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State Estimation Distributed Processing
Reza Ebrahimian and Ross Baldick

Abstract—This paper presents an application of a parallel algo-
rithm to Power Systems State Estimation. We apply the Auxiliary
Problem Principle to develop a distributed state estimator, demon-
strating performance on the Electric Reliability Council of Texas
(ERCOT) and the Southwest Power Pool (SPP) systems.

I. INTRODUCTION

T O HOST SCADA and Energy Management System soft-
ware for operations of power systems, utilities have his-

torically used mid-size computers to handle the tasks automati-
cally and to provide interface for real-time interactive interven-
tion by the operating staff in the control center of a control area.
However with advancements of small computer technologies
and networking, it is becoming attractive to use distributed pro-
cessing. Although the emerging structure of the “independent
system operator” (ISO) may link several utilities, distributed
computing is likely to be preferable compared to a completely
centralized implementation.

Traditionally, the maximum likelihood weighted
least-squares method is applied to the state estimation
problem, yielding a formulation that is an approximately
quadratic and convex problem, which typically has a single
optimum solution. The novelty of our research relates to the
development of algorithms for distributed processing. We
apply the “Auxiliary Problem Principle” (APP) [4] to the state
estimation problem.

In Section II, we develop and present the mathematical equa-
tions necessary to apply the APP to form the distributed algo-
rithm. In Section III, we describe the use of MATLAB [7], [8]
to develop first centralized and then distributed state estimation
software for comparison purposes. Several test case studies rep-
resenting ERCOT and SPP systems demonstrate the effective-
ness of the algorithm and we discuss bad data detection. We
conclude in Section IV.

II. DECOMPOSITION ANDDISTRIBUTED IMPLEMENTATION

A. Centralized State Estimation

Traditional maximum likelihood weighted least-squares state
estimation calculates the voltage magnitudes and angles (as-
suming a voltage angle reference). In this method the objective
is to minimize the sum of the squares of the weighted deviations
of the estimated variables from the actual measurements [16]
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where:
is the objective function,

,
is a vector of variances of the measurement
errors,
is a vector of functions describing the mea-
surements,
is a vector of the measurements,
is a vector of the voltage magnitudes and an-
gles, and

superscript denotes transpose.
Therefore, if the system is observable then the Gauss–Newton

update equations [16] for this nonlinear optimization problem
are:

where:
is the Jacobian of vector ,

and are vectors of voltage magnitude and angles, and
superscript in parenthesis indicates the iteration
count, so that
is the value of iterate at theth iteration.

B. Distributed State Estimation

1) Problem Illustration and Formulation:Based on pre-
vious experience of applying APP to the Optimal Power Flow
(OPF) problem [10], [11], we applied APP to distributed
state estimation. To maximize the practical applicability, we
formulated the problem such that: it is highly compatible to
previous real world implementations; only a small amount of
inter-processor communication is required; bad data analysis
could be performed; and, such that the distributed state esti-
mator yields the same solution as centralized state estimation.
We believe that this is a significant achievement compared with
other approaches to distributed and hierarchical state estimation
such as described in [2], [3], [5], [6], [9], [12]–[14], [17], [18].

In the following paragraphs we will describe the applica-
tion of the Auxiliary Problem Principle to the state estimation
problem. This description is paraphrased from [10], [11], but
ultimately depends on the properties of linearized augmented
Lagrangians described in [4].

To develop a distributed state estimator consider Fig. 1, which
shows a 3-bus system lying in Areasand B. This system in-
cludes the border busbetween areasA andB that is common
to both areas.

Let be the vector of voltage magnitudes and angles for Area
A, including the voltage magnitude and angle at the
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Fig. 1. Border bus between areasA andB.

border. Let be the vector of voltage angles and magnitudes
for AreaB, including the voltage magnitude and angle
at the border (this convention is slightly different to that in [11]).
That is, and both include the voltage angle and magnitude
at the border. We must require that and for

and to be consistent. Further, we must also require that the
real and reactive flow across the border be consistent. Now we
can express the objective function in (1) as: .

