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ABSTRACT

We present an approach to parallelizing optimal power
flow (OPF) that is suttable for coarse-grained distributed
implementation and is applicable to very large inter-
connected power systems. We demonstrate the approach
on several medium size systems, including IEEE Test Sys-
tems and parts of the ERCOT system. Our simulations
demonstrate the feasibility of distributed implementation
of OPF. Rough estimates are made of parallel efficiencies
and speed-ups.

1 INTRODUCTION

In this paper, we present an approach to paralleliz-
ing optimal power flow (OPF) that is suitable for dis-
tributed implementation and is applicable to very large
inter-connected power systems. We demonstrate the ap-
proach on several medium size systems, including IEEE
Test Systems and parts of the Electric Reliability Coun-
cil of Texas (ERCOT) system. The approach could be
used by utilities to optimize economy interchange without
disclosing details of their operating costs to competitors.

Unlike traditional approaches to parallel non-
contingency constrained (NCC) OPF (see [6, 8, 9] and the
discussion in [11], for example) that concentrate on paral-
lelizing individual steps such as Jacobian factorization, we
propose a decomposition of the overall OPF problem into
regions. We solve optimal power flows for each region and
coordinate the multiple OPF's through an iterative update
on constraint Lagrange multipliers. For all but very small
systems, the process converges very rapidly to a solution
of the overall OPF.

The iterative updates require the exchange of a very
modest amount of data between adjacent regions. Al
though our current implementation is centralized, our ap-
proach is suitable for distributed implementation because
of the very small amount of data that must be transferred
between processors. To the best of our knowledge, our
implementation is the first demonstration of the viability
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of large-scale distributed OPF.

We propose a scenario where each individual util-
ity solves a modified OPF that includes its own service
area and the borders it shares with other utilities. The
modified OPF is similar to a standard OPF except that
“dummy generators” are modeled at the border buses.
The dummy generators mimic the effects of the external
part of the system through a cost for supply of real and
reactive power, voltage support, etc.

Naturally, the OPF's solved in each region can be im-
plemented with the fastest available algorithms. However,
it is also possible for each utility to have a different OPF
implementation for its area. Our paper therefore concen-
trates on the issue of coordinating the regional OPFs. We
discuss the regional OPF's themselves only briefly and note
that through our use of OPF as a building block we can
incorporate essentially any OPF algorithm into our ap-
proach.

The overall algorithm involves alternating solution of
individual OPFs and updates of Lagrange multipliers. It
converges, in principle, to a solution of the overall multi-
utility OPF, yielding appropriate generation levels in each
utility to minimize overall production costs. The Lagrange
multipliers on the constraints could be used to set prices
for exchange of real and reactive power. However, alter-
native ways to distribute savings, such as the split savings
rule, can also be used.

There are two dummy generators for each transmission
tie-line between a pair of regions. One of the dummy gen-
erators is placed in each region. To minimize the coupling
between the regions and therefore maximize the solution
speed, it is reasonable to divide the overall system in a
way that minimizes the number of transmission lines in
the cutsets of lines defining the regions. Fortunately, this
will usually be consistent with dividing a multi-utility sys-
tem into individual utilities. This is because typical util-
ities tend to have a relatively complex mesh transmission
system internally, but relatively few, often radial, connec-
tions externally. Our two largest test systems, for exam-
ple, are portions of the ERCOT system divided into their
constituent companies.

In summary, the most effective implementation of our
distributed scheme corresponds well with the most likely
institutional implementation: division into regions along
utility boundaries. In our scheme, there is no need for
a uniform implementation of OPF across all utilities, nor
any need for all the utilities in the system to run full OPFs,
so long as each region can represent dummy generators in
its OPF or economic dispatch (ED). This means that the
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distributed OPF can be implemented by individual utili-
ties across a multi-utility system without major disruption
to existing OPF or ED investments in the utilities’ energy
management systems.

We mention that our computational results point to
only modest speed-ups and efficiencies, even in ideal sit-
uations; however, we believe that the features of the dis-
tributed algorithm make it the only feasible way to achieve
OPF in large-scale interconnected systems. Furthermore,
its features make it ideal for use as a trading tool to en-
hance inter-utility trading of electricity.

