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Abstract

We consider a supply function model of a poolco electricity market where demand

varies signi�cantly over a time horizon such as a day and also has a small responsive�

ness to price� We show that a requirement that bids into the poolco be consistent

over the time horizon has a signi�cant in�uence on the market outcome� In particular�

although there are many equilibria yielding prices at peak that are close to Cournot

prices� such equilibria are typically unstable and consequently are unlikely to be ob�

served in practice� The only stable equilibria involve prices that are relatively closer

to competitive prices� We demonstrate this result both theoretically under somewhat

restrictive assumptions and also numerically using both a three �rm example system

and a �ve �rm example system having generation capacity constraints� This result

contrasts with markets where bids can be changed on an hourly basis� where Cournot

prices are possible outcomes� The stability analysis has important policy implications

for the design of day�ahead electricity markets�

� Introduction

We consider an electricity market where generating �rms bid to supply energy and we analyze
the e�ect of requiring that the bid remains �xed throughout a time horizon� for example� a
day� This assumption matches several markets� such as�

� England and Wales� until �����

� markets in Eastern United States such as Pennsylvania	New Jersey	Maryland 
PJM��

�



Typical bid�based pools usually require a schedule of prices as a function of quantity 
and
we will show graphs as price to quantity plots�� However� we will analyze such a market
using functions from price to quantity to represent the bids� We consider an equilibrium in
such supply functions�

Klemperer and Meyer 
�� provided the seminal analysis of supply function equilibrium

SFE�� They demonstrated conditions for the equilibrium to be unique� Subsequently� Green
and Newbery 
�� applied Klemperer and Meyer�s SFE analysis to the electricity market of
England and Wales� Several other studies have since used SFE analysis to consider the
England and Wales market and other electricity markets 
�� �� ��� The basic assumption in
these studies is that the bid function remains constant over an extended horizon� such as a
day� This assumption was essentially satis�ed in the England and Wales market until �����

An apparent attraction of SFE analysis over other techniques� such as Cournot or Bertrand
analysis� is that the SFE explicitly represents the functional form of the bid requirements
in a pool� This contrasts with quantity or price bids in Cournot or Bertrand analysis� since
the actual function that is bid into the pool is only implicit in the results of Cournot or
Bertrand analysis� Nevertheless� we will see that the apparent match of SFE analysis to
bid rules is misleading when the market rules allow for bids to be modi�ed over the time
horizon� as in the 
now defunct� California Power Exchange� or if there are only a relatively
small number of �pricing periods� over the time horizon� We will consider the implications
when SFE analysis is not applicable to a bid�based pool�

The organization of this paper is as follows� In section �� we present the formulation�
which is essentially standard from the literature� Then section � discusses SFE analysis
applied to electricity markets� highlighting the issue of the wide range of possible SFEs�
In section �� we consider how stability a�ects the range of observed equilibria and then in
section � discuss the signi�cance of the stability analysis� We conclude in section � with some
policy implications� This paper is an abridged version of 
��� Fuller explanations� technical
details� proofs of results� and many more numerical simulations are reported in 
���

� Formulation

We follow the SFE and electricity market literature in the following formulation 
�� �� �� �� ���
We consider a market consisting of n �rms� indexed i � �� � � � � n� and restrict our model to
the case where the generation marginal costs C �

i for �rm i � �� � � � � n are a�ne�

�qi � R� � C
�
i
qi� � ciqi � ai�

and� moreover� require ci � �� i � �� � � � � n� so that the total variable cost function Ci for
�rm i is quadratic and convex�

We assume that each �rm bids a supply function into the bid�based pool� The bid supply
function of �rm i remains �xed over the time horizon� is denoted by Si� and is required to
be a non�decreasing function from price to quantity produced� As noted in the introduction�
typical bid�based pools require a function from quantity to price� which is the inverse of the
supply function� We will graph supply functions with price on the vertical axis and quantity
on the horizontal axis to be consistent with this convention�
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In some cases� we will represent capacity constraints for �rms� so that the marginal cost
function is only valid for �rm i for qi � 
�� qi�� where qi is the capacity of �rm i� In some
cases� we will also consider price caps� We represent price caps by requiring that for �rm i�
Si
p� � qi� where p is the price cap� That is� the price cap is implemented by assuming that
a �rm must bid in all its capacity if the price reaches the price cap�

Demand is assumed to be a continuous function of the price p and of the 
normalized�
time t over the time horizon� The normalized time ranges from � to � and we assume that
the chronological aspect of the variation of demand has been abstracted into a load�duration
characteristic� That is� demand is given by�

�p� �t � 
�� ��� D
p� t� � N
t�� �p�

where�

� N is a continuous load�duration characteristic that speci�es the variation of demand
over the time horizon and

� demand responds to price variations according to the demand slope ��

Figure � shows a continuous load�duration characteristic� By convention� load�duration
characteristics are drawn with the peak conditions corresponding to t � � and the minimum
demand conditions corresponding to t � ��

The price� P 
t�� at each time t � 
�� �� is determined by the market clearing conditions
of demand equaling supply�

D
t� P 
t�� � N
t�� �P 
t� �
nX

i��

Si
P 
t���

assuming a solution exists for this equation� The pro�t per unit time to �rm i is its revenue
minus its costs�

�it � Si
P 
t��P 
t�� Ci
Si
P 
t����

The total pro�t �i to �rm i is the integral of its pro�t per unit time over the time horizon�

�i
Si� S�i� �
Z �

t��
�itdt�

�
Z �

t��

Si
P 
t��P 
t�� Ci
Si
P 
t����dt�

where S�i � 
Sj�j ��i are the supply functions of the other �rms� That is� the pro�t of �rm
i depends not only on its own supply function but also on the supply functions of the other
�rms since the price at each time is determined by the supply�demand cross�

A collection of supply functions S� � 
S�
i �i�������n is a Nash supply function equilibrium


SFE� if no �rm can be made better o� by unilaterally changing its bid� That is� S� is an
SFE if�

�i � �� � � � � n� S�
i � argmax

Si

f�i
Si� S
�
�i�g�

where S�
�i � 
S�

j �j ��i are the supply functions of the other �rms�
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Figure �� Example load�duration characteristic�
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� Basic analysis

Klemperer and Meyer 
�� expressed the equilibrium conditions described in section � as a
coupled di�erential equation� For the a�ne marginal cost case� there is an a�ne solution
to this di�erential equation� Klemperer and Meyer also showed conditions under which
this a�ne solution would be the only SFE� Translated into the electricity market context�
the conditions are that the load�duration characteristic is unbounded� Unfortunately� in the
practical case that the load�duration characteristic is bounded there are multiple SFEs� some
of which are more competitive than the a�ne SFE and some of which are less competitive
than the a�ne SFE�

The coupled di�erential equation derived by Klemperer and Meyer is not in the standard
form of a non�linear vector di�erential equation� It can be transformed into a standard non�
linear vector di�erential equation� as shown in 
��� The solution of the di�erential equation
characterizes some� but not all� possible SFEs�

Unfortunately� the di�erential equation approach does not represent capacity constraints�
Moreover� solutions of the di�erential equation can turn out to not satisfy the requirement
that the supply functions be non�decreasing� If a solution of the di�erential equation is
not non�decreasing at a price that is a solution of the market clearing conditions then the
solution cannot be an SFE� In summary� the solutions of the di�erential equation are not in
one to one correspondence with SFEs�

Nevertheless� as Green and Newbery show in 
�� for the symmetric case of all �rms having
the same costs� there can be a wide range of solutions of the di�erential equation that satisfy
the non�decreasing requirement and so are SFEs� That is� in these cases� there is a wide
range of possible SFEs�

To understand this wide range of SFEs� consider the peak demand condition as speci�ed
by the load�duration characteristic at t � � and consider the Cournot equilibrium at this
demand level� We write pCournotpeak demand for the Cournot price at this demand level and consider
the corresponding quantities qCournoti � If we use this price and these quantities as an �initial
condition� in the di�erential equation and integrate �backwards� from p � pCournotpeak demand

towards p � � then we obtain a solution of the di�erential equation that satis�es the non�
decreasing constraints� That is� we obtain an SFE� We call this SFE the �least competitive
SFE�� At times other than t � �� the prices resulting from least competitive SFE bids are
lower than the prices that would occur under Cournot competition at each time 
���

Now consider competitive behavior at peak demand conditions and write pcomppeak demand for
the competitive price at peak demand� Let qcompi be the corresponding quantities and again
use this price and these quantities as an �initial condition� in the di�erential equations� We
again obtain a solution that satis�es the non�decreasing constraints� which is therefore an
SFE and which we call the �most competitive SFE�� At times other than t � �� the prices
resulting from most competitive SFE bids are higher than the prices that would occur under
competitive behavior at each time 
���

Green and Newbery illustrate this wide range of SFEs� Figure � is an adaptation of their
illustration using a symmetric three �rm example based on cost data from 
��� 
We will
return to this example in section ��� Since the �rms are symmetric then� for each SFE� each
�rm has the same supply function� The dashed functions show the relationship between
quantity and price if� respectively� the Cournot and the competitive outcomes occurred at
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Figure �� Least and most competitive symmetric SFEs shown solid� together with Cournot
bidding and competitive bidding� shown dashed�
Source� This �gure is based on 
�� Figure ��� but uses cost data for the symmetric three �rm
system based on 
���

each time over the time horizon� For future reference� we call these �Cournot bidding� and
�competitive bidding�� respectively�

The wide range of supply function equilibria weakens the usefulness of SFE analysis
because it is unclear which equilibrium will be observed in practice or if the electricity
market will converge to any equilibrium� Various authors have singled out one of the SFEs�
For example� Green and Newbery 
�� use the least competitive SFE to analyze the England
and Wales market� However� using �reasonable� values of the demand slope� they calculate
prices well above those observed� More recently� Green 
��� Rudkevich 
��� Baldick and
Kahn 
��� and others use the a�ne SFE� The prices calculated using a�ne SFE analysis for
the England and Wales market� for example� are typically closer to those observed� however�
it should be remarked that the results depend strongly on the assumed demand slope�

Under some conditions� the range of SFEs is smaller� For example� Green and Newbery
show that if there are binding generator capacity constraints at peak then there is only one
SFE 
��� There are other issues besides capacity constraints that might potentially limit the
range of the observed equilibria� such as�
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� price caps and

� instability of equilibria�

In the next section� we consider stability and then return in section � to generator capacity
constraints and price caps using a numerical framework�

� Stability analysis

There are various timescales in an electric power system 
and in an electricity market� and
corresponding notions of stability�

� responses of automatic controls and stability of the electromechanical system 
���

� stability of interaction between the electromechanical system and short�term electricity
markets 
��� and

� stability of economic equilibria�

Alvarado has analyzed the stability of electricity market equilibria involving quantity bids 
����
Here we will consider the stability of SFE�

We will prove that all of the SFEs between the least and most competitive� except for
the a�ne SFE� are unstable� The signi�cance of this observation� to be discussed in detail in
section �� is that unstable equilibria are unlikely to be observed in practice� The conditions
for unstable equilibrium are somewhat restrictive� since they only apply to SFEs that are
found using the di�erential equation approach� However� in section �� we will use a numerical
framework to investigate the range of observed equilibria under less restrictive assumptions�
including the imposition of�

� generator capacity constraints and

� price caps�

We �rst must de�ne what we mean by an unstable equilibrium� An SFE S� � 
S�
i �i�������n

is unstable if a small perturbation S� � 
S�
i �i�������n to S� results in responses �S � 
 �Si�i�������n

by �rms that deviate even more from S�� Formally� �rst let k�k be a norm on equivalence
classes of SFEs such that if kS � S�k � � then the resulting prices for S are the same as
the resulting prices for S�� The reason for considering such a norm is that we want to be
able to de�ne �small� perturbations� and we recognize that only perturbations to the supply
functions that actually change the observed prices are relevant� With this norm� we say that
S� is an unstable equilibrium if for every � � � there exist supply functions S� � 
S�

i �i�������n
such that�

� kS� � S�k � � and

� if� for each i� �Si is any optimal response to S�
j � j �� i and we de�ne �S � 
 �Si�i�������n then��� �S � S�

��� � kS� � S�k�

We have the following stability theorem 
���
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Figure �� Illustration of proof of stability theorem�

Theorem Suppose that there are no capacity constraints on the production of the �rms
and also suppose that S� is an SFE given by the solution of the di�erential equation form of
the equilibrium conditions� �That is� the solution S� of the di�erential equations is non�
decreasing over the range of prices over the time horizon�� Moreover� suppose that the
resulting supply functions are all strictly concave or are all strictly convex �as functions
of price�� Then the SFE S� is unstable�

Outline of proof� We consider a price p� that is close to the price� ppeak demand� at peak
demand and de�ne a perturbation S�

i of Si by setting S�
i 
p� equal to Si
p� for � � p � p��

For prices p � p�� however� we de�ne S�
i 
p� so that it is a�ne and tangential to Si at p � p��

This situation is illustrated in �gure � and shows that S�
i �bends away� from Si for prices

p � p��
If each �rm i � �� � � � � n adopts this perturbed supply function S�

i then we can then show
that the optimal response by �rm i to 
S�

j�j ��i� which we will call �Si� involves an even larger

bend away from Si� This is also illustrated in �gure �� That is�
��� �S � S�

��� � kS� � S�k and
the SFE S� is unstable� �
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� Numerical analysis

In this section we use an iterative numerical framework to analyze SFEs� We begin the
iterations with a starting function and then at each successive iteration update each �rm�s
supply function by seeking that �rm�s best response to the supply functions of the other
�rms from the previous iteration� That is� we iterate in the function space of allowed supply
functions to seek an equilibrium� We consider the convergence of the sequence of iterates�
Details of the computational framework including discussion of the parameterization of the
supply functions and various caveats about the analysis are contained in 
���

The stability theorem in the previous section is most easily demonstrated numerically
with respect to a symmetric system since symmetric non�a�ne SFEs all satisfy the hypothe�
ses of the theorem� We consider a symmetric three �rm example in section ���� We then
consider an asymmetric �ve �rm system in section ����

��� Symmetric three �rm system�

This system has cost functions based on Day and Bunn 
��� The cost functions are the same
for each �rm and there are no capacity constraints and no price caps represented� This is the
same system as was used for �gure �� As well as the most and least competitive SFEs shown
in �gure �� there is a range of possible SFEs between them as illustrated in �gure �� which
shows various equilibrium supply functions for one of the �rms� 
Again� since the �rms are
symmetric� each SFE involves the same function for each �rm�� The dashed line in �gure �
shows the a�ne SFE�

We used each SFE illustrated in �gure � as the starting function for the numerical frame�
work� Since these starting functions are themselves SFEs� it is reasonable to expect that at
each iteration each �rm will not change its supply function� since the supply function from
the previous iteration remains an optimal response� Moreover� the pro�t for each �rm should
stay constant at each iteration�

Figure � illustrates the pro�t at each iteration using the SFEs from �gure � as starting
functions� Figure � con�rms that the pro�t stays constant at each iteration� 
The dashed
curve represents the pro�ts versus iteration with the a�ne SFE used as starting function��

Now we consider slight perturbations of the SFE� In particular� we use the construction
from the theorem to construct perturbed functions S�

i that bend slightly away from Si for
prices p � p�� For each SFE� we chose the corresponding p� to be just slightly below the price
at peak demand for that SFE� These perturbed functions are shown in �gure �� The nearly
vertical dotted line shows the vicinity of the prices and quantities at peak demand for the
SFEs� At prices signi�cantly below this level� each supply function in �gure � matches the
corresponding supply function in �gure �� At higher prices� each supply function in �gure �
is a�ne�

The results from using the supply functions in �gure � as starting functions are shown
in �gure �� Figure � is dramatically di�erent from �gure �� For all starting functions except
the ones closest to the a�ne starting function� the sequence of pro�ts drifts away from the
pro�t corresponding to the starting function� This means that all but the SFEs that are
closest to the a�ne starting function are numerically unstable�

This numerical analysis with the symmetric three �rm system con�rms the theoretical
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stability analysis� In particular� the simulations con�rm that there are multiple equilibria�
but that for a starting function that is a slight perturbation from an equilibrium� the sequence
of iterates typically drifts away from equilibrium� As discussed in more detail in 
��� when
the starting function is a perturbation of an unstable equilibrium� the numerical results
depend critically on simulation assumptions� such as the way that the function space of bid
functions is parameterized� From a numerical perspective� equilibria that are signi�cantly
di�erent from the a�ne equilibrium are not stable�

��� Asymmetric �ve �rm system�

In this section� we consider cost functions that are based on the �ve non�nuclear �rms in
England and Wales circa ����� The cost functions for these �rms are presented in 
��� These
�rms have capacity constraints and we choose the load�duration characteristic so that almost
all generation is required on�peak� While economic dispatch at peak demand would result in
marginal costs of �� pounds per MWh� the Cournot prices at peak are �� pounds per MWh�

As with the three �rm symmetric system� we again iterate in the function space of
allowed supply functions to seek the equilibrium� In this case� however� it turns out that
the construction of the most and least competitive SFEs fails� Instead we use several ad
hoc starting functions� including functions similar to the Cournot bidding and competitive
bidding functions that were shown dashed in �gure �� The results from the various starting
functions all turn out to be similar� That is� there is apparently only a relatively small range
of observed equilibria� Moreover� all equilibria have peak prices well below Cournot prices�

Figure � shows the price�duration curve at iteration ��� for one particular starting func�
tion when there is no price cap� The price at peak is around �� pounds per MWh� which
is far below the Cournot price at peak� Prices o��peak are even lower� Results for other
starting functions are similar�

Figure � shows the price duration curve at iteration ��� for one particular starting func�
tion when a price cap of �� pounds per MWh is imposed� The price cap a�ects the prices
not only at peak but also at o��peak conditions� Again� results for other starting functions
are similar�

For other values of the price cap� the price at peak varies with the price cap when the
price cap is binding� Figure �� shows the price at peak versus the price cap for two di�erent
starting functions for each value of price cap� For a given price cap� the range of peak
prices between the two starting functions is relatively small� con�rming that there is only a
relatively small range of observed equilibria�

� Signi�cance of stability theorem

In this section we discuss the signi�cance of the stability theorem and of its numerical
con�rmation� We �rst observe that if there is no requirement to bid consistently over the
time horizon or if the time horizon consists of only a few pricing periods� such as in�

� the 
now defunct� California Power Exchange� or

� any market without a mandatory pool�
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Figure �� Price�duration curve at iteration ��� with no price cap�
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then Cournot prices are a possible outcome in each pricing period� Cournot prices in each
pricing period is a much less competitive outcome than even the least competitive supply
function equilibrium�

To understand the signi�cance of the number of pricing periods� we consider the extreme
of a load�duration characteristic that is piece�wise constant and represents just four pricing
periods� as illustrated in �gure ��� This load�duration characteristic is not continuous and
so violates that assumption in our formulation�

We label the pricing periods a� b� c� and d and assume that clearing prices pa� pb� pc� and
pd� apply throughout periods a� b� c� and d� respectively� We consider supply functions that
achieve the Cournot prices in each period� In particular� consider �gure ��� The dashed
line shows the relationship between prices and quantities under Cournot bidding� which was
de�ned in section � and illustrated in �gure �� In each pricing period� the Cournot prices
pa� pb� pc� pd� and corresponding quantities� qia� qib� qic� qid� are achieved by constructing a
supply function that is constant independent of price in four price bands around pa� pb� pc�
and pd� While we have not proved that this is actually an equilibrium in supply functions� the
�gure is suggestive that such a supply function could be an SFE for the piece�wise constant
load�duration characteristic�

In contrast� when a �rm is obliged to bid consistently over a time horizon having many
pricing periods� it will not be possible to robustly achieve the Cournot outcome in each
pricing period because the bands around each Cournot price will be much smaller� If there
are a large number of pricing periods� then each �rm must trade o� pro�ts from high prices
at peak against sales at o��peak� That is� equilibrium prices will be lower than Cournot
prices�

Green and Newbery showed that the obligation to bid consistently over a time horizon
reduced the mark�up at o��peak to below that of Cournot prices 
��� However� the stability
analysis in this paper shows that even at peak times the observed equilibrium prices will be
lower than the Cournot price� Moreover� we have shown both theoretically under restrictive
assumptions and numerically that there is a small range of stable SFEs� For example�
consider symmetric �rms with a�ne marginal costs as in the symmetric three �rm example
system in section ���� Figure �� shows the wide range of SFEs between the most and least
competitive SFEs� Figure �� also shows the a�ne SFE� which is the only stable SFE and so
it is the only SFE that is likely to be be observed in practice�

� Policy implications and conclusion

The requirement to bid consistently over a time horizon with multiple pricing periods can
help limit the exercise of market power� by depressing the prices that can be achieved in
equilibrium� Such a requirement is compatible with and additional to other proposals for
mitigation of market power� such as 

�����

� long�term contracting�

� real�time pricing�

� price caps�
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In conclusion� we have analyzed stability of equilibria in a bid�based pool market and
found that the requirement to bid consistently across a time horizon can limit the exercise of
market power� Additionally� we �nd that there is typically only a small range of stable SFEs�
Since some electricity markets have been set up with an obligation for consistent bids while
others have not� it is important to observe that seemingly arcane di�erences in speci�cation
of market rules can have large e�ects on outcomes�
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