Consider the real and reactive power flow and the voltage
angle and magnitude at the border. We can express these quanti-
ties in terms of . That is, we can find the function such that
the vector of real and reactive power flows and voltage angles
and magnitudes at the border are given by:

The last two entries of simply pick out the two appropriate
entries of corresponding to the voltage magnitude and angle.
That is and . The first two entries
of evaluate the real and reactive flow across the borders in
terms of the vector . Similarly, we can find a function that
expresses these same quantities in terms of:

where and . For a valid solution,
and must be such that the real and reactive power and angle
and magnitude match at the border. That is: we must require

. Then the maximum likelihood weighted least-
squares problem is:

To solve this problem we will dualize the constraint
; however, to improve convergence we add a quadratic

term. The problem becomes:

where is any positive constant. Note that the added quadratic
term does not change the problem because at any solution:

. Now to separate this objective for a distributed
implementation we apply a decomposition algorithm referred
to as the Auxiliary Problem Principle (APP) [1], [4], which

is an iterative algorithm involving linearizing the augmented
Lagrangian. This will yield two sub-problems and a multiplier
update for evaluating and at each successive iteration of
the form:

(2)

(3)

(4)

where:
is the iteration number,
is the Lagrange multiplier, and

and are constants that must lie in particular ranges to
guarantee convergence and can be tuned by trial and
error.

The distributed implementation would require solving (2) or
(3) separately in each area, exchanging border values between
areas, and updatingaccording to (4).

2) Mathematical Developments and Implementations:At
the core of this software, we use the equations and algorithms of
centralized state estimation. Prototype software was developed
for centralized state estimation, considering sparsity issues and
information matrix conditioning techniques. These features
carry over to the distributed implementation.

To develop the necessary equations for solving distributed
state estimation problems we consider area(all the develop-
ment will also apply to area , mutatis mutandis). The objective
in (2) is:

(5)

where, is the objective function for the area . If area
owns ties then the augmented Lagrangian of (5) would be-

come, after some manipulations as shown below in (6).
The last term in (6) is constant, therefore, its derivative is zero.

If we define virtual measurement as:

(6)
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then the optimization problem of (6) is equivalent to:

(7)
where:

is the number of actual measurements in area,
is the number of virtual measurements introduced to
reflect the APP terms into the form of the measure-
ments equations,
is the measurement function corresponding to ,
and

.
The most important observation here is that this is now a state
estimation problem with virtual measurements at the border.

The problem in (7) can be described as the minimum of the
multiplication of the following matrices:

- - - - - - - - - - - - (8)

or

(9)

where: is the vector of measurement equations for area,
is a diagonal matrix of the virtual variances and,

- - - - - -

To further describe the virtual measurements at the border
virtual buses, we present the border virtual measurements as
follows:

To solve (9), which describes the implementation of distributed
state estimation, we define as a Jacobian matrix of size

(where is the number of state variables) and of
the following form:

We update according to:

With some mathematical manipulation, we can show that the
iterative solution for (8) is of the form:

(10)

(11)

Fig. 2. Distributed state estimation algorithm.

(12)

where

- - - - - -

and is iteration number for each individual area, andis the
iteration number for multiple area parallel solutions associated
with APP algorithm. The counter increments when all areas
reach convergence. We refer toas the outer loop iteration pa-
rameter and we refer toas the inner loop iteration counter.
Hence, at each Lagrange multiplier update, each area is
solved separately with , iterations. Using (10)–(12) we
can solve power system state estimation problem in a distributed
fashion. In the next subsection, we present the algorithm that uti-
lizes these equations.

C. Distributed State Estimation Algorithm and Communication
Issues

We present the algorithm to implement the distributed state
estimation in Fig. 2, which is essentially the same as the OPF
algorithm described in [10], [11]. The measurements for each
area are telemetered to the computer for that area only, and only
the computed border variables are exchanged between the ad-
jacent areas. The neighboring areas will interchange the border
variables at each iteration and calculate the updated variables
for the next iteration.

At each iteration, a central computer will be informed of the
status of each area for convergence. If all areas have met the con-
vergence criteria, then the central computer will inform all areas
that the entire interconnection has converged. In our implemen-
tation, we used a central controlling computer to perform these
exchanges; however, they could be implemented with commu-
nication between adjacent areas only.