In contrast, a centralized implementation of large-scale
OPF (whether using a serial or parallel algorithm) suffers
from several technical and institutional drawbacks, includ-
ing:

¢ Communication bottlenecks in pooling information
at a single control center.

e Anti-trust prohibitions against pooling of multi-
utility data. (We note that the United States De-
partment of Justice has already begun anti-trust in-
vestigations into Texas utilities concerning electric-
ity trade [5].)

o Reliability issues in having a single center dispatch
a large geographical area.

Our distributed algorithm avoids these drawbacks and
presents a practical approach to optimizing multi-utility
systems in a competitive environment. The approach can
also be used to solve state estimation or solve the power
flow equations for a multi-utility region without explicit
external network models and without the exchange of
large amounts of line, load, and generator data.

In the next section, we review the basic theory nec-
essary to perform the regional decomposition that allows
parallel and distributed solution of OPF. In section 3 we
present results based on our prototype implementation.
We conclude in section 4, with technical details relegated
to the Appendix.

2 REecIONAL DECOMPOSITION

2.1 llustration

To illustrate the regional decomposition, we will con-
sider dividing a power system into two overlapping re-
gions. In practice, we envisage a multi-utility system be-
ing divided into its constituent utilities; however, the main
issues can be illustrated in the two region case.

2.1.1 Variables. Because of our emphasis on the de-
composition rather than the OPF itself, we will follow [14]
in not distinguishing the controls from the dependent vari-
ables in our formulation. Instead, we will distinguish the
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Fig. 1: Decomposition of a

a power system into two overlap-
ping regions, a and b. The bor-

der variables in the overlap re-

e gion are denoted y, while the

@ core variables in regions a and

f b are denoted z and z, respec-

b tively.

variables by their geographical relationship to the regional
decomposition.

Consider figure 1, which shows the case of a single tie-
line joining regions a and b. Between and common to the
two regions there is an overlap region, with a vector of
variables denoted by y. The entries in y are defined as
follows. For each tie-line we must include a bus in the
border region. If there is no bus already there, we create
a “dummy bus.” Associated with each dummy bus are
the real and reactive power flows through the bus and the
voltage and angle at the bus. That is, the vector y has
four entries for each tie-line.

In addition, in figure 1 we have shown vectors of vari-
ables £ and z. The vector z consists of all the OPF vari-
ables that are relevant to region a but not already in-
cluded in y. Similarly, z includes the region b variables
not included in y. In summary, region @ has state vector
(x,y), while region b has state vector (y,z). The y vari-
ables are the overlap or border variables, while z and z
can be thought of as core variables for regions a and b,
respectively. In typical systems, the vector y will be much
smaller than the vectors z and z and we will make use of
this observation in analysis of the decomposition.

2.1.2 Objective. For the purposes of exposition, we
will adopt minimum cost of production as our objective,
but recognize that other considerations, such as minimiz-
ing the number of controls to be rescheduled, must also
be considered. To analyze the decomposed system, we as-
sume that the production costs for the whole system can
be written as cq(x) + ¢y (2z). That is, we are assuming that
there are no generators included in the border between
the two regions.

2.1.8 Constraints. We assume that the constraints
on the system involve z and y or y and z, but not = and z
nor z, ¥y, and z. That is, we assume that the constraints in
each region involve only the core variables and the border
variables for that region.

This assumption is reasonable for the power flow equa-
tions, since the bus admittance matrix couples only those
variables pertaining to buses that are connected directly
by a line. For example, a tie-line limit would be repre-
sented as a constraint on the flows to and from the border
buses. If some of the other constraints are functions of
elements of both z and z, then this can be handled by
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moving more of the state vector into the border vector y.
That is, our assumption on the dependence of constraints
on core and border variables can always be satisfied, but it
may require us to increase the dimension of y by enlarging
the border region.

With this assumption, we can write the power flow
constraints for region a in the form F,(z,y) = 0 and
for region b in the form Fy(y,z) = 0. Similarly, we can
write the inequality constraints for region a in the form
Ga(z,y) < 0 and for region b in the form Gy(y,z) < 0.
The functions G, and G} represent the line flow, voltage,
and contingency constraints in the individual regions.

