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State Estimation Distributed Processing

Reza Ebrahimian and Ross Baldick

Abstract—This paper presents an application of a parallel algo- where:
rithm to Power Systems State Estimation. We apply the Auxiliary J(x) is the objective function,

Prob]em Principle to develop a distributeq state estimaFor, demon- — diag[aQ],
strating performance on the Electric Reliability Council of Texas o . .
(ERCOT) and the Southwest Power Pool (SPP) systems. d Err?)r\gecmr of variances of the measurement
| INTRODUCTION S is a vector of functions describing the mea-
surements,
O HOST SCADA and Energy Management System soft- ymeas is a vector of the measurements,
ware for operations of power systems, utilities have his- z is a vector of the voltage magnitudes and an-
torically used mid-size computers to handle the tasks automati- gles, and

cally and to provide interface for real-time interactive interven- superscript denotes transpose.
tion by the operating staff in the control center of a control area. Therefore, if the system is observable then the Gauss—Newton
However with advancements of small computer technologigpdate equations [16] for this nonlinear optimization problem
and networking, it is becoming attractive to use distributed prare:
cessing. Although the emerging structure of the “independent
system operator” (ISO) may link several utilities, distributed 5, — [A|E|} = [H' R H|"'H' R~ [z — ()]
computing is likely to be preferable compared to a completely A ’
centralized implementation. gFD =2 4 Ax®)

Traditionally, the maximum likelihood weighted
least-squares method is applied to the state estimatighere:

problem, yielding a formulation that is an approximately H is the Jacobian of vectgf(x),

quadratic and convex problem, which typically has a single || andé are vectors of voltage magnitude and angles, and
optimum solution. The novelty of our research relates to the superscript in parenthesis indicates the iteration
development of algorithms for distributed processing. We count, so that

apply the “Auxiliary Problem Principle” (APP) [4] to the state x(» is the value of iterate at thieth iteration.

estimation problem.
In Section Il, we develop and present the mathematical equ- Distributed State Estimation

tions necessary to apply the APP to form the distributed algo—l) Problem lllustration and FormulationBased on pre-

rithm. In Seonn i, we describe the use of MATLAB [7].’ [8].vious experience of applying APP to the Optimal Power Flow
to develop first centralized and then distributed state estimati PF) problem [10], [11], we applied APP to distributed
software for comparison purposes. Several test case studies gg— S ' S : I

. e estimation. To maximize the practical applicability, we
resenting ERCOT and SPP systems demonstrate the eﬁecW b PP Y

f the algorith d di bad data detecti mulated the problem such that: it is highly compatible to
ness of the algorthm and we discuss bad data detection. &, ios real world implementations; only a small amount of
conclude in Section IV.

inter-processor communication is required; bad data analysis
could be performed; and, such that the distributed state esti-
Il. DECOMPOSITION ANDDISTRIBUTED IMPLEMENTATION mator yields the same solution as centralized state estimation.
A. Centralized State Estimation We believe that this is a significant achievement compared with
Traditional maximum likelihood weighted least-squares sta?éher approaches to distributed and hierarchical state estimation

estimation calculates the voltage magnitudes and angles auﬁgh as descriped in [2], [3], [5], [6], [9]’ [12]_[.14]’ [17], [18.]'
n the following paragraphs we will describe the applica-

i I le ref . In thi hod th jecti o e T
suming a vo tage angle reference). In this met_ od the Obje.dwgn of the Auxiliary Problem Principle to the state estimation
is to minimize the sum of the squares of the weighted deviations

of the estimated variables from the actual measurements mﬁroblem. This description is paraphrased from [10], [11], but
[timately depends on the properties of linearized augmented

Lagrangians described in [4].
To develop a distributed state estimator consider Fig. 1, which
shows a 3-bus system lying in Areasand B. This system in-
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Border Bus

is an iterative algorithm involving linearizing the augmented
Lagrangian. This will yield two sub-problems and a multiplier
update for evaluating: andy at each successive iteration of
the form:

B ‘
Fig. 1. Border bus between areAsndB. Jo(z) + §||fa($) - fa(w("))IIQ
(*+1) — aremi ) .
! I @) (fale®) = S0 (0

border. Lety be the vector of voltage angles and magnitudes { +[)‘(k)]T(fa($))

for AreaB, including the voltage magnitudé; | and angle,

at the border (this convention is slightly different to thatin [11]). ) 3 2)
That is,z andy both include the voltage angle and magnitude Jo(y) + §||fb(y) — f(y™ )2
at the border. We must require titat= 6, and|E,| = | E,| for (++1) — aremi 4 4
« andy to be consistent. Further, we must also require that they lg;n " —’Yfg(y)(fa(i(k)) — fle™) (7
real and reactive flow across the border be consistent. Now we PN UTAM)
can express the objective function in (1) ds{z) + J,(y). (3)
Consider the real and reactive power flow and the voltage AL — \(R) (k+1)y (k+1) 4
angle and magnitude at the border. We can express these quanti- +alfel )= fely 2 @)
ties in terms ofc. That is, we can find the functiofi, such that Where: o
the vector of real and reactive power flows and voltage angles® is the iteration number,
and magnitudes at the border are given by: A is the Lagrange multiplier, and
; « andg are constants that must lie in particular ranges to
fo(@) = [palz) (@) |Eal(z) ba(z)]". guarantee convergence and can be tuned by trial and
The last two entries of, simply pick out the two appropriate error.

entries ofz corresponding to the voltage magnitude and angléhe distributed implementation would require solving (2) or
That is|E,|(z) = |E.| andf,(z) = 6,. The first two entries (3) separately in _each area, exchanging border values between
of f, evaluate the real and reactive flow across the bordersaffas, and updatingaccording to (4). .

terms of the vectox. Similarly, we can find a functiorf, that ~ 2) Mathematical Developments and ImplementatioAs:

expresses these same quantities in terms of the core of this software, we use the equations and algorithms of
: centralized state estimation. Prototype software was developed
foy) =) @) [El(y) 6(w)]'; for centralized state estimation, considering sparsity issues and

where|Ey|(y) = |E,| andé,(y) = 6,. For a valid solutiong information matrix conditioning techniques. These features

andy must be such that the real and reactive power and angf'y over to the distributed implementation.
and magnitude match at the border. That is: we must requireTO develop the necessary equations for solving distributed

fa(x) = fo(y). Then the maximum likelihood weighted leastState estimation problems we consider a#egll the develop-
squares problem is: ment will also apply to are®, mutatis mutandis). The objective

in (2) is:
(1;11;1){]@(37) + Sy falz) = fo(y)}.

- 3 .
o) = Julr) + S ul) = Fula®)?
To solve this problem we will dualize the constrajfy{z) = i ) )
fu(y); however, to improve convergence we add a quadratic +7{’;§ﬁ)(f“(x )= hy™)
term. The problem becomes: + AT (fa()), (5)
) vy 2 _ where, J,(z) is the objective function for the are . If area
o {Ja(x) +Aly) + §Hf“(x) — LIl fale) = Fb(y)} ’ A ownst ties then the augmented Lagrangian of (5) would be-

(z,y
where~ is any positive constant. Note that the added quadraﬁeme’ after some ma_nlpulatlons as shown _below_ n (.6)'.
The lasttermin (6) is constant, therefore, its derivative is zero.

term does not change the problem because at any solutign. T it e
fo(z) = fi(y). Now to separate this objective for a distribute we define virtual measuremenf;™ as:

implementation we apply a decomposition algorithm referred ., Bfui(z®) — yfui(2®) = v fis (y®) — AP
to as the Auxiliary Problem Principle (APP) [1], [4], which ~ %ai 8 )