The amount of data communicated between each area and
the central computer is very small. It is equal to the number
of ties times 4 (voltage angle, voltage magnitude, real and re-
active branch flows). The amount of computations conducted
by this central computer at each iteration (basically checking
for convergence at each iteration) is very small. Therefore the
time required for telecommunications and computation at each
iteration is likely to be negligible compared to the time to per-
form state estimation for an area. With a traditional centralized
implementation the typical length of the communication path
for telemetering data is on the order of the radius of the entire
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TABLE I
CASE STUDY SYSTEMS

system, whereas in our distributed implementation the typical
length of data path would be on the order of the radius of the
regions. Telecommunication bottlenecks should be less signifi-
cant in the case of the distributed implementation, even with the
small amount of additional border data exchange.

III. CASE STUDIES AND RESULTS

To illustrate the convergence properties and the effectiveness
of this algorithm we present several case studies using the Elec-
tric Reliability council of Texas (ERCOT) and Southwest Power
Pool (SPP) systems. Table I gives a summary of the case study
systems where: column 2 is the total number of buses including
the border buses; column 3 is the number of areas; column 4 lists
the number of branches in each area; column 5 lists the number
of buses in each area; column 6 shows the total number of ties
between the areas and the last column shows the total number
of branches. Case studies 1, 2, 3, and 4 present the division of
a 2529 bus representation of the ERCOT system into 8 areas
starting with 2 areas then adding 2 areas until completion of the
entire interconnection. These are essentially the same systems
studied in [10], [11]. In addition, Case 5 is a 4972 bus repre-
sentation of the ERCOT system decomposed into 8 areas. The
two ERCOT (2529 bus and 4972 bus systems) cases do not have
equivalent configurations and are not derived from each other.
Case 6 is an 8047 bus representation of the SPP [15] system de-
composed into 8 areas. These case studies intend to show the ef-
fectiveness of the algorithm with practical large-scale systems.

A. Regionalization

The speed of solution of the distributed state estimator is pre-
dominantly a function of the speed of the slowest system to
reach a solution and the number of the outer loop iterations as-
suming that the inter-processor communication is relatively fast.
The solution time for each area is not only a function of the
size of the system, but also its configuration, the types, loca-
tion and number of measurements, initial values, bad data and
noise. The number of outer loop iterations depends on each in-
dividual system’s configuration and how all areas interconnect.
If we divide the system such that there is not much difference
between most areas’ solution times, then the performance of
the distributed state estimator becomes largely a function of the
number of the outer loop iterations. The following paragraphs
describe our approach to dividing systems. We devised these
methods of decomposition based on trial and error to reach a
reasonable individual area solution time and number of outer

Fig. 3. Diagram of the ER-COT 2529 bus sytem interconnection after
decomposition.

loop iterations. Systematic approaches to dividing systems that
yield optimum results is an area of future research.

We divide the ERCOT 2529 bus, ERCOT 4972 bus and the
SPP 8047 bus representation systems into 8 areas for our dis-
tributed implementation. In the division of the ERCOT sys-
tems, we leave most of the larger areas in their original divi-
sions based on constituent companies and combine some of the
smaller areas; however, we break the largest area into two areas.
If we encounter islands in any area after the division, we rear-
range the areas to ensure an internally interconnected system.
Fig. 3 shows the diagram of the ERCOT 2529 bus system inter-
connection after decomposition. We will use this case in Sec-
tion III-D to present the performance of the distributed state
estimator relating to bad data detection. For the SPP 8047 bus
representation system, first we combined the contiguous areas
without breaking any of the areas such that the number of buses
in each area is greater than 500 and less than 2000. We check
each area for possible islands, and if we encounter islands we re-
arrange the areas such that an internally interconnected system
emerges.

B. Performance of Distributed State Estimation Algorithm

We have developed prototype software in MATLAB and the
following presentations are results produced using this software.
We defineactual wall clocktime as the wall clock time for two
to eight separate computers to solve the distributed state estima-
tion. This is equal to the summation over all the outer iterations
of the wall clock time for the slowest converging area at each
outer iteration plus the time required for the central computer
to check for convergence at each outer iteration. The case study
results presented in this paper are conducted over a local area
network with negligible communication delays. However, in an
actual implementation for a large power system network, com-
munication bottlenecks can increase the wall clock time for both
the centralized as well as the distributed implementations, with
potential communication delays being worse for the centralized
implementation.
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Fig. 4. Wall clock versus number of buses for distributed and centralized
implementation (Sun Ultra workstations).

