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Abstract—The residual demand derivative plays a central role
in constructing the best response to competitors’ strategies in
widely used strategic models such as the Cournot model and the
supply function model. In the absence of transportation or trans-
mission constraints, the residual demand derivative is obtained
straightforwardly by taking the derivative of the residual demand
function with respect to price. However, in an electricity market,
the market is embedded in a transmission network. When there
is no transmission congestion, the residual demand derivative can
be calculated as usual, but when there is transmission congestion,
the residual demand derivative is more difficult to calculate. In
this paper, we characterize the transmission-constrained residual
demand derivative. We use the dc power flow model and charac-
terize the residual demand derivative analytically. The residual
demand derivative could also be obtained from the solution of a
specific weighted least squares problem. Several properties of the
residual demand derivative are implications of the weighted least
squares theory. We also characterize the condition under which
the residual demand derivative will be bounded or unbounded
when there are perfectly elastic supplies/demands at some buses
in the system. We verified our results in three examples: a two-bus
system, a four-bus two-loop system, and a three-bus one-loop
system with one perfectly elastic supply. The residual demand
derivative characterization can be used to analyze the strategic
behavior in both the Cournot model and the supply function model
with transmission constraints, and it can be easily incorporated
into sophisticated optimal strategy algorithms.

Index Terms—Best response, Cournot model, electricity market,
residual demand, supply function equilibrium, transmission
constraint.

I. INTRODUCTION

ELECTRICITY markets have been widely studied by econ-
omists, engineers, and policy makers. One of the most

important issues comes from the special nature of electricity
transmission networks [1]. Although numerical case studies can
provide insights into the impacts of binding transmission con-
straints [1]–[5], analytical results can be more valuable and in-
formative. In this paper, we will analytically characterize the
residual demand derivative when there are binding transmission
constraints.

Our main focus in this paper is an offer-based electricity en-
ergy market, which is cleared by a security-constrained cen-
tral economic dispatch and pricing mechanism [6]. Following
[2]–[5], we assume dc optimal power flow (OPF) and nodal
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pricing as the central dispatch and pricing mechanism in this
paper.

The supply function model is widely used to model the com-
petition in offer-based electricity markets. A generation firm is
assumed to submit a supply function specifying its maximum
power at each price level (or equivalently submit the inverse of
its supply function). The inputs to the OPF are the inverse func-
tions of the supply functions, and the outputs are the market
clearing prices and quantities.

The transmission-unconstrained best response in a supply
function model is characterized in [7]–[10]. We rewrite the
characterization as

(1)

where
• is the market price;
• is player ’s marginal cost function;
• is player ’s supply function;
• is player ’s residual demand derivative function;
• player ’s residual demand function, , is defined by

(2)

where
• is defined by

(3)

• is the total demand function of the market;
• is the range of possible market prices.
As specified in (2), a generation firm’s residual demand is

defined as the demand minus the aggregated supply of all other
suppliers in the market. Typically, the residual demand function
has negative slope, reflecting the fact that, as price increases,
demand decreases while supply increases.

The derivative of the residual demand is useful for market par-
ticipants, analysts, and market monitoring entities. For genera-
tion firms, an individual generation firm’s optimal supply func-
tion depends on its residual demand derivative as charac-
terized in (1), so the residual demand derivative plays a central
role in constructing optimal bidding strategies. If the residual
demand derivative is available, the best response strategy can
be constructed based on (1). For market analysts using strategic
equilibrium models, such as the Cournot model and the supply
function equilibrium (SFE) model, the residual demand deriva-
tive is crucial for characterizing the market Nash equilibrium.
For market monitoring entities, the residual demand derivative
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implicitly indicates the potential market power a player could
possibly exert. The more elastic the residual demand curve is,
the less influence a player has on price, and the less is its market
power potential.

In generic markets without transportation or transmission
constraints, the residual demand derivative is obtained easily by
taking the derivative of the right-hand side of (2) with respect
to price . The electricity market is unique in the sense that it
is embedded in a transmission network. The unique feature is
that the transmission network has transmission capacity limits
and thus is possibly congested. Transmission congestion leads
to difficulty in computing the residual demand derivative.