2

. A3 3 Fai(x®)Y =y fos () (y® _ W
L@+ lfai(a:)—/f () = ) 2futs) - %

+ i {ﬂ (fas ()2 — p l_ﬁfai(w(’“)) 7 fai(@®) = A fri(v®) + 4

il 3

2
} (6)
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Initialize variables

then the optimization problem of (6) is equivalent to: Telemeter measurements and topology data o con-

m meas 2 b“ + f ( ) trol area computer
min Z <77> + Z < ai ) ; Calculate virtual measurements at the virtual border
(z) ” buses
=1 v Repeat{
( ) Increment k for APP algorithm iteration
where: Solve state estimation for each area utilizing their

own computers (All areas simultaneously)

m is the number of actual measurements in atea iy .
! ’ . Exchange f.(z%)) and f3(y(*)) between area com-
4t is the number of virtual measurements introduced to puters (that is border variables for all areas)
reflect the APP terms into the form of the measure- Update X
ments e . } Until f, (%)) and fi(y(¥)) converge to within tol-
. guations, . . orance
fi(x) is the measurement function correspondingtts*®,
and Fig. 2. Distributed state estimation algorithm.
oo = /2/0.
The most important observation here is that this is now a state  A**Y =A® + a(f,(z* D) — F(y*+D)), (12)
estimation problem with virtual measurements at the border.\yhere
The problem in (7) can be described as the minimum of the eas
multiplication of the following matrices: Az ? f(x)
. zmeas _ f(l’) f R 0 1 meas _ f(l’) i Z'virt _ fa(.’l') ’
min | ------ o ml | , (8)
o 2t — Fo(x) virt _ f (z) and! is iteration number for each individual area, dni the
or iteration number for multiple area parallel solutions associated

lnln{[wneas _ fA(x)]T[R]—l[;meas _ f(x)]} 9) with APP algorithm. The countér increments when all areas
’ reach convergence. We referi@s the outer loop iteration pa-
where:f(x) is the vector of measurement equations for atea rameter and we refer tbas the inner loop iteration counter.

R’ is a diagonal matrix of the virtual variance$ and, Hence, at each Lagrange multipliaf*) update, each area is
ymeas f(z) solved separately with, I, - - -, ite_ratio_ns. Using (1_0)—(1_2) we

gmeas — | ___ | f(x) R k= [R 0/ ~can ;olve power system stqte estimation problem ina d|str|butgd
Zuirt fal) 0 R fashion. In the next subsection, we present the algorithm that uti-

To further describe the virtual measurements at the borAIzes these equations.

virtual buses, we present the border virtual measurementscaspstriputed State Estimation Algorithm and Communication

follows: Issues
(R _ |(K (k) _ 3 (R . . .
|EVirt| = lEail ™ = A Buil ) + | iV A 7 We present the algorithm to implement the distributed state
B estimation in Fig. 2, which is essentially the same as the OPF

/je(k) We(k) +79(k) )\Z(k) algorithm described in [10], [11]. The measurements for each

fUirt = 3 , area are telemetered to the computer for that area only, and only
£ the computed border variables are exchanged between the ad-
k k k k i i i il i
virt _ Bt — pk) 4 Ry AR jacent areas. The neighboring areas will interchange the border
Pai ) variables at each iteration and calculate the updated variables
B e
(%) (k) (k) ) for the next iteration.
virt B — 79 Fa — A - - . .
virt — [tai ai . At each iteration, a central computer will be informed of the
B status of each area for convergence. If all areas have met the con-

To solve (9), which describes the implementation of distributeg&rgence criteria, then the central computer will inform all areas
state estimation, we definé as a Jacobian matrix of siZex+  that the entire interconnection has converged. In our implemen-
4t) x (s +4t) (wheres is the number of state variables) and ofation, we used a central controlling computer to perform these
the following form: exchanges; however, they could be implemented with commu-
. nication between adjacent areas only.