Define the two sets: A = {(z,y) F.lz,y) =
0,Gu(z,y) <0}and B ={(y,2): Fs(y,z) =0,Gp(y,2) <
0}. Then a feasible power flow solution is a point (z,y, z)
that satisfies (z,y) € 4 and (y,z) € B.

2.1.4 OPF formulation. The OPF problem can be
written formally as:

gw’?;i% Jeal@) + ()} (1)
y,2) €B

We make the usual assumptions that ¢, and ¢y are con-
vex approximations to the actual cost functions and that
there is a unique solution to (1). These assumptions are
discussed in [10, §ITL.B].

2.1.5 Serial OPF algorithm. We assume that there
is an OPF algorithm available. Throughout this paper
we will refer to such an algorithm as a “serial OPF algo-
rithm.” We will use the serial OPF algorithm as a building
block in our parallel scheme by solving OPFs for region a
and for region b separately.

2.2 Auziliary problem principle

We are going to decompose the problem into regions
by duplicating the border variables and imposing coupling
constraints between the two variables. Our approach is
inspired by the work of Batut and Renaud who were the
first to apply duplication and decomposition to power sys-
tems problems in their unit commitment formulation [1].
The approach is superficially like diakoptics [7], but dif-
fers fundamentally in the details of the decomposition. As
discussed in [1], standard Lagrangian approaches to relax-
ing the coupling constraints can be expected to converge
slowly to the solution. Therefore, we follow Batut and
Renaud in using a linearized augmented Lagrangian ap-
proach to improve convergence.

First, define the copies of y to be y, and yp, assigned
to the regions a and b, respectively. Then, for v > 0, (1)
is equivalent to:

i {ea(@) () F e =l o —p = 0} (2)
Eyé,z) €B

So far we have complicated the problem without changing
its solution. The quadratic term added to the objective
does not affect the solution since the constraint y,—yp = 0
will make the quadratic term equal to zero at any solution;
however, when we decompose the problem, this term will
significantly aid in convergence [1].

Next we apply the “auxiliary problem principle” {3].
Under certain conditions, we can solve (2) by solving a
sequence of problems of the form:

k+1  k+1 k+1 _k+1y
(:Z: 7ya 7yb JZ ) -

co(z) + ¢ (zg + ,
S lya — b+ 5 llvs — ]+

argmin (3
zom € 4 'Y(%a — ) (k- yb) + G
by 2
AF (ya - yb)
)\k+1 — /\k + a(ys-i-l _ yll)H_l)’ (4)

where the superscript k is the iteration index, « and 3 are
positive constants, and the superscript 1 denotes trans-
pose. Some sufficient conditions for this iterative scheme
to converge to a solution of (2) are presented in the Ap-
pendix. While (4) appears to be simply a sub-gradient
update, the “proximal point” terms in (3) enhance the
convergence of the overall algorithm.

The initial conditions %, 42,42, 2% X° can be any con-
venient starting point such as a previous solution or flat
start. The value of the Lagrange multiplier A; at iteration
k is an estimate of the cost to maintain the constraint
Yai — Ybi = 0. If y; represents, for example, power flow
from region a to b along a particular line, then }; is the
“shadow-cost” [12] on the interchange of power along that
line. If some regions must import power to satisfy local de-
mand, then the initial conditions for the border flows can
be set to reflect the generation deficiency; however, this
is not necessary for convergence since the dummy genera-
tors can be arranged to supply the imports necessary for
a feasible initial solution.

For the purposes of distributing the computations, the
important thing to note is that problem (3) separates into
smaller problems for regions a and b, respectively. For
example, the problem for region a is:

2
($k+l yk—H) — argmin Ca(.T) + % Hya - ys u +
(@va)€A | yyal (F - yf) + Ay,
(5)

which is essentially an OPF problem for region a includ-
ing its border. The second through fourth terms in the
objective of (5) constitute the cost function of the dummy
generators in region a. The costs are quadratic and de-
pend on the values of the Lagrange multipliers as well as
on previous values of the iterates.