We will derive the transmission-constrained residual demand
derivative based on the supply function model. The SFE has
been widely used to study strategic behaviors and market
power in electricity markets. It was introduced by Klemperer
and Meyer in [7]. Considerable further developments and
applications have focused on electricity markets [5], [8]–[18].

To the best of the authors’ knowledge, no previous paper
has presented the calculation of the transmission-constrained
residual demand derivative and provided the analytic solution
as we do in this paper. Most papers calculate the best response
numerically from the profit maximization problem instead of
calculating the residual demand derivative and then utilizing (1)
to obtain the best response. For example, Cardell et al. use a
Cournot model in a three-bus looped network and numerically
demonstrate that strategic behaviors involving the transmission
constraints could lead to a market outcome that is different from
the usual analysis of imperfect competition [1]. Their work rein-
forces the need for more rigorous characterization of the effect
of the transmission constraints on residual demand. Although
we make derivations based on the supply function model in this
paper, similar analysis also applies to the Cournot model. As
an example, we will demonstrate how to verify Cardell et al.’s
Cournot model three-bus looped network computational results
in [1].

Yao and Oren propose an equilibrium programming with
equilibrium constraints (EPEC) model to calculate the market
equilibrium in a transmission-constrained network [2]. How-
ever, their characterization of the transmission constraint is
partial in the sense that they assume the residual demand
functions are explicitly given and do not change as transmis-
sion congestion conditions change. As will be shown in this
paper, the residual demand function will be different if the
binding transmission constraints change, and the calculation
of the residual demand derivative given binding transmission
constraints is the main contribution of this paper. Our results in
this paper provide the basis for better transmission constraint
modeling and could be incorporated into algorithms like Yao
and Oren’s to represent more accurate transmission constraint
characterization, albeit possibly at the cost of making profit
functions non-concave due to the change of binding constraints.
In that case, we may need to enumerate all possible combina-
tions of binding constraints in searching for the best response.

Xu and Yu use a linear supply function model and calculate
the transmission-constrained SFE [5]. They consider the im-
pact of the transmission and calculate the best response numer-
ically. In this paper, we will characterize the transmission-con-

strained residual demand derivative analytically and verify the
results with reference to Xu and Yu’s four-bus looped network
example.

The approach in this paper can also be viewed as a generaliza-
tion of the methods in [19] and [20]. References [19] and [20]
calculate the sensitivities of the generation dispatches to offer
prices considering the transmission constraints. Our approach
generalizes their methods in that we can handle any type of offer
functions and not just fixed price offers. Our emphasis is on the
residual demand, whose derivative reveals the sensitivities of the
generation dispatch to the incremental market price changes. We
will demonstrate that these sensitivities are independent of the
offer functional forms but do depend on the binding generation
capacity and transmission constraints. We can handle all these
constraints without any difficulty, whereas the methods in [19]
and [20] cannot directly handle the binding generation capacity
constraints.

The organization of the rest of this paper is as follows.
Section II presents the analytic calculation of the residual
demand derivative in a transmission-constrained network and
its properties, Section III provides one intuitive example and
two numerical examples taken from previous papers to verify
our calculation, and Section IV concludes. In addition, the
Appendix provides background knowledge about ordinary least
squares (OLS) problem and weighted least squares (WLS)
problem.

II. RESIDUAL DEMAND DERIVATIVE

In a typical electricity market, let us assume that different
generation firms are located at different buses, and let us index
the firms by the bus number. Under nodal pricing, transmission
constraints will generally lead to different nodal prices for dif-
ferent buses, so instead of having only one uniform market price

, we will have a vector of nodal equilibrium prices

assuming there are buses in the system.
We assume that the demand at each bus depends on only

its local price, because in the short term, it is unlikely that a
market participant could shift loads between buses according
to real-time nodal prices. Currently, the real-time prices are not
published quickly enough to support this kind of load response
in electricity markets.