H= [%] . The amount of data communicated between each area and

Oz the central computer is very small. It is equal to the number

. of ties times 4 (voltage angle, voltage magnitude, real and re-

We updater according to: active branch flows). The amount of computations conducted
g*FD = 2 4 Ap®) by this central computer at each iteration (basically checking

ﬁ%r convergence at each iteration) is very small. Therefore the
time required for telecommunications and computation at each

. iteration is likely to be negligible compared to the time to per-

Az = [HTR_lfI} HIR ' Az, (10) form state estimation for an area. With a traditional centralized

implementation the typical length of the communication path

2D =20 4 ALO (11) for telemetering data is on the order of the radius of the entire

With some mathematical manipulation, we can show that t
iterative solution for (8) is of the form:
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TABLE |
CASE STUDY SYSTEMS

Case | Total No. Number of Branches Number of Buses | Total Total
No. | Buses | Areas in Each Area in Each Area Ties | Branches
1 238 2 196,104 153,85 8 300

2 809 4 196,104,393,367 153,85,279,292 13 1060

3| 1567 6 196,104,393,367,301,602 153,85,279,292,236,522 46 1963

4 2529 8 196,104,393,367,301,602,604,583 153,85,279,292,236,522,484,478 142 3150

5 4972 8 428,113,819,935,584,687,1305,879 360,95,696,788,498,632,1139,764 136 5750

6 8047 8 | 2192,413,1624,1208,1412,2024,644,1908 1892,344,1338,994,1071,1054,434,920 190 11425

system, whereas in our distributed implementation the typical
length of data path would be on the order of the radius of the
regions. Telecommunication bottlenecks should be less signifi-
cant in the case of the distributed implementation, even with the
small amount of additional border data exchange.

Fig. 3. Diagram of the ER-COT 2529 bus sytem interconnection after
I1l. CASE STUDIES AND RESULTS decomposition.

To illustrate the convergence properties and the effectiveness
of this algorithm we present several case studies using the Elle®p iterations. Systematic approaches to dividing systems that
tric Reliability council of Texas (ERCOT) and Southwest Powefield optimum results is an area of future research.
Pool (SPP) systems. Table | gives a summary of the case studyVe divide the ERCOT 2529 bus, ERCOT 4972 bus and the
systems where: column 2 is the total number of buses includibP 8047 bus representation systems into 8 areas for our dis-
the border buses; column 3 is the number of areas; column 4 ligieuted implementation. In the division of the ERCOT sys-
the number of branches in each area; column 5 lists the numtgms, we leave most of the larger areas in their original divi-
of buses in each area; column 6 shows the total number of t&@ns based on constituent companies and combine some of the
between the areas and the last column shows the total num#yealler areas; however, we break the largest area into two areas.
of branches. Case studies 1, 2, 3, and 4 present the divisiorffofie encounter islands in any area after the division, we rear-
a 2529 bus representation of the ERCOT system into 8 aréasge the areas to ensure an internally interconnected system.
starting with 2 areas then adding 2 areas until completion of thég. 3 shows the diagram of the ERCOT 2529 bus system inter-
entire interconnection. These are essentially the same systé@ignection after decomposition. We will use this case in Sec-
studied in [10], [11]. In addition, Case 5 is a 4972 bus repr&on llI-D to present the performance of the distributed state
sentation of the ERCOT system decomposed into 8 areas. Hs§mator relating to bad data detection. For the SPP 8047 bus
two ERCOT (2529 bus and 4972 bus systems) cases do not higgfesentation system, first we combined the contiguous areas
equivalent configurations and are not derived from each othatithout breaking any of the areas such that the number of buses
Case 6 is an 8047 bus representation of the SPP [15] systemidegach area is greater than 500 and less than 2000. We check
composed into 8 areas. These case studies intend to show thea¢h area for possible islands, and if we encounter islands we re-
fectiveness of the algorithm with practical large-scale systen@range the areas such that an internally interconnected system

emerges.