In figure 1, we illustrated a single tie-line between re-
gions a and b. At the border bus, there is a real and
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Fig. 2: (Left panel) A tie-line joining two regions with a dummy
bus defined at the border. (Right panel) The dumnmy bus on

the tie-line is duplicated into two dummy generators, with vari-
ables y, and ys, respectively.
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reactive power flow, measured for example in the direc-
tion from a to b, and a voltage magnitude and phase. The
dummy generators are created by duplicating this bus.

g, )

and yp = (pp q» vy B )J[, respectively, the real and
reactive flow and the voltage magnitude and phase at the
copies of the dummy bus in regions @ and b. This situa-
tion is illustrated in figure 2. The iterative process drives
the values of y, and y; together.

To enhance convergence, we make a modification to
the basic scheme. In each regional OPF, the reference bus
angle is arbitrary. At each iteration, we choose this angle
so that the average of the border angles in region a equals
the average of the border angles in region b. In the case
of three or more regions, we use an ad hoc approach to
approximately match the average of the border angles at
each iteration.

The border variables are then y, = ( P ga Ve

2.8 Distributed implementation, communication, and

synchronization issues

By locating each processor physically in its assigned
region, the typical length of the communication path for
telemetering data for the regional optimization would be
on the order of the radius of the region. This con-
trasts with a centralized implementation where the typical
length for the data path would be on the order of the ra-
dius of the whole system.

Since y is a much smaller vector than z or z, the com-
munication overhead necessary to perform the Lagrange
multiplier update (4) for each iteration of the algorithm
is small compared to the total amount of information to
perform OPF. The update only requires communication
between adjacent regions. Therefore, if the number of it-
erations needed for (3)—(4) to converge is relatively small,
then the overall communication overhead will be small.
(This is in stark contrast to the communication bottle-
necks that are likely with any on-line implementation of
a parallel OPF scheme that requires multi-utility data to
be pooled at a single control center.)

A natural implementation of the distributed algorithm
is shown in figure 3. The Telemeter and Dispatch steps
require intra-regional communication of data and control
signals. The loop termination criterion requires global
communication, while the Exchange step only requires
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Initialize %, 32, y?, 2%, A%;
k=-1;
Telemeter load and topology data from each region
to its processor;
Repeat{
Increment k;
In parallel, solve the regional OPF for region a
(using (5)) and for region b;
Exchange y¥ and y’ between regional processors;
Update \**! using (4);
} Until y¥ and yf converge to within tolerance;
Dispatch generators according to OPF solution.

Fig. 3: Distributed implementation of parallel OPF.

communication between adjacent regions. In the case of
multiple regions, each region will solve an OPF for its core
and border variables.

3 REesuLts

3.1 Prototype Implementation

3.1.1 Serial OPF. We implemented a serial NCC AC
OPF using GAMS 2.25 with the MINOS package [2]. The
serial OPF was used to directly solve the case study sys-
tems described in section 3.2. These solutions provided
data to validate the distributed algorithm.

3.1.2 Parallel OPF. We then used GAMS to cen-
trally simulate the parallel computations involved in the
Repeat loop of the algorithm in figure 3. Non-contingency
constrained AC OPFs were performed for all cases with
real and reactive generator limits and line and voltage
constraints imposed. All GAMS computations were per-
formed on a Sun Sparc-20 workstation.

The GAMS system provides a convenient tool to proto-
type and test algorithms and has allowed us to relatively
quickly develop the distributed algorithm. However, it
does not yield realistic estimates of the growth of cputime
versus the number of buses. In particular, the cputime
versus number of buses relationship for solving the OPF
with GAMS grows faster than for a state-of-the-art im-
plementation such as described in {14]. For this reason,
we will present both raw cputime results from GAMS and
also results calibrated on the basis of cputime data pre-
sented in [14]. In summary, our approach is two-fold:

1. Use GAMS to demonstrate the basic convergence
properties of the overall algorithm, such as the num-
ber of iterations to satisfy a stopping criterion, and,

2. Use the cputimes from a state-of-the-art implemen-
tation to estimate the speed-ups possible with the
algorithm.
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| Buses | Regions | Core Buses | Ties | Lines | Load ]

50 2 24,24 2 80 50

78 3 24,24 24 6| 126 74
108 4 24242424 | 12| 186 | 100
238 2 118,118 2| 376 76
360 3 118,118,118 6| 570 | 126
376 2 271,105 3| 574 | 157
753 4 | 271,105,128,237 | 12 | 1100 | 209

Table 1: Case study systems.