Accordingly, a generation firm’s residual demand will be a
function of its local nodal price. Write out the energy balance
condition

(4)

By keeping a specific on the left-hand side,
and moving all other terms to the right-hand side, we obtain

(5)

Before we continue, to simplify notation, we combine each
generation firm’s supply function with the demand curve at
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the same bus by treating demand as negative supply, and this
process will result in only one supply function left at each bus
so that (5) becomes

(6)

The market clearing condition for the residual market at bus
implies that the residual demand equals supply, i.e.,

(7)

Now we are going to derive analytically. Without loss
of generality, we want to calculate at a specific bus . We
choose this bus to be the slack bus, and we reorder all the system
buses to number this chosen bus to be bus . That is, we want
to calculate the residual demand derivative at the slack
bus . The corresponding offer cost function, whose derivative
is the inverse of the supply function , is denoted by .
That is, we define by

(8)

Also we assume the functions , are strictly
convex and twice partially differentiable.

Following [21], we assume the market is cleared by solving
the following dc OPF problem:

(9)

(10)

(11)

(12)

where
• bus is the slack bus;
• is the nodal power injection

quantity vector;
• equation (10) consists of the transmission constraints and

the generation capacity constraints for non-slack buses
(suppose there are totally of them);

• is a matrix consisting of the submatrix of power
transfer distribution factors (PTDFs) corresponding to the
transmission constraints and the submatrix representing
the capacity constraints for non-slack buses;

• consists of the transmission capacity limits and the gen-
eration capacity limits for non-slack buses;

• ;

• equation (11) is the generation capacity constraint, which
specifies the upper and lower limits of the domain of the
offer cost function at the slack bus;

• equation (12) is the energy balance constraint.
There are two widely used OPF formulations. One is to con-

sider elastic demands, and the OPF objective is to maximize
total social welfare; the other is to consider inelastic demand,
and the OPF objective is to minimize total generation cost. We
use the first OPF formulation in this paper to derive the residual
demand derivative. However, we stress that the methodology is
also applicable to the alternate OPF formulation.

We intend to calculate the residual demand derivative evalu-
ated at the current market operating point. The current market
operating point is determined by the OPF solution. Therefore,
the residual demand derivative calculation is a post-OPF anal-
ysis. Given an OPF solution, we know which constraints are
binding in the OPF formulation. Given these binding OPF con-
straints at the solution, we will form the Lagrangian for the OPF
problem (9)–(12) including only binding constraints. Let us de-
note the binding constraints by subscript “ ”. The calculation
needs to be separated into two cases:

• the slack bus generation capacity constraint (11) is not
binding;

• the slack bus generation capacity constraint (11) is binding,
but we will see that the two cases result in the same expres-
sion for the residual demand derivative.

A. Non-Binding Slack Bus Generation Capacity Constraint

The Lagrangian for (9)–(12) including only the binding con-
straints is as follows:

(13a)

The first-order necessary conditions (FONCs) of (13a) are

(14a)

(15a)

(16a)

(17a)

where
• is a matrix generated by eliminating the

th column (all elements in this column are zeros) of ;
• is the th column of ;
• is obtained from by eliminating the th entry;
• consists of the binding transmission capacity limits and

the binding generation capacity limits for non-slack buses.
Because the generation capacity constraint is not binding at

bus , the marginal offer cost at bus is equal to the market
clearing nodal price at bus given by the Lagrange multiplier

according to (15a). There are equations, and
variables in the FONCs (14a)–(17a), so the FONCs

are uniquely solvable assuming regularity conditions. Denote
the solution by

The FONCs characterize a market clearing point. From the
perspective of the generation firm located at the slack bus, the
market clearing point is the intersection of its own offer
cost function and the residual demand function. If the genera-
tion firm located at the slack bus changes its offer function, the
market will clear at a different point, which is the new intersec-
tion point of the changed offer function and the residual demand
function. In other words, the market clearing points generated by
changing the offer function of the generation firm located at the
slack bus are all points on the residual demand function. There-
fore, the residual demand function is characterized by the locus
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of the market clearing points obtained by changing the
generation firm’s offer function.

That is, if we remove the equations that contain the offer in-
formation of the generation firm located at the slack bus from
the FONCs, the remaining equations characterize the residual
demand function, because the residual demand function should
not depend on a generation firm’s own offer information. In the
FONCs (14a)–(17a), (15a) contains , which is based on
the offer cost function of the generation firm located at the slack
bus, so we should remove it from the FONCs to characterize the
residual demand function. With (15a) removed, we have
equations, namely, (14a), (16a), and (17a), and
variables left in the FONCs, so there is one degree of freedom.
The one degree of freedom implicitly characterizes a locus of

, i.e., the residual demand curve.

