behavior. In some cases, one of the
equilibria may be preferred by everyone to all the other
equilibria. Such an equilibrium is called a “focal equilib-
rium” [19, Section 6.3]. If the players realize the existence
of the focal equilibrium then this equilibrium may actu-
ally prevail. We will consider the focal equilibrium under
(R, ¢)-parametrization for the Weber and Overbye exam-
ple. We will find that the focal equilibrium is equivalent to
the Cournot equilibrium for this example system.

IV. TRANSMISSION UNCONSTRAINED EXAMPLE SYSTEM

In this section, I develop the example system of Weber
and Overbye [4]. There is a transmission unconstrained
and a transmission constrained version. I will first consider
the transmission unconstrained version. The transmission
constrained version will be considered in section V.

The example system is described in detail in section IV-
A. Then in sections IV-B through IV-F, respectively, I
display solutions for: the competitive case (all players per-
fectly competitive, bidding fi = f, k = 1,2,3); SFE for
(R x ¢)-parametrization; SFE for c-parametrization; SFE
for (R, ¢)-parametrization; and Cournot equilibrium. The
solutions are discussed in section IV-G.

A. Description

I quote the details of the example system of Weber and
Overbye [4, Section 6.1], transcribing their notation. There



= = _ _ _ _ = TABLE I
C C X i s T
$ ! $ 2 § § M\liv M\27V $ $1 $2 SFE VALUES OF STRATEGIC
(MW)*h | (MW)*h MWh | MWh MWh h h VARIABLES FOR
0.02 0.02 11.63 11.63 | 102.0 | 102.0 | 13.67 | 270.7 | 270.7 -PARAMETRIZATION AND
0.02 0.04 12.32 9.55 | 86.82 | 112.5 | 14.05 | 276.2 | 329.3 ’
0.04 0.04 10.65 10.65 | 96.77 | 96.77 | 14.51 | 343.4 | 343.4 CORRESPONDING VALUES OF
0.1 0.1 6.83 6.83 | 89.11 | 89.11 15.74 432.3 | 432.3 GENERATIONS, PRICES, AND
1.0 0.1 -83.91 9.59 | 100.4 | 68.76 | 16.47 | 548.6 | 397.5 PROFITS, FOR VARIOUS CHOICES OF
1.0 1.0 || -61.31 | -61.31 | 78.72 | 78.72 | 17.41 | 521.1 | 521.1 ] ‘
10.0 10.0 || -753.5 | -753.5 | 77.11 | 77.11 | 17.66 | 531.4 | 531.4 THE QUADRATIC COEFFICIENTS FOR
100.0 100.0 || -767.7 | -767.7 | 76.94 | 76.94 | 17.69 | 532.4 | 532.4 EXAMPLE IN SECTION IV-D.

are two strategic players, at buses 1 and 2, respectively.
Let xj, be the generation by player £ at bus k. In addition,
there is a demand at bus 2 that is assumed to bid honestly.
That is, it is competitive. I will denote its variable by x3.
The situation is depicted in figure 1.

The true cost (and negative benefit) functions are fr :
R — R,k =1,2,3, defined by:

Vo, fi(z) = 30.02(z1)* + 10z,
VI’Q, f2(1’2) = %002(1'2)2 + ].OiCQ,
Vs, fa(zs) = 10.08(xz3)? + 302s.

I assume that these costs are denominated in $/MWh. The
assumption that the demand is competitive means that
f3 = fg. Initially, the network has no inequality constraints
so that the only constraint is the energy balance constraint:

x1+x2+x3=0.

The pool solves the economic dispatch problem and the
marginal price is determined. I will denote the price paid
to the players as A. I denote the profits to the players as
w1 and 7o, respectively.

B. Competitive case

If all players behave competitively by bidding their true
costs then the optimal dispatch solution is z7 = a3 =
111.1 MW, with a price of \* = 12.22 $/MWh, and profit
to player 1 and to player 2 is m; = my = 123.5 $/h.