A. Regionalization

The speed of solution of the distributed state estimator is p%‘- Performance of Distributed State Estimation Algorithm

dominantly a function of the speed of the slowest system toWe have developed prototype software in MATLAB and the
reach a solution and the number of the outer loop iterations ésHowing presentations are results produced using this software.
suming that the inter-processor communication is relatively fastle defineactual wall clocktime as the wall clock time for two

The solution time for each area is not only a function of th® eight separate computers to solve the distributed state estima-
size of the system, but also its configuration, the types, lodden. This is equal to the summation over all the outer iterations
tion and number of measurements, initial values, bad data asfdhe wall clock time for the slowest converging area at each
noise. The number of outer loop iterations depends on eachdnrer iteration plus the time required for the central computer
dividual system’s configuration and how all areas interconnett. check for convergence at each outer iteration. The case study
If we divide the system such that there is not much differencesults presented in this paper are conducted over a local area
between most areas’ solution times, then the performancenetwork with negligible communication delays. However, in an
the distributed state estimator becomes largely a function of thetual implementation for a large power system network, com-
number of the outer loop iterations. The following paragraphmsunication bottlenecks can increase the wall clock time for both
describe our approach to dividing systems. We devised theke centralized as well as the distributed implementations, with
methods of decomposition based on trial and error to reaclpatential communication delays being worse for the centralized
reasonable individual area solution time and number of outemplementation.



1244

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 4, NOVEMBER 2000

200 SPPd
1000 SPE’! !
%00 y 2180 ,
L a ;.
800 2 160 o
I Centralized,” @140 Centralized -
g 700 L = K
2 © | ’
& 600 E 120 .
g 500 glo0
£ 400 S 80
P , £ wl P sPP
g 3001 _ . % ERCOT 4972 £ S
it -7 B 1 e === o
§ 200 ¢ P Distributed___SPP4 g 4 7 ERCOT 4972~ 1
100} BRCOT2529 £ 20t ERCOT 2529 Distributed |
" 1 J O 2. —_ "
0 2000 4000 6000 8000 3000 2000 3000
Number of Buses Number of Buses

Fig. 4. Wall clock versus number of buses for distributed and centralizédd- 5. Megaflops versus number of buses for distributed and centralized
implementation (Sun Ultra workstations). implementation (Sun Ultra workstations).

Fig. 4 shows the wall clock time versus the number of busesTable Il shows t_he nl_meer of ties, state variables, measure-
ments, outer loop iterations and the redundapfiyr each case.

for both the centralized and distributed implementations for ti&? dundancy is the ratio of the number of the measurements to
case studies of Table I. The actual wall clock time is appro y

imately equal to the wall clock time for the computer in thﬁ.'e number of the state variables. The total number of state vari-

slowest converging area. For all case studies, the distributed I%)Ies in the distributed implementation is one more than the

plementation time is less than the centralized. Further, as ﬁ]entrahzed |mplementgt|o_n beca_use we do npt have a reference
; I voltage angle in the distributed implementation. We calculate
number of buses increases, the advantage of the distributed im-

. . the final angles based on an assumed reference angle. That is,
plementation over the centralized becomes more pronounce

The wall clock time presented here using the MATLAB |n9ﬁer reaching a solution, the computedi reference bus” angle
. S . the amount that all angles may be shifted to make the angle

terpretive language is significantly higher than the wall clock . ~ . : ; . )
) . . . . estimation comparable to the centralized implementation with
time using compiled code and is not reflective of performance . .
. . X o h actual reference angle. For uniformity we choose as mea-
in a production environment. However, it is reasonable that the : .
: . surements the bus voltage magnitude of all the generators (with

results presented here are proportional to conducting the same L .
. : . : - _..__.an error standard deviation of 0.002) and the real and reactive
computations with compiled codes and provide qualitative in-

formation that is useful in judging the performance of an eP_ranch flows in both directions of selected branches (with an

ficient implementation. Two factors that might affect this pro(_arror standard deviation of 0.02).