B. Binding Slack Bus Generation Capacity Constraint

Consider that the upper generation capacity constraint is
binding at the slack bus. The Lagrangian for (9)–(12) including
only the binding constraints is as follows:

(13b)

where, without loss of generality, we have assumed that the
maximum generation capacity constraint is binding. A similar
analysis applies for the minimum generation capacity con-
straint. The FONCs of (13b) are

(14b)

(15b)

(16b)

(17b)

(18b)

Denote the solution of (14b)–(18b) by

We need to clarify that generally speaking, we could not
choose a bus with binding generation capacity constraint as the
slack bus to solve problems involving power flow. The reason
why we can do this in this case is that the OPF is already solved,
so in this post-OPF analysis, from the optimality conditions
point of view, it does not matter which bus is the slack bus as
long as the FONCs (14b)–(18b) are satisfied.

For the same reason as in Section II-A, we need to remove
the equations that contain the offer information of the genera-
tion firm located at the slack bus from the FONCs (14b)–(18b).
Again, (15b) contains and thus should be removed. In
this case, in addition, another equation, (18b), should also be
removed, because it specifies the upper limit of the offer func-
tion domain, and thus, and (18b) together characterize
the offer information.

Note that if (15b) and (18b) are removed, the remaining (14b),
(16b), and (17b) are exactly the same as (14a), (16a), and (17a).

C. Sensitivity Analysis

Now we are going to calculate the residual demand deriva-
tive at bus by simultaneously solving (14a), (16a), and (17a),
which has one degree of freedom that characterizes a locus of

.
Consider (14a), (16a), and (17a) parameterized by . By the

Implicit Function Theorem, if second-order sufficient condi-
tions hold, then a unique function

exists in a neighborhood of that solves (14a), (16a), and (17a).
Furthermore

(19)

Because the equations, which contain the offer information
at the slack bus, have been removed, the quantity in (17a) is
actually the residual demand quantity , so we replace by

in the left-hand side of (17a), and therefore (17a) becomes

(20)

We are interested in the residual demand derivative, i.e., the
derivative of with respect to evaluated at

(21)

Sensitivity analysis enables us to calculate the derivative of

with respect to evaluated at . It may be that the sensitivity
is not defined due to non-differentiability, and we will briefly
discuss this case in Section II-E below.

From (14a) and (16a), we get

(22)

(23)

where

The vector can be calculated by totally differen-
tiating (22) and (23) with respect to to obtain

...
. . .

...

(24)

(25)
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where . Solving (24) and (25), we obtain

(26)

(27)

where

...
. . .

...

...
. . .

... (28)

and is the identity matrix. Because we as-
sume the strict convexity of , , the inverse
in (28) exists, and is positive definite. Therefore

(29)

We need to clarify that this residual demand derivative is the
residual demand derivative for bus as a whole, i.e., the local
actual demand at bus has been combined with the supply at the
same bus. Therefore, from the point of view of the generation
firm located at bus , its residual demand derivative is actually
(29) plus the local demand derivative at bus , if there is any
local demand.

For convenience in the above analysis, we calculate the
residual demand derivative at the slack bus. Notice that (29)
indicates that the residual demand derivative only depends on
and , which are reduced matrices (with rows and/or columns
corresponding to the slack bus deleted). For residual demand at
an arbitrary bus , all we need to do is to reconstruct and
assuming that bus is chosen as the slack bus in order to make
use of (29).

D. Weighted Least Squares Regression Interpretation

The formula in (29) is the negative summed square error
(SSE) of the following linear weighted least squares (WLS)
regression problem: regress 1 on each column of , and use

as the weight matrix. Suppose we have observations
, , where

(30)

(31)

The linear WLS regression problem is to find an optimal
vector that minimizes the weighted sum of squared errors (see
the Appendix for details)

(32)

where , satisfy

...
...

. . .
...

(33)

The solution to this WLS problem is

(34)

(35)

Such a least squares interpretation helps us gain insight into
the original problem. (It is interesting that least squares inter-
pretations are widely observed. Another example in the context
of nodal prices can be found in [23], although the specific topic
is somewhat different.)

From WLS theory (see the Appendix), we know that the
WLS problem (32) could be transformed into an equivalent
OLS problem. Define

(36)

(37)

where

...
...