C. SFE for (Rxc)-parametrization

Weber and Overbye formulate an (R x ¢)-parametrization
model by requiring Ry and ¢ to be related in the same way
as the true parameters Rk = 0.02 and ¢, = 10 are related
for k = 1,2. That is, they allow players 1 and 2 to multiply
their true cost function by an arbitrary non-negative con-
stant. Weber and Overbye present an iterative algorithm
to solve for the SFE and report an SFE under (R  c¢)-
parametrization for the values:

* = 1.1502Ry,, ¢}, = 1.1502¢, k = 1, 2.

Corresponding to these values are generations of 7 = 25 =
101.1 MW, price of A* = 13.83 $/MWh, and profit to
player 1 and to player 2 of m; = my = 284.7 §/h. The
profit is considerably higher than in the competitive case.

D. SFE for c-parametrization

In this section I will derive the conditions for SFE under
c-parametrization, given fixed bid values of Ry, and then
exhibit the corresponding equilibrium values of ¢, zg, A,
and 7.

Because the only constraint in the example is the energy
balance constraint, the demand variable can be eliminated
in terms of x; and z2. The pool problem is convex and its
solution is given by the solution of the first order Karush-
Kuhn-Tucker conditions, which yield:

T 1
[ 3 } = RiRs + 0.03(R + Ro)
[ R +0.08 —0.08 ] [ 30— ]
—0.08 R; +0.08 30—co |’
AN = Rizi+c = Rz + co.

Given fixed choices for Ry, R, the profit function for
player 1 is a concave function of ¢;. Differentiating this
function with respect to ¢; and setting equal to zero yields
a linear equation in ¢; and ¢y (for fixed Ry and Ry). Simi-
larly for player 2. Any simultaneous solution of these linear
equations satisfies the first order conditions for both profit
maximization problems for the given values of R; and Rs.
Since the objectives of both problems are concave and dif-
ferentiable, any solution of the linear equations is an SFE.

In table I, the SFE values of the strategic variables and
the corresponding values of generations, prices, and prof-
its, are tabulated for various choices of the quadratic co-
efficients R; and R» :chat are greater than or equal to the
true values of Ry = Ry = 0.02.

For the larger values of Ry and Rg, the SFE values of ¢
and c¢3 are negative. It might be argued that these values
would not be allowed in a pool since the bid cost func-
tion then has a negative derivative at zero power produc-
tion. However, since pools typically allow piecewise lin-
ear or piecewise quadratic bid cost functions, a compos-
ite bid function could easily be created such that the bid
cost function had non-negative derivative at zero produc-
tion and was also convex. The corresponding composite
supply function would have a “hockey stick” shape.

Figures 2 and 3 show the profits of, respectively, player 1
and player 2 at the SFE under c-parametrization versus Ry
and Rj, both in the range 0.0004 to 2. Qualitatively, for
any fixed Ry, the corresponding SFE profits m; for player 1
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Fig. 2. SFE profit w1 of player 1 versus values of Ry and R> for
example in section IV-A.
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Fig. 3. SFE profit w2 of player 2 versus values of Ry and R> for
example in section IV-A.

under c-parametrization are increasing in R;. Similarly for
the profits 7y of player 2 and Rs.

The increase in profits with R; for player 1 is due to
the interaction between the choices of strategic variables
for players 1 and 2. This is the reason why the Weber and
Overbye observation about the choice of parametrization
is misleading. If player 2 is assumed to hold its strategic
variable ¢y constant, then the optimal profits for player 1
are independent of Rjp; however, the value of ¢ and the
resulting choice of ¢; by player 1 is no longer an SFE. A
similar observation holds for the profits of player 2.

For this example, at least, if the players are required
to commit a priori to values of R; and Rs, then it is in
each of their interests for them to choose values of R and
R, as large as possible, or at least in the “plateau” region
where Ri, Ry > 1. The profits for each player tend to
m = m = 532.5 §/MWh as the values of Ry and Ry tend
to infinity. As we will see, these profits are the same as the
Cournot level of profits.

Interestingly, if player 2 chooses a value of Ro around
0.1 then the SFE for high values of R; yields profits for
player 1 that are above the Cournot profits. In this case,
the profits for player 2 are well below the Cournot prof-
its. This highlights the dependence of the results of this
parametrization on the assumed values of Ry.