Naturally, these estimates should not be taken too liter-
ally, but serve only to demonstrate that the decomposition
is viable.

3.2 Case Study Systems

Data from two IEEE Reliability Test Systems and four
Texas utilities were used to demonstrate the performance
of the algorithm. Table 1 summarizes the test systems.
The first column shows the total number of buses in each
system, while the second and third columns show the num-
ber of regions and the number of core buses in each region.
The fourth column shows the number of tie-lines that in-
terconnect the regions, while the fifth column shows the
total number of lines in each complete system. The last
column shows the total per unit loads in the systems. The
five smaller systems consist of two, three, or four copies of
two IEEE Test Systems, while the two Texas systems use
line data from, respectively, two and four Texas utilities.
The line data is available from the authors on request.

The objective to be minimized is the production cost
for active and reactive power. The cost of reactive power
is assumed to be 1078 of the active power cost for each
generator, while real power costs were adapted from {13,
§3 and 4]. The cost data is available from the authors on
request.

In order to see how the algorithm responds to small
changes in system status, we solved a base-case and several
change-cases for each system. Each base-case was solved
from a flat start with initially no interchange on any tie-
line, while the change-cases were solved using the solution
of the base-case as a starting point. The change-cases were
as follows:

1. increase in demand of 5% at all demand buses;
2. increase in demand of 10% at all demand buses;

3. an outage of a single generator with capacity equal
to approximately 2-3% of the total system demand.

The change-cases demonstrate the tracking behavior of
the algorithm for an on-line application.

3.8 Test Results

3.8.1 Reliability of convergence and selection of pa-
rameters. In all cases tested, the iterates produced by the
distributed algorithm converged towards the solution ob-
tained by the serial GAMS implementation; however, the
rate of convergence is dependent on the system and on
the parameters «, 3, and . These parameters were tuned
for each system to minimize the number of iterations re-
quired to satisfy the stopping criterion specified in subsec-
tion 3.3.2. A brief discussion of the choice of parameters
is contained in the Appendix.

3.3.2 Stopping criterion. We chose the maximum
mismatch between the border variables as the stopping
criterion. To select the tolerance on the maximum mis-
match, we experimented with the performance of the algo-
rithm. We found that the choice 0.03 per unit maximum
mismatch yielded a solution with total costs that were
within 0.1% of the optimal production costs from the se-
rial algorithm. Typically, the mismatches on most buses
were much smaller than 0.03 per unit.

For some small systems, including the 50 bus system
described in Table 1, this criterion required over 20 it-
erations. However, for larger systems, including the two
ERCOT systems, the criterion required no more than five
iterations to satisfy the stopping criterion.

The mismatch tolerance of 0.03 per unit may seem
large; however, the sensitivities of total dispatch costs
to tie-line flows are relatively small when the system is
close to being optimally dispatched. Furthermore, the
mismatch in net interchange was usually much smaller
than 0.03 per unit when summed across all lines from
one region to another. Therefore, in practice, any sim-
ple strategy such as splitting the difference will usually be
adequate in scheduling near-to-optimal interchange levels.

For each test case, we calculated the total costs by dis-
patching the generators at the levels suggested by the last
iteration of the algorithm and then performing a power
flow for the whole system. That is, the reported costs are
based on a power flow and represent bona fide costs for a
feasible dispatch of the whole system.

3.8.8  Cputimes. Because our prototypical GAMS im-
plementation is not efficient, the cputime to perform the
calculations is not reflective of performance in a produc-
tion environment. Nevertheless, the data is presented for
completeness and also because it provides some qualita-
tive information that is useful in judging the performance
of an efficient implementation.