. . .
...

(38)

The equivalent OLS to (32) is

(39)

The solution to this OLS (39) problem is exactly the same as
the solution of the WLS problem (32)

(40)

(41)
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The residual of the OLS problem (39) with specified
in (40) is

(42)

From OLS theory (see the Appendix), we know is orthog-
onal to , i.e.,

(43)

i.e.,

(44)

or

(45)

by substituting from (26). Note that (45) is the
same as (27).

The orthogonality condition (43) produces the same equation
as (25), so we would like to call (25) the orthogonality equation
of binding constraints. The meaning of (25) is that when binding
constraints do not change, the Jacobian of the constraints ( in
this case) is orthogonal to the direction of change .

In other words, the direction of change will not
change these binding constraints: no active constraints will be
violated, and no active constraints will become nonbinding. It
is the orthogonality equation of binding constraints that makes
possible the WLS interpretation.

In addition, from WLS theory (see the Appendix), we can
deduce the following properties about the residual demand
derivative.

1) Property 1: If is positive definite, then the residual de-
mand derivative is less than or equal to zero.

2) Property 2: Enforcing a new linearly independent binding
constraint in the OPF will reduce the residual demand derivative
in absolute value if

(46)

and

(47)

where as defined in (37)

(48)

and is an added row to .

In particular, if there is no transmission congestion, the
residual demand derivative is . When transmission is
congested, the residual demand derivative decreases in absolute
value, because

(49)

where the subscript “ ” denotes “transmission congested,” and
the subscript “ ” denotes “transmission uncongested.” This
implies that when transmission constraints bind, the players
have more incentive to exert market power because of the
decrease in magnitude of the residual demand derivative.

We have assumed that there is no perfectly elastic supply at
any bus in the derivation of (29). If there is perfectly elastic
supply at some bus, then (29) is not valid, because we cannot
invert a singular matrix to get in (28). To consider perfectly
elastic supply, we will analyze the limit of the residual demand
derivative as some diagonal elements of go to infinity. We are
especially interested in the conditions under which the residual
demand derivative goes to infinity, i.e., the residual demand is
perfectly elastic.

Theorem 1: Suppose there are buses , each
with its supply derivative going to infinity, and denote the set
composed of as . If the following (50) has so-
lution, then the residual demand derivative at the slack bus is
bounded; otherwise, the residual demand derivative at the slack
bus goes to infinity:

...
(50)

where .

Proof:
1) Suppose (50) has a solution . From (32), we have

(51)

Therefore, if (50) has solution, the residual demand deriva-
tive at the slack bus is bounded.

2) Suppose (50) does not have a solution. Choose any that
satisfies

By assumption

(52)
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From (32), we have

By the definition of

(53)
Therefore

(54)

Therefore, if (50) does not have solution, the residual demand
derivative at the slack bus is unbounded.

Generally speaking, if the number of buses with perfectly
elastic supply is greater than the number of binding constraints,
then the residual demand derivative at the slack bus is un-
bounded, because there are more equations than variables in
(50), unless enough number of equations in (50) are redundant.

When the residual demand derivative is bounded, it could be
calculated from the WLS problem (32). Essentially, all buses
that have perfectly elastic supply must have zero residual

(55)

in order to zero out the arbitrarily large , . We will
show an example for this case in Section III-C.

The WLS interpretation and the fact (55) have an important
implication. Increasing the quantity-price response makes the
electricity market more competitive. As shown in (33), larger
quantity-price response will have a larger weight in the WLS
problem. However, increased quantity-price response is not
effective if binding transmission constraints prevent the large
quantity-price responses from “spreading out” to the whole
system. Our analysis allows the determination of the quan-
tity-price response in the presence of transmission constraints.