E. SFE for (R, c)-parametrization

It is straightforward to prove that each of the en-
tries in table I can also be interpreted as an SFE un-
der (R, ¢)-parametrization. Moreover, each corresponding
pair of profits for players 1 and 2 as shown in figures 2
and 3, respectively, is achievable as an SFE under (R, ¢)-
parametrization. Although each entry is an equilibrium
under (R, c¢)-parametrization, it is clear that both players
would prefer to be at an equilibrium where values of R,
and Ry were large. We will discuss the implications of this
observation further in relation to a focal equilibrium.

F. Cournot equilibrium

In this case, the price for energy is:
A=30— 0.08(.%‘1 + x2).

Solving for the condition of mutual profit maximization,
the Cournot solution is z} = 25 = 76.92 MW, with price
A* =17.69 $/MWh, and profit to player 1 and to player 2
of m = me = 532.5 §/MWh.

G. Discussion

The profits in the Cournot equilibrium are the same as
the limiting case of the SFE equilibrium for large R; and
Ry. This is not surprising since as R; and R become
large, the bid cost functions of these players becomes less
elastic. Such a limiting SFE is a focal equilibrium under
(R, ¢)-parametrization because it is mutually beneficial to
all the strategic players for them all to bid cost functions
with large positive values for the quadratic parameters.

For this example, single pricing-period SFE analysis that
either assumes or predicts values of Ry or Ry that are less
than one is completely unrealistic in that it seriously under-
estimates, by a factor of nearly two, the profits achievable
to the players when they pick larger values of R and Ro.
The results for SFE reported in the literature for c-, R-,
and (R o c)-parametrization are potentially artifacts of the
assumed parametrization and not indicative of the SFE
under the more realistic (R, ¢)-parametrization. The re-
sults show that the profits vary from competitive to above
Cournot profits depending on the assumed values of fixed
parameters in the models.

I hypothesize that both the Cournot equilibrium and
the SFE under c-parametrization (for large values of
R) are in general close to the focal SFE under (R,c)-
parametrization. On the other hand, the SFEs under
(R x ¢)-parametrization do not predict the focal equilib-
rium.

These observations for the single pricing-period model
should be contrasted with the multiple pricing-period mod-
els. In a multiple pricing-period model where each player



must bid a quadratic cost function that applies over sev-
eral pricing-periods, then it can be the case that under
(R, ¢)-parametrization it is optimal for a bidder k to re-
veal the value of ¢; honestly [5], [14]. In this case, an R-
parametrization model can be used to calculate the SFE.

V. TRANSMISSION CONSTRAINED EXAMPLE SYSTEM

In this section, I will consider the transmission con-
strained version of the Weber and Overbye example con-
sidered in the previous section. In [4], Weber and Overbye
impose an 80 MW transmission constraint on the line join-
ing generator 1 to the demand. Generator 2 is located
at the demand, so the transmission constraint limits pro-
duction from generator 1 to no more than 80 MW. (An
alternative interpretation is that generator 1 has an upper
production limit of 80 MW that has been honestly declared
to the pool and is represented in the pool problem.)

A. SFE for (Rxc)-parametrization

Weber and Overbye show that there is no pure strategy
SFE under (R  c¢)-parametrization in this transmission
constrained case. They observe that the profit function for
one of the players is not concave in its decision variable.
They exhibit a mixed strategy equilibrium.

B. SFE for c-parametrization

Because of the transmission constraint, the derivatives
of the profit functions for each player are no longer linear
functions of the strategic variables as in section IV-D but
are instead piece-wise linear. However, it turns out that for
this example the profit function for each player is still con-
cave in the player decision variable. This contrasts with the
case for (R o ¢)-parametrization where the profit function
is not concave.

