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Abstract--In models of imperfect competition of deregulated 

electricity markets, the key task is to find the Nash equilibrium 
(NE). The approaches for finding the NE have had two major 
bottlenecks: computation of mixed strategy equilibrium and 
treatment of multi-player games. This paper proposes a payoff 
matrix approach that resolves these bottlenecks. The proposed 
method can efficiently find a mixed strategy equilibrium in a 
multi-player game. The formulation of the NE condition for a 
three-player game is introduced and a basic computation scheme 
of solving nonlinear equalities and checking inequalities is 
proposed. In order to relieve the inevitable burden of searching 
the subspace of payoffs, several techniques are adopted in this 
paper. Two example application problems arising from electricity 
markets and involving a Cournot and a Bertrand model, 
respectively, are investigated for verifying the proposed method. 
The proposed method outperforms a publicly available game 
theory software for the application problems. 
 

Index Terms— Bimatrix Game, Complementarity Problem, 
Deregulation, Dominated Strategy, Electric Power Market, Game 
Theory, Mixed Strategy, Nash Equilibrium, Payoff Matrix 

I.  INTRODUCTION 
ompetition among electric generation companies is a 
major goal of restructuring in the electricity industry. It is 

expected that the more competitive the market for selling 
power, the lower is the price. However, strategic behavior of 
generation companies for maximizing their profits has 
appeared as an undesirable situation resulting in higher market 
prices than expected.  

Such phenomenon can be analyzed with game theory. The 
individual behavior and the market clearing mechanism are 
represented as a bilevel optimization problem and solved to 
find a Nash equilibrium [1]-[3]. Particular characteristics of 
electricity markets, such as continuous strategy spaces and 
transmission constraints that affect the market clearing 
mechanism, severely complicate the search for a Nash 
equilibrium [4][5].  

Many efforts have been made to develop solution methods 
for finding the NE of games representing transmission-
constrained electricity markets. There are at least five 
categories of solution methods: the mathematical programming 
approach [1][6][7], the payoff matrix approach [8][9], co-
evolutionary programming [10], the exhaustive search 
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approach [11], and analytical derivation [12]. However, there 
have been some bottlenecks for developing a rigorous tool 
applicable to electric power markets. One of them is the 
consideration of transmission system constraints, since the 
constraints complicate the market clearing mechanism and 
cause the payoff functions to be non-differentiable and non-
concave. Another difficulty is to deal with a multi-player game 
where three or more players participate. In many electricity 
markets there are somewhat more than two but less than ten 
major players. 

The mathematical programming approach uses a numerical 
framework such as: the linear complementarity problem [7]; 
mathematical programming with equilibrium constraints [1]; or 
a conventional optimization technique [6]. This approach can 
solve for the NE of a multi-player game that has differentiable 
and concave payoffs. When the problem includes transmission 
constraints or generation capacities, however, this method has 
difficulties in determining equilibria because the payoff can be 
non-differentiable and non-convex, unless simplifying 
assumptions are made. In some cases, “false equilibria” are 
identified that satisfy local optimality conditions for a Nash 
equilibrium but which are not Nash equilibria.  

The co-evolutionary programming and exhaustive search 
approaches require neither differentiability nor concavity of 
the payoffs, so they can deal with transmission constrained 
problems.  In some cases, it may be possible to interpret the 
distribution of strategies from a co-evolutionary programming 
approach as representing the distribution of a mixed 
equilibrium. However, neither the co-evolutionary 
programming nor the exhaustive search approaches are 
designed to find mixed equilibria. 

On the other hand, the payoff matrix approach in a bimatrix 
game representing two players can find a global solution for 
the given payoff matrices and can represent mixed strategy 
equilibria. This approach is based on Lemke’s algorithm, 
which uses a linear complementarity pivot [13]. Unfortunately, 
the optimality conditions for a NE are nonlinear in a multi-
player game. So the payoff matrix approach has been restricted 
to bimatrix games. 

In this paper, a new formulation and its solution method for 
multi-player games are introduced. Since it is based on the 
payoff matrix approach, mixed strategy equilibria can be 
sought. Since it is developed for dealing with multi-player 
games, it can resolve the bottleneck of computing multi-player 
equilibria.  

The payoffs in this method depend on the choices of three 
or more participants, so that a higher dimensional payoff than 
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a two dimensional matrix is required and introduced in this 
paper. The notation and results are developed for a three-
player game. However, the formulation and the solution 
method can, in principle, be applied to a multi-player game.  
(We comment briefly in the conclusion about potential 
difficulties for multi-player games.) 

The main scheme for the solution technique is different 
from the algorithm for the nonlinear complementarity problem 
[14] in that we discard dominated strategies and use heuristics 
for reducing the search space. The heuristics result from 
numerical  studies of the relation between the model of 
imperfect competition in a transmission-constrained electricity 
market and its mixed strategy equilibria. Cournot and Bertrand 
models of market interaction are simulated, and the 
computation time is compared with GAMBIT [15], which is a 
public domain software for game theory.  

The outline of this paper is as follows. Section II formulates 
the three-player game, while section III outlines a solution 
method. Sections IV and V apply the solution method to 
Cournot and price competition models of electricity markets. 
We conclude in section VI. 

II.   FORMULATION OF A THREE-PLAYER GAME 

A.  Notation for two-players’ payoffs 
A bimatrix game is a two-player, nonzero-sum matrix game. 

In a bimatrix game, two matrices, A and B, are used for 
denoting the payoff of each player, respectively. A game with 
a continuous strategy space can be converted into matrix game 
using discretization of the strategy space. The strategy pair (x*, 
y*) of the players is said to be an equilibrium pair if: 

• 1*
1
=N

tex , 0* ≥x , 1*
2
=N

tey , 0* ≥y , where 
1Ne  and 

2Ne  denote the column vectors in 1NR  and 2NR , 
respectively, in which all the elements are equal to 1 and 

• no player benefits by unilaterally changing his own strategy 
while the other player’s strategy is fixed.  

Thus the NE is characterized as follows [13]: 
*** AyxAyx tt ≥ , for all x∈ 1NR , such that 1

1
=N

tex , 0≥x ,  
                        (1) 
and   ByxByx tt *** ≥ , for all y∈ 2NR , such that 1

2
=N

t ey , 
0≥y .                      (2) 

B.  Notation for three-players’ payoffs 
In a multi-player game the NE conditions appear in a 

similar way to (1) and (2). However, the notation for payoffs 
must be modified to represent information about multiple 
players. In this paper, the formulation and case studies are 
performed for three-player games, but the development is 
applicable to a general multi-player game. The three players 
are designated P1, P2, and P3. Player P1 chooses amongst N1 
pure strategies, P2 chooses amongst N2, and P3 chooses 
amongst N3. In a play, if P1 picks the pure strategy i, P2 picks j, 
and P3 picks k, then the payoff to P1 is aijk, the payoff to P2 is 
bijk, and the payoff to P3 is cijk. Define the N1×N2×N3 payoff 
“cubes” A, B, and C by: 

A=[aijk]∈ 321 NNNR ×× , B=[bijk]∈ 321 NNNR ×× , C=[cijk]∈ 321 NNNR ×× . 

More generally, in an n-player game, each player would 
have an associated hypercube of dimension n to represent its 
payoff.  

In order to express the NE condition analogously to (1) and 
(2) for the case of a three-player game, the multiplication 
between a cube and a vector is required. A notation is 
proposed for describing the multiplicative operation of the 
cube. When a cube is multiplied by a vector, the result is a 
matrix. This operation can be represented by the following 
notation: 

∑
=

× =∈∈=⋅⋅⊗
1

132

1
,,][],,[

N

i
iijkjk

NNN
jk xaaandRxwhereRaxA  

∑
=

× =∈∈=⋅⋅⊗
2

231

1
,,][],,[

N

j
jijkik

NNN
ik yaaandRywhereRayA

 

∑
=

× =∈∈=⋅⋅⊗
3

321

1
,,][],,[

N

k
kijkij

NNN
ij zaaandRzwhereRazA

 
When a cube is multiplied by two vectors successively, it 

becomes a conventional column vector. This operation can be 
represented by: 

32

1)][()][(][
NN

N

Rz,Rywhere
,Ryz,,Azy,,Azy,,A

∈∈
∈⋅⋅⊗=⋅⋅⊗=⋅⊗   

31

2

,
,,,,,,, )][()][(][

NN

Nt

RzRxwhere
RxzAzxAzxA

∈∈
∈⋅⋅⊗=⋅⋅⊗=⋅⊗  
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3)][()][(][
NN

Ntt

Ry,Rxwhere
,Rxy,,Ay,x,AyxA ,,

∈∈
∈⋅⋅⊗=⋅⋅⊗=⋅⊗  

When three vectors are multiplied to a cube successively, it 
becomes a scalar. The following notation represents this 
operation: 

321 ,,,,,
,,,,,,

)][(
)][()][(][

NNNt

tt

RzRyRxwhereRzyAx
zxAyyxAzzyxA

∈∈∈∈⋅⊗=
⋅⊗=⋅⊗=⊗  

C.  Nash equilibrium 
The inequalities (1) and (2) for a two-player game can be 

extended to those for a three-player game using the notation of 
multiplication between a cube and vectors. Strategies (x*, y*, 
z*) satisfying 1*

1
=N

tex , 0* ≥x , 1*
2
=N

tey , 0* ≥y , 1*
3
=N

tez , 
0* ≥z , constitute a NE if they satisfy following inequalities: 

0,1
,],,**,[*],**,[

0,1
,*],,*,[*],**,[

0,1
,*],,*,[*],**,[

3

3

2

2

1

1

≥=
∈⊗≥⊗

≥=
∈⊗≥⊗

≥=
∈⊗≥⊗

zezthatsuch
RzallforzyxCzyxC

yeythatsuch
RyallforzyxBzyxB

xexthatsuch
RxallforzyxAzyxA

N
t

N
N

t

N
N

t

N

(3) 

In the bimatrix game approach, the NE conditions (1) and 
(2) are converted to a set of equations, and can solved by a 
linear complementarity algorithm[13]. But this approach 
cannot be applied directly to a multi-player game, since the 
condition (3) involves nonlinear inequalities. In this paper, (3) 
is transformed into a set of nonlinear equations, and solved 
numerically. 
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D.  Necessary condition of the Nash equilibrium 
In a bimatrix game, each solution has associated with it a 

square sub-matrix of the payoff matrix corresponding to the 
non-zero entries in x* and y* of the equilibrium strategy 
[16][17]. Therefore x* and y* have the same number of 
nonzero elements. This is called the “equal number of non-
zeros property” [17]. In a similar way, each solution in a three-
player game has associated with it a certain sub-cube of the 
payoff cube corresponding to the non-zero entries in (x*, y*, 
z*). We call this sub-cube the “kernel.”  

For a kernel of (x*, y*, z*), let the number of non-zero 
entries in x*, y*, z* be K1, K2, and K3, respectively. Then the 
kernels for the payoffs A, B, and C are represented as Â , B̂ , 
and Ĉ  respectively: 

Â∈RK1×K2×K3, B̂ ∈R K1×K2×K3, Ĉ ∈R K1×K2×K3. 
Since under the equilibrium strategies of (x*, y*, z*), each 

player will not change its strategy unilaterally, there exist 
R∈1λ , R∈2λ , R∈3λ , such that the following conditions 

are satisfied by the equilibrium strategies: 

,],ˆ,ˆ[ˆ
,]ˆ,,ˆ[ˆ,]ˆ,ˆ,[ˆ

3

21

3
**

2
**

1
**

K

KK

eyxC
ezxBezyA

λ=⋅⊗

λ=⋅⊗λ=⋅⊗
  (4) 

where 1*ˆ KRx ∈ , 2*ˆ KRy ∈ , 3*ˆ KRz ∈  are vectors corresponding 
to the non-zero entries of x*, y*, and z* respectively, and 

1Ke , 

2Ke , 
3Ke  denote the column vectors in 1KR , 2KR , 3KR  

respectively, in which all the elements are equal to 1. 
The equations (4) are necessary conditions for the NE. All 

of the equations in (4) are quadratic. For example, the pth 
equation among the K1 equations corresponding to Â  is as 
follows: 

  1
11

32

λ=∑∑
==

K

r

*
rpqr

K

q

*
q ẑâŷ , 

where Â =[ pqrâ ]. Equation (4) has K1+K2+K3 equations.  
There are 3 more to represent the normalizing equations 

( 1
1
=K

t ex̂ , 1
2
=K

t eŷ , 1
3
=K

t eẑ ) and there are also non-
negativity constraints. The equalities (4) together with the 
normalizing equations can be solved by Newton’s method for 
the values of x̂ , ŷ , ẑ , λ1, λ2, and λ3. 

E.  Inequalities for checking the  equilibrium 
Not all of the solutions of (4) are NEs. Some of the 

solutions do not satisfy non-negativity constraints, others do 
not meet (3). Thus each solution of (4) must be checked to see 
whether it is non-negative and meets (3). The check for being a 
NE is performed easily by the non-negativeness and by 
checking the following inequalities: 

 
,]*,*,[

,*],*,[,*]*,,[

3

21

3

21

N

NN

eyxC
ezxBezyA

λ≤⋅⊗
λ≤⋅⊗λ≤⋅⊗

  (5)  

where x*, y*, and z* have non-zero elements corresponding to 
the solution of (4).  

The vectors in the left hand side of (5) evaluate the 
expected payoff to each player for each of its strategies, when 
the distribution of the strategies of the other players is fixed. 

For example, the pth element of ],,[ *z*yA ⋅⊗  evaluates the 
expected payoff to P1, when P1 picks a pure strategy p among 
N1, P2 picks the mixed strategy specified by y*, and P3 picks 
the mixed strategy specified by z*. Thus (5) verifies that the 
profits are the highest for each player at the candidate 
equilibrium, given that the other players choose the candidate 
equilibrium. The values R∈1λ , R∈2λ , R∈3λ , are the 
payoffs given to the players when they pick the set of 
strategies (x*, y*, z*). 

A set of strategies satisfying the normalizing equations, the 
non-negativity constraints, and both (4) and (5) is a NE. 

III.  SOLUTION METHOD OF A THREE-PLAYER GAME 

A.  Search space for finding a kernel 
The equations of the necessary condition (4) are computed 

for a given kernel. However it is not simple to guess a kernel 
of the NE, while the computation of (4) and the check of (5) 
are rather simple. So the problem of finding a kernel of the NE 
is key to the overall solution method for the multi-player game. 
In a bimatrix game, the kernel has a useful property of “equal 
number of non-zeros property” [17]. Unfortunately that 
property does not hold in a multi-player game. 

The space to be searched for finding a kernel of the NE is 
huge. For example, the number of sub-cubes in a three-player 
game of 10×10×10 dimensions is more than 109, which is 
calculated by: 9

1010

10

1

10

1

10

1
10 10*07.1=⋅∑ ∑ ∑ ⋅

= = =
kj

i j k
i CCC . Another 

approach to solve (3) was proposed using the nonlinear 
complementarity problem (NLCP) [14]. As a result of tests on 
electric power market problems, the approach seems not to be 
useful for problems that result from discretizing a continuous 
strategy space. The comparison between a NLCP method and 
the proposed method is provided in section IV. 

In order to reduce the search space, several techniques are 
used in this paper. Some are based on game theory, and others 
are heuristics based on properties of power markets. The major 
techniques used in the proposed method are introduced in the 
following sections. 

B.  Discarding the dominated strategies 
In a game, a player may have some strategies that will not 

be picked by the “rational” player, no matter how other players 
play. Those strategies are called “dominated” [18][19]. Those 
strategies do not affect the game, so can be eliminated without 
any changes to the NE.  

The proposed method uses this property in reducing the 
search space. In an initial step, the payoffs are reduced to a 
sub-cube that consists of only the undominated strategies. The 
search for finding the kernel of the NE is then performed only 
on the reduced payoffs. Reduction of dominated strategies is 
also executed prior to each solution of (4). 

Typical problems that arise in power market application 
have continuous strategy spaces. The problems are converted 
into discrete problems to apply the matrix approach by 
discretizing the continuous strategy space.  The number of 
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strategies in the discretized problem increases as the 
discretization becomes finer. Moreover, the number of 
undominated strategies increases as the grid becomes finer. So 
the searching problem becomes harder as the discretization 
becomes finer. For this reason, several heuristics are also 
necessary.  These are described in the next three sections. 

C.  Variable grids 
Through numerical studies, we found the following 

tendency: If the non-zero elements appear in an interval [a,b], 
with no other non-zero elements outside the interval, then after 
using a finer discretization, the refined solution of the non-zero 
elements still appears only near the interval [a,b]. This 
tendency can be utilized for reducing the number of effective 
payoffs. 

Even though the number of payoffs becomes larger with 
finer discretization, the non-zero elements in the NE tend to 
concentrate in a relatively stable interval, independent of the 
fineness of the grid. In other words, the distribution of the 
mixed strategy equilibrium does not change significantly with 
discretization fineness. Therefore partial information about the 
discretized strategies can be enough to capture the shape of the 
solution. Such information is extracted from the payoffs with a 
coarsely discretized grid. This extraction is different from 
discarding the dominated strategies, as described in section 
III.B, in that the strategies not selected by the grid are not 
thrown away forever.  

Using coarse grids, the reduced strategies are selected, and 
the reduced payoff cubes are calculated with the coarse grids. 
After the serial process of elimination, extraction by grid, 
search, computation, and check, it can be estimated where the 
non-zero entries in the solution are concentrated, and what 
shape the distribution of the NE has. In the next step, the 
discretization grids can be refined to obtain a finer solution 
using the estimated information. This refining process is 
executed iteratively until the grid reaches the desired 
discretization level. Performance of this heuristic depends on 
the shape of the payoffs. If the original payoff is continuous in 
continuous strategies, this coarse grid method shows good 
results. If the payoff has many abrupt changes, the adjustment 
of the variable grids is less efficient, so additional techniques 
are applied.  

D.  Consecutive non-zeros strategy 
In a Cournot model with price-sensitive demand at each 

node, the nodal prices vary continuously with the bid 
quantities, even if a constraint becomes binding.  Hence, the 
payoffs of the Cournot model are continuous in the quantity 
strategy space. However, in a Bertrand model with strategies 
of bid prices, the quantity of generation at each firm changes 
abruptly depending on the difference of the bid prices. 

Empirical studies on the mixed strategy equilibrium result 
in some heuristics. One of them is that the NE is often a mixed 
strategy consisting of a series of consecutive non-zero 
elements if the payoff has abrupt changes as a function of the 
strategic variables, such as in the Bertrand model. Therefore it 
is recommended to search only over