E. Non-Differentiable Case

The OPF solution might be at a point of non-differentiability.
In other words, the sensitivity with respect to the slack bus price

Fig. 1. Two-bus example.

is not defined. This occurs when there are just binding con-
straints and/or the current OPF solution is at a point of non-dif-
ferentiability of a supply function. If we encounter the case
where the left-side and right-side residual demand derivative
exist, but they are not equal, we could calculate the left-side and
right-side residual demand derivative, respectively. If we can
determine which constraints are binding as the price at bus
increases or decreases, then the left-side and right-side residual
demand derivatives are specified by (29) or can be calculated
by the equivalent WLS problem for perfectly elastic supply/de-
mand case with the corresponding binding constraints. Deter-
mining the binding constraints in general involves enumerating
each possible combination of binding constraints and, for each,
checking if the solution implied by sensitivity analysis will in-
deed induce the same set of binding constraints. Similar analysis
is also necessary in the case that the OPF solution is at a kink
point of a supply function; that is, the left-side derivative does
not equal the right-side derivative.

III. EXAMPLES

A. Example 1: Intuitive Two-Bus Case

Consider the simplest case of a two-bus system connected by
a single transmission line, and the line is congested. The case is
illustrated in Fig. 1.

Many researchers have adopted this example to illustrate the
transmission effect on the equilibrium. (For example, see Boren-
stein et al. [22].) It is observed that the market equilibrium just
resembles the combination of two decoupled single bus system
equlibria. We will demonstrate that the analysis in Section II is
consistent with this observation. We compute the residual de-
mand at bus 2 and choose it as the slack bus. Because
and , is a 1 1 matrix, and . Substitute

into (26) and (27), and we get

and , which implies that the supply at bus 1

is not affected by the price at bus 2. Also substitute into
(29), and we get . Since we have combined
the supply and demand at bus 2, so this implies that the residual
demand at bus 2 is just the derivative of the actual local demand
derivative at bus 2, and the market at bus 1 does not affect the
residual demand derivative at bus 2. Similar results hold for bus
1. These results verify the intuitive result that the market is de-
coupled in this case.

B. Example 2: Numerical Four-Bus Case

This example is illustrated in Fig. 2. We consider a two-loop
system from [5]. Each branch admittance equals 0.1. There are
two generation firms located at bus 1 and 2 and two loads located
at bus 3 and 4.
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Fig. 2. Four-bus example.

The marginal generation cost functions and demand functions
in bus order are

Generation Load

Branch 1–3 has a transmission capacity limit of 30 MW,
and all the other branches have transmission capacity limits
of 400 MW. Following Xu and Yu, we consider the existence
of a transmission-constrained linear SFE for this case. The
transmission-constrained linear SFE

is characterized by [5]

(56)

(57)

where generation firm ’s linear marginal cost function is
.

Now we demonstrate that our analysis confirms to the numer-
ical results in [5]. The way we verify it is as follows.

A linear supply function best response could be calculated
directly from a generation firm’s profit maximization problem
as Xu and Yu did in [5]. Because the supply function best re-
sponse and the residual demand derivative satisfy (1), we could
solve for the residual demand derivative with a given supply
function best response. The solution is (56). We used Xu and
Yu’s numerical supply function best response solutions as input,
and we solved for numerical residual demand derivatives using
(56). Recall that we have derived the analytical solution of the
residual demand derivative in (29). Therefore, we could com-
pare our analytic solutions derived in this paper with the numer-
ical solutions recovered from Xu and Yu’s results using (56).

In particular, denote the output of the algorithm in [5] by ,
which is the input to recover using (29), and denote the
so-recovered by . Then we calculate analytically the
values evaluated at and compare calculated analytically
to from the output of the algorithm in [5]. The results are
summarized in Table I.

Define the relative numerical error by

(58)

The smaller the , the more closely our results conform with
Xu and Yu’s results.

TABLE I
RESULTS COMPARISON

Table I shows that the relative error is in the range of 5% to
0.02%. Moreover, as the numerical accuracy of Xu and Yu’s re-
sults increases as specified by a tolerance parameter in the stop-
ping criterion of Xu and Yu’s algorithm, decreases, which
indicates a better confirmation. The parameter is the toler-
ance control parameter in [5], which controls the output accu-
racy of the bidding parameter . Note that smaller results
in smaller .

From the results, we conclude that the characterization in this
paper is consistent with the numerical results in [5].

C. Example 3: Numerical Three-Bus Case With Perfectly
Elastic Supply

This example is taken from [1], and we simplify it by only
considering information that is relevant to the residual demand
derivative calculation. As illustrated in Fig. 3, it is a three-bus
system with line 2–3 having a capacity of 600 MW. All other
lines have very large capacity and cannot be congested. All three
lines have the same impedance. There are three generators G1,
G2, and G3 located at the corresponding buses. G1 bids a linear
supply function with slope

and G3 has perfectly elastic supply. There is only one load,
which is located at bus 3.