portionality are use of loops, and memory fragmentation caus&d
by resizing arrays within a MATLAB programs. We have taken '
special care to replader and while loops with “vectorized” ~ TO guarantee convergence, and reduce the number of outer
code, and preallocate large arrays to avoid memory fragmdPRP iterations,cv, 3, and~y must lie in particular ranges for
tation. For very large systems beyond 8000 buses, the plotdferent systems. Using trial and error we found thatdos=
Fig. 4 may suggest a speed up of greater than 8. However, this 1, andg = 2 the convergence is reliable for the systems
may not be indicative of actual implementations; therefore ti§esented in this paper. In most cases, by the second iteration,
plot should not be extrapolated to larger systems. more than 90% of the border varlabl_es converge within a 0.001
Fig. 5 shows the megaflops versus the number of buses R&" unit toler_an_ce for voltag_e magnitude and real and reactive
both the centralized and distributed implementations for the cd&&s, and within a 0.03 radian tolerance for voltage angle. In
studies of Table I. The megaflops for the distributed implemefl!! Of our cases, all of the variables reach convergence within
tation aremaximum megaflopimilar to the actual wall clock in this toIeran.ce in a maximum of 6 iterations. After cqmpletmn
Fig. 4, where the maximum megaflops is the summation over gﬁ the solution, over 99% o_f the_state varlabl_es are within 0.1%
the outer iterations of the largest total megaflops over individugifference from the centralized implementation.
areas at each outer iteration plus the total megaflops for the . L L
convergence check at each outer loop iteration. The megaﬂ(%slmpler_nentatlon of Bad Data Detection in the Distributed
for the distributed in all cases are less than the megaflops fjAte Estimator
the centralized because we combine megaflops by adding thé&ractical state estimators require detection of bad data to im-
largest number of megaflops over the processors for each itgrove the accuracy of their information and to avoid divergence.
ation. The floating point operations for the centralized impléFhe sum of the square of the residudls:) calculated after the
mentations of ERCOT 2529 and ERCOT 4972 systems appeanvergence is small if there are no bad measurements present.
to be almost equal. This is due to the configurations of thebethe presence of bad dafdx) will be large. Traditionally the
systems, and information matrix preconditioning and sparsitnprmalizedmeasurement residugf®™™ [16] is used to detect
techniques that we have employed. However, typically, as thad data and is calculated as:
number of buses increases, the number of floating point opera- (fi(z) — 2)

orm

tions also increases. i ey ’
(2

Convergence and Stopping Criterion



EBRAHIMIAN AND BALDICK: STATE ESTIMATION DISTRIBUTED PROCESSING 1245

TABLE I
CASE STUDIES OUTER LOOP ITERATIONS

Gase { No. Number of Number of No. Outer
No. | Ties State Variables Measurements n | Loop Iter.
1 8 306,170 813,420 | 2.59 2

2 13 306,170,558,584 809,420,1632,1505 | 2.70 2

3 46 306,170,558,584,472,1044 801,419,1628,1485,1234,2481 | 2.57 5

4 142 306,170,558,584,472,1044,968,956 796,419,1626,1485,1217,2445,2432,2171 | 2.49 5

5 136 720,190,1392,1576,996,1264,2278,1528 1723,459,3381,3788,2355,2789,5249,3532 [ 2.34 5

6 190 | 3784,688,2676,1988,2142,2108,868,1840 | 8828,1649,6539,4858,5689,8224,2621,7802 | 2.87 6

TABLE I TABLE IV
ONE VOLTAGE MAGNITUDE AND ONE BRANCH REAL FLOW BAD DATA (TOTAL THREE VOLTAGE MAGNITUDE AND THREE BRANCH REAL FLOW BAD DATA
OF TWO) IN AREA A, UP TOALL AREAS (TOTAL OF SiX) IN EACH AREA AT A TIME
Bad Data | Centr. | Centr. | Distr. | Distr. Bad Data | Centr. | Centr. | Distr. | Distr.
In Areas Wall | Mega- | Wall- | Mega- in Area | Wall- | Mega- | Wall- | Mega-
Clock flops | Clock flops Clock Flops | Clock | Flops
None 98.2 43.05 55.6 6.47 None 98.2 43.05 55.6 6.47
A 147.3 | 118.39 55.6 6.47 A 224.2 | 260.34 55.6 6.47
A-B 200.3 | 193.73 55.6 6.47 B 236.4 | 263.04 55.6 6.47
A-C 248.5 | 269.96 55.6 8.73 C 242.8 | 268.05 55.6 13.25
A-D 296.7 | 344.40 55.6 8.73 D 248.5 | 267.71 55.6 6.47
A-E 344.9 | 419.74 55.6 8.73 E 249.8 | 275.32 55.6 6.47
A-F 392.9 | 495.08 69.9 8.73 F 243.3 | 268.56 | 98.48 9.47
A-G 440.9 | 570.41 69.9 8.73 G 238.7 | 261.89 | 86.70 11.35
A-H 488.7 | 645.75 69.9 8.73 H 250.9 | 271.82 | 95.60 10.21
where: representation system using the distributed and centralized al-
fi is the estimate, gorithms with one voltage magnitude and one branch real flow

gross error in each affected area starting with 2 gross errors in
. o . aread in the case given in row 1, and increasing to 2 gross er-
or; is the standard deviation of the measurement residygls i each area in the case given in row 8. This table shows
T that both the wall clock and megaflops performances of the dis-
If the absolute value of°"™ is greater than three, then therributed implementation are better than the centralized in the
associated measurement is assumed to be wrong and is remqvedence of bad data. It shows that the centralized wall clock
from the measurements and the state estimator is resolved. and megaflops increase rapidly as the number of bad data in-
We have implemented this method of bad data detectiondmease; whereas, with the distributed implementation the wall
demonstrate the performance of the distributed state estimatocliock and megaflops increase only when the slow converging
the presence of bad data. This method, although not the fastaséas contain bad data. Even in that case the increase is much
is reliable and provides a fair comparison with the centralizégss than the centralized implementation.
state estimator. Table IV shows the wall clock time and megaflops for the
Each area at each outer loop iteration is examined for bBRRCOT 2529 bus, 8 area using the distributed and centralized
data. In all of the cases presented in this paper the distributddorithms with 6 gross errors (3 voltage magnitude errors, and
state estimator has detected bad data at the first outer loomBibranch real flow errors) in each area. This table perhaps shows
eration. However, in a worst case scenario, it is possible fttte worst case performance scenario for the distributed imple-
the bad data to not be detected until the last outer loop iteraentation because each area containing the gross errors would
tion. Even with such a scenario, the distributed implementati@olve seven times and assuming three inner loop iterations, this
solves faster than the centralized for a realistic number of baduld result in a total of 21 iterations. However, even with this
data. scenario, the wall clock and megaflops performance of the dis-
In a distributed implementation if the gross errors are spreaitbuted are, by far, better than the centralized.
out in different areas then bad data detection will take much lesswith the distributed implementation another issue is the pres-
time than the centralized implementation because solving omece of bad data near to the border buses and the ability to detect
area out of all the areas is much faster than resolving the ¢nese accurately, since the information required to detect the bad
tire system, so long as the gross errors can be reliably deteateth may need to “propagate” through the virtual measurements
by each individual area. Even if all the gross errors are withfrom an adjacent area. However, in our experience with our case
one area, the distributed implementation reaches a final solutgtodies this implementation detects bad data easily even if it is
faster then the centralized so long as the bad data can be idergry close to the border buses.
fied and discarded reliably. Table 11l shows the wall clock time Using the ERCOT 2529 bus, 8 area, Table V examines the
and floating point operations for the ERCOT 2529 bus, 8 areaility of the distributed implementation to detect bad data from

Zi is the measurement, and
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