Figure 4 shows the cputime versus the number of buses
for the base- and change-cases for solving the OPF serially
with GAMS. (All GAMS cputimes include overhead and
set-up times that would be largely eliminated in produc-
tion code.)

As expected, the trend is generally for cputime to in-
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crease with the number of buses. While the growth is not
monotonic across all seven systems, it is monotonic for
the IEEE systems as a group (the five smallest systems)
and for the Texas systems as a pair. Clearly, solution dif-
ficulty does not only depend on the number of buses but
also on other parameters such as the number of lines. The
change-cases generally take about the same or less time to
solve than the base-cases.

Figure 5 shows the cputime versus the number of buses
for the base- and change-cases for solving the OPF us-
ing the parallel algorithm in a centralized implementa-
tion. Each regional OPF was solved with GAMS and, as
described above, the calculations were performed by sim-
ulating the parallel computations on a single workstation.
The data in figure 5 show total cputime, where the itera-
tions are terminated when the absolute value of real and
reactive power mismatches on the tie-lines are all less than
a tolerance of (.03 per unit.

3.8.4 Progress towards optimum. Figures 6 and 7
show, respectively, the convergence of the parallel algo-
rithm to:

1. the optimal value of the base-case and,

2. the optimal value of the generator outage change-
case.

The vertical axis of each graph shows the production costs
normalized by the optimal production costs for the corre-
sponding case and system.
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In figure 6, the value of the vertical axis at the 0-th it-
eration shows the normalized total production costs if each
region is optimized separately assuming no interchange of
power. The 0-th iteration data in figure 6 therefore rep-
resents the increase in costs of self-dispatch over optimal
dispatch for each case and system. In figure 7, the value
of vertical axis at the O-th iteration shows the normalized
production costs before the generator outage occurred.

In both figures, the values at subsequent iterations
show the total costs if the generations obtained at this
iteration were actually used to dispatch the system. As
indicated above, to calculate the costs for each iteration,
we took the generations suggested by the algorithm and
solved the power flow equations for the whole system us-
ing these generations. (We chose as swing bus a generator
near a load center.) We then calculated the costs resulting
from this dispatch. That is, mismatches were reduced to
zero to calculate bona fide total system costs.

The most significant feature of these graphs is that the
solution converges within 3 or 4 iterations. That is, most
of the reduction in production costs are obtained in the
first few iterations.

The relationship between cputime and the number of
iterations is shown in figure & The second and subsequent
iterations of the parallel algorithm each take between 5%
and 30% of the time required for the first iteration. This
is because the second and subsequent iterations involve
OPFs that have the same constraints as the first itera-
tion, start with a feasible solution (the solution from the
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previous iteration), and involve only small changes to the
objective.

Our GAMS implementation only makes rudimentary
use of the information from previous iterations. An effi-
cient implementation could exploit the repeated solution
of similar problems to avoid refactorization of the Jaco-
bian, further reducing the time for the subsequent itera-
tions. This observation indicates that it is not very critical
to choose a stopping criterion for the parallel algorithm,
since most of the improvement in the costs is obtained
in the first few iterations, while an extra iteration or two
does not take very much more time. As we have noted,
the cputime used by GAMS is much longer than for an
efficient implementation; however, with an efficient OPF
we would still expect to see a similar reduction in cputime
per iteration after the first iteration.

3.4 Speed-up and Efficiency

3.4.1 GAMS results. The raw cputime data in fig-
ures 4 and 5 suggest parallel “efficiencies” (based on the
ratio of serial to parallel cputime) greater than one. How-
ever, this is merely an artifact of the inefficiency of the
GAMS implementation of the OPF. That is, the cputime
using GAMS grows so fast with the number of buses that
the parallel scheme takes less cputime in total than with
the serial scheme. In fact, as we will show in the follow-
ing subsections, with an efficient OPF implementation the
true efficiencies would be less than one.