The concavity of profits and piecewise linearity of the
derivatives of the profits under c-parametrization makes it
relatively simple to find equilibria for this example, if they
exist. The two possible cases are that either:

1. an SFE occurs for values of the decision variables that
make the transmission constraint not binding, or

2. an SFE involves a binding transmission constraint.
Based on this observation, the SFE can be sought for var-
ious values of Ry and Rs. In fact, there is a pure strategy
SFE for all positive values of Ry and Ry. The results are
shown in figures 4 and 5. These figures differ from figures 2
and 3 only in the region where R5 is small enough such that
the corresponding unconstrained SFE would result in a flow
on the transmission line of greater than 80 MW.

The main qualitative difference is that the plateau re-
gion for player 2 occurs for any value of Ry so long as
player 1 chooses a value of R; that is above about 0.5.
Binding transmission constraints can support high equilib-
rium profits even at more modest levels of Ry and Rs.

In general, when there are binding transmission con-
straints in the system, marginal cost prices may differ
across busses. However, the optimal choice of decision vari-
able by player 1 is such that the price is uniform in the sys-
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Fig. 4. SFE profit m; of player 1 versus values of Ry and Ry for
transmission constrained example in section V.

Fig. 5. SFE profit ma of player 2 versus values of R; and Ry for
transmission constrained example in section V.

tem. This means that player 1 is capturing the congestion
rental of the line.

C. SFE for (R, c)-parametrization

As previously, every point in figures 4 and 5 can
be interpreted as a pure strategy SFE under (R,c)-
parametrization.

D. Cournot equilibrium

The transmission unconstrained Cournot solution yields
a flow on the line of less than 80 MW. This solution is
also the Cournot equilibrium in the case of the 80 MW
transmission constraint.

FE. Discussion

While there is no pure strategy SFE under (R x c¢)-
parametrization, there are pure strategy SFEs under c-
parametrization (and consequently pure strategy SFEs un-



der (R, c)-parametrization,) and there is a pure strategy
Cournot equilibrium such that the transmission constraint
is not binding. As R; and Ry approach infinity, the prof-
its again approach the Cournot profits. Since the players
mutually benefit from large values of R; and Rs, it is rea-
sonable that they could reach an equilibrium that does not
load the line to its capacity. Again, the focal SFE under
(R, ¢)-parametrization is equivalent to the Cournot equi-
librium and to the SFE under c-parametrization for large
values of R.

This example demonstrates that even the existence or
non-existence of pure strategy equilibria can be an arti-
fact of the choice of parametrization. In this case, (R
c¢)-parametrization predicts no pure strategy equilibrium,
whereas the focal SFE under (R, c)-parametrization is a
pure strategy equilibrium.

VI. CONCLUSION

I have demonstrated with examples that some SFE re-
sults presented in the literature are in fact artifacts of as-
sumptions about the choices of particular bid parameters.
At least in the examples considered, unfettered choices of
convex quadratic bid cost functions can be expected to lead
to results that are closer to Cournot outcomes, although the
resulting bid cost functions can sometimes have very large
values for their quadratic coefficients and negative values
for their linear coefficients. I hypothesize that this is true
in more general cases.

Nevertheless, exercise of market power on a period by
period basis potentially requires significantly different bid
cost functions for each period. Regulatory oversight may
discourage bidding of such widely varying cost functions
or discourage bid costs with large values of quadratic co-
efficients or explicitly cap the maximum price for energy
that can be charged. Market rules could be designed to
explicitly restrict the bidding flexibility by, for example:

o limiting the maximum values of the quadratic coefficients
in the bid cost functions, or

e requiring bids to be consistent across multiple pricing-
periods.

Both of these requirements would significantly reduce the
equilibrium prices. The second point has been high-
lighted by Green and Newbery [1, §I1.B] and Baldick and
Hogan [15]. Reasonable upper bounds on the allowed val-
ues of quadratic coefficients could be determined from his-
toric operating data. Moreover, uncertainty in demand or
in the the operational status of other players can reduce the
desirability of bidding cost functions with large quadratic
coefficients because of the risk of not being dispatched [20].

Another issue is that strategic generators were able to
capture all the congestion rental of the constrained line.
As discussed by Oren [12] and Stoft [18], this may be an
artifact of the lack of modeling of a market for transmission
congestion contracts.
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