Fig. 4 shows the wall clock time versus the number of buses
for both the centralized and distributed implementations for the
case studies of Table I. The actual wall clock time is approx-
imately equal to the wall clock time for the computer in the
slowest converging area. For all case studies, the distributed im-
plementation time is less than the centralized. Further, as the
number of buses increases, the advantage of the distributed im-
plementation over the centralized becomes more pronounced.

The wall clock time presented here using the MATLAB in-
terpretive language is significantly higher than the wall clock
time using compiled code and is not reflective of performance
in a production environment. However, it is reasonable that the
results presented here are proportional to conducting the same
computations with compiled codes and provide qualitative in-
formation that is useful in judging the performance of an ef-
ficient implementation. Two factors that might affect this pro-
portionality are use of loops, and memory fragmentation caused
by resizing arrays within a MATLAB programs. We have taken
special care to replacefor and while loops with “vectorized”
code, and preallocate large arrays to avoid memory fragmen-
tation. For very large systems beyond 8000 buses, the plot of
Fig. 4 may suggest a speed up of greater than 8. However, this
may not be indicative of actual implementations; therefore the
plot should not be extrapolated to larger systems.

Fig. 5 shows the megaflops versus the number of buses for
both the centralized and distributed implementations for the case
studies of Table I. The megaflops for the distributed implemen-
tation aremaximum megaflopssimilar to the actual wall clock in
Fig. 4, where the maximum megaflops is the summation over all
the outer iterations of the largest total megaflops over individual
areas at each outer iteration plus the total megaflops for the
convergence check at each outer loop iteration. The megaflops
for the distributed in all cases are less than the megaflops for
the centralized because we combine megaflops by adding the
largest number of megaflops over the processors for each iter-
ation. The floating point operations for the centralized imple-
mentations of ERCOT 2529 and ERCOT 4972 systems appear
to be almost equal. This is due to the configurations of these
systems, and information matrix preconditioning and sparsity
techniques that we have employed. However, typically, as the
number of buses increases, the number of floating point opera-
tions also increases.

Fig. 5. Megaflops versus number of buses for distributed and centralized
implementation (Sun Ultra workstations).

Table II shows the number of ties, state variables, measure-
ments, outer loop iterations and the redundancyfor each case.
Redundancy is the ratio of the number of the measurements to
the number of the state variables. The total number of state vari-
ables in the distributed implementation is one more than the
centralized implementation because we do not have a reference
voltage angle in the distributed implementation. We calculate
the final angles based on an assumed reference angle. That is,
after reaching a solution, the computed “reference bus” angle
is the amount that all angles may be shifted to make the angle
estimation comparable to the centralized implementation with
an actual reference angle. For uniformity we choose as mea-
surements the bus voltage magnitude of all the generators (with
an error standard deviation of 0.002) and the real and reactive
branch flows in both directions of selected branches (with an
error standard deviation of 0.02).

C. Convergence and Stopping Criterion

To guarantee convergence, and reduce the number of outer
loop iterations, , , and must lie in particular ranges for
different systems. Using trial and error we found that for

1, and 2 the convergence is reliable for the systems
presented in this paper. In most cases, by the second iteration,
more than 90% of the border variables converge within a 0.001
per unit tolerance for voltage magnitude and real and reactive
flows, and within a 0.03 radian tolerance for voltage angle. In
all of our cases, all of the variables reach convergence within
this tolerance in a maximum of 6 iterations. After completion
of the solution, over 99% of the state variables are within 0.1%
difference from the centralized implementation.

D. Implementation of Bad Data Detection in the Distributed
State Estimator

Practical state estimators require detection of bad data to im-
prove the accuracy of their information and to avoid divergence.
The sum of the square of the residuals calculated after the
convergence is small if there are no bad measurements present.
In the presence of bad data will be large. Traditionally the
normalizedmeasurement residual [16] is used to detect
bad data and is calculated as:
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TABLE II
CASE STUDIES OUTER LOOPITERATIONS

TABLE III
ONE VOLTAGE MAGNITUDE AND ONE BRANCH REAL FLOW BAD DATA (TOTAL

OF TWO) IN AREAA, UP TO ALL AREAS

where:
is the estimate,

is the measurement, and

is the standard deviation of the measurement residual
.

If the absolute value of is greater than three, then the
associated measurement is assumed to be wrong and is removed
from the measurements and the state estimator is resolved.

We have implemented this method of bad data detection to
demonstrate the performance of the distributed state estimator in
the presence of bad data. This method, although not the fastest,
is reliable and provides a fair comparison with the centralized
state estimator.

Each area at each outer loop iteration is examined for bad
data. In all of the cases presented in this paper the distributed
state estimator has detected bad data at the first outer loop it-
eration. However, in a worst case scenario, it is possible for
the bad data to not be detected until the last outer loop itera-
tion. Even with such a scenario, the distributed implementation
solves faster than the centralized for a realistic number of bad
data.

In a distributed implementation if the gross errors are spread
out in different areas then bad data detection will take much less
time than the centralized implementation because solving one
area out of all the areas is much faster than resolving the en-
tire system, so long as the gross errors can be reliably detected
by each individual area. Even if all the gross errors are within
one area, the distributed implementation reaches a final solution
faster then the centralized so long as the bad data can be identi-
fied and discarded reliably. Table III shows the wall clock time
and floating point operations for the ERCOT 2529 bus, 8 area

TABLE IV
THREE VOLTAGE MAGNITUDE AND THREE BRANCH REAL FLOW BAD DATA

(TOTAL OF SIX) IN EACH AREA AT A TIME

representation system using the distributed and centralized al-
gorithms with one voltage magnitude and one branch real flow
gross error in each affected area starting with 2 gross errors in
area in the case given in row 1, and increasing to 2 gross er-
rors in each area in the case given in row 8. This table shows
that both the wall clock and megaflops performances of the dis-
tributed implementation are better than the centralized in the
presence of bad data. It shows that the centralized wall clock
and megaflops increase rapidly as the number of bad data in-
crease; whereas, with the distributed implementation the wall
clock and megaflops increase only when the slow converging
areas contain bad data. Even in that case the increase is much
less than the centralized implementation.

Table IV shows the wall clock time and megaflops for the
ERCOT 2529 bus, 8 area using the distributed and centralized
algorithms with 6 gross errors (3 voltage magnitude errors, and
3 branch real flow errors) in each area. This table perhaps shows
the worst case performance scenario for the distributed imple-
mentation because each area containing the gross errors would
solve seven times and assuming three inner loop iterations, this
would result in a total of 21 iterations. However, even with this
scenario, the wall clock and megaflops performance of the dis-
tributed are, by far, better than the centralized.

With the distributed implementation another issue is the pres-
ence of bad data near to the border buses and the ability to detect
these accurately, since the information required to detect the bad
data may need to “propagate” through the virtual measurements
from an adjacent area. However, in our experience with our case
studies this implementation detects bad data easily even if it is
very close to the border buses.

Using the ERCOT 2529 bus, 8 area, Table V examines the
ability of the distributed implementation to detect bad data from
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TABLE V
BAD DATA DETECTION, AWAY FROM AND AT BORDERS

meters that are located close to the borders with other areas and
the ability to detect bad data from meters that are away from
the borders. Cases 1 through 4 show results with bad data in
area at the border with area , cases 5 through 8 show re-
sults with bad data in area away from its borders. For the dis-
tributed implementation, the number of inner iterations for area

increases by the number of bad data times three, since it takes
three inner loop iterations to solve area. However, for the cen-
tralized implementation, the number of iterations increases by
the number of gross errors times three (since it takes three itera-
tions to solve the centralized state estimator). Table V shows the
corresponding wall clock times and megaflops. Presence of bad
injection measurements data instead of bad flow measurements
data yields similar results. In summary we have shown that the
distributed implementation detects bad data effectively and in all
cases studied with less effort than a centralized implementation.

IV. CONCLUSIONS ANDFURTHER STUDIES

In this paper, we have shown a robust distributed algorithm
for power system state estimation with a minimal amount of
modification required to existing state estimators, and demon-
strated its effectiveness on ERCOT and SPP systems. With
deregulation in the United States and the emergence of ISOs,
large scale state estimation will become necessary to ensure
secure operation of the electric power interconnections. Dis-
tributing the calculations onto multiple processors will become
increasingly important. To our knowledge, our implementation
of a distributed state estimator is the most practical and realistic
that has been presented in the literature so far. In future studies,
we would like to investigate the characteristics of each area
and the ties between them as they relate to the convergence
properties of the entire system. It may be potentially possible to
reduce the number of outer loop iterations by some variations
in the algorithm and system decomposition.
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