3.4.2  Estimated cputimes based on interpolation. We
used the cputime data from [14, Tables 3 and 7] to esti-
mate a cputime versus number of buses characteristic for

an efficient serial OPF implementation. A least squares
fit to this data yielded:

Tepu = 0.0344 N 1112 (6)

where Tty is the cputime and N is the number of buses.
We then used this relationship to estimate the cputime,
speed-up, and efficiency for an efficient implementation of
our parallel algorithm.

Table 2 shows the estimated cputime for the base-case
for the serial and parallel implementations of the OPF al-
gorithm, using the relationship in (6). Naturally, these
estimates are very rough since, as we observed, there
are other issues besides the number of buses that affect
cputime. To estimate the parallel cputime we made the
additional assumptions that:

e there was one processor per region,

o the first iteration of the parallel algorithm takes time
predicted by (6), and,

o the subsequent iterations take about 20% of the time
for the first iteration.

The estimates of the parallel cputime are optimistic
for distributed implementation in that they ignore over-
heads of an actual distributed implementation, such as idle
time and communication between regions. The estimates
should therefore be only taken as indicative of possible
performance; however, as we argued in the introduction,
the speed-up and efficiency may be not as significant as
the other advantages of a distributed implementation.

3.4.8 Estimated efficiencies. The estimated efficien-
cies for the larger systems are between about 60 and 75%,
based on the 0.03 per unit tie-line mismatch criterion. As
shown in figures 7 and 8, almost all of the potential pro-
duction cost savings are achieved within 3 or 4 iterations.
If we terminate after 3 or 4 iterations, then the efficiency
improves to 70 or 80%, with production costs still within
0.1% of optimal. Several of our test systems are of modest
size and the ratio of the number of border to core variables
is large. We expect better performance for larger systems
with lower ratios of border to core variables.

4 CoNCLUSION AND FUTURE STUDY

We have demonstrated an effective parallel algorithm
for the OPF problem that is suitable for distributed imple-
mentation. We believe that our implementation is the first
demonstration of the viability of large-scale distributed
OPF and we have argued that a distributed approach is
the only practical way to achieve large-scale on-line OPF.
Our next step is to incorporate a state-of-the-art serial
OPF algorithm such as described in [14] into a distributed
environment to obtain more definitive speed-up and effi-
ciency estimates.

We will also explore ways to improve convergence of
the basic algorithm: one possibility is to use a dummy
generator and a dummy load to represent each border bus,
instead of two dummy generators. Finally, to be of use to
the industry, we must incorporate contingency constraints
into the implementation. We plan to begin by considering
outages of tie-lines.
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] System || 30-Bus | 78-Bus | 108-Bus | 238-Bus [ 360-Bus | 376-Bus | 753-Bus |
Cputime (Serial) 2.7 44 6.3 15.1 23.9 25.1 54.3 Table 2:  Estimated
Cputime (Parallel) 6.6 6.3 8.5 22.1 37.3 42.2 83.9 cputime, spged—up, and
Speed-Up 0.8 2.1 3.0 1.4 1.9 1.2 2.6 efficiency for parallel
Efficiency (%) 41.0 69.3 74.4 68.4 64.1 59.5 64.7 OPF.

APPENDIX: SUFFICIENT CONDITIONS FOR
CONVERGENCE OF DISTRIBUTED ALGORITHM

We will describe some sufficient conditions for con-
vergence of the iterative scheme (3)-(4). Assume that
the sets {y, : 3Jz such that (z,y,) € A} and {y
3z, such that (y,2) € B} are each closed and convex.
Consider the following functions:

Ja(ya) rnzin{ca(w) D (m,y0) € A}, (7)
Jo(ys) = min{ey(2) : (va,2) € B} (8)

fl

Assume that J, and J; are convex and differentiable. Sup-
pose that & < 2v < 3. Then, by Theorem 15 of [4] (see
comment (iii) for Algorithm 14), the iteration (3)-(4) con-
verges to the solution of (2). These conditions on the func-
tions J, and J, are too strict to be directly applicable to
the OPF problem, since we cannot in general prove that
the cost of the OPF solution is a convex function of the
border variables. Nevertheless, we found empirically that
convergence was reliable with the choice:

a=zp=r (9)

For most test cases, we tuned the parameters by adjusting
a and defining the other parameters according to (9).
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