We want to calculate the residual demand derivative at bus 2,
so we designate bus 2 as the slack bus. Since there is a perfectly
elastic supply at bus 3, we can use the WLS interpretation tech-
nique to calculate the residual demand derivative as the limit as
a weight approaches infinity. We have for this case
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Fig. 3. Three-bus example with perfectly elastic supply.

and

where denotes an arbitrarily large number. Form the WLS
problem as follows:

The solution of this problem is

Take the limit of as , and we have

Therefore

Therefore, the residual demand derivative at bus 2 is .
Notice that the optimal makes

Generally, the optimal WLS coefficients should make the
residual, corresponding to a bus with perfectly elastic supply,
equal to zero. Otherwise, the WLS problem will be unbounded.

In [1], Cardell et al. characterized the inverse of the residual
demand derivative at bus 2 in (2). Their calculation is based on
their intuitive price relationship

They obtained the solution for the inverse residual de-
mand derivative as indicated in [1, equation (4)]. Therefore, our
calculation is consistent with this solution, because

IV. CONCLUSION

We characterize the residual demand at the slack bus based
on the FONCs of the OPF problem. The residual demand curve
is implicitly characterized by eliminating the equations in the
FONCs that contain the offer information of the generation firm
located at the slack bus. After doing that, there is one degree
of freedom left in the FONCs that defines a locus of ,
i.e., the residual demand curve. We obtain the residual demand
derivative formula (29) by sensitivity analysis viewing the price
at the slack bus as a parameter and assuming there is no per-
fectly elastic supply in the system. The solution has a suggestive
WLS interpretation. Several useful properties of the residual de-
mand derivative are implied by WLS theory. If there is perfectly
elastic supply at some bus in the system, it is convenient to use
the WLS interpretation to analyze the limit of the residual de-
mand derivative as the quantity-price response of the bus goes
to infinity. We establish the condition under which the residual
demand derivative at another bus will be bounded or unbounded
in this case. All the residual demand derivative analysis is appli-
cable to both the supply function model and the Cournot model.

The correctness of the residual demand derivative analytic
formulation is verified using an intuitive two-bus system, a nu-
merical four-bus two-loop system from [5], and a three-bus one-
loop system from [1].

The residual demand derivative formulation could be used
to construct optimal bidding strategies in a transmission-con-
strained network, and it could be incorporated into sophisticated
optimal strategy and market equilibrium algorithms. It also pro-
vides useful information and insights for market analysts and
market monitoring entities.

APPENDIX

ORDINARY LEAST SQUARES PROBLEM AND

WEIGHTED LEAST SQUARES PROBLEM

The formulation and results in this section are from [24]. An
OLS problem is formulated as follows. Suppose there are ob-
servations , . The objective is to find an
optimal vector that minimizes the SSE

(A1)

The solution to this OLS problem is

(A2)

where

...
(A3)

(A4)

assuming there is no multicollinearity, i.e., has linearly inde-
pendent columns.
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The minimal SSE is

(A5)

Define a projection matrix by

(A6)

Define another projection matrix by

(A7)

Both matrices and are idempotent, namely

(A8)

(A9)

In addition, both matrices and are positive semi-definite
so that

(A10)

Define the residual

(A11)

then

(A12)

Suppose we want to add one regressor to the problem. Now
there are observations , , with
added. Again assume there is no multicollinearity with added.

The objective is to find an optimal vector and that mini-
mizes the SSE

(A13)

We have

(A14)

where , and

(A15)

Note that if

(A16)

and

(A17)

then

(A18)

If we put weights on different observations, then it is a WLS
problem with the following objective:

(A19)

The solution to this WLS problem is

(A20)

where the weight matrix is defined by

...
...

. . .
...

(A21)

The minimal SSE is

(A22)
Let us assume is positive semi-definite so that exists

(A23)

The WLS could be transformed to an equivalent OLS
problem by defining

(A24)

(A25)

where

...
...

. . .
...

(A26)

The equivalent OLS to (32) is

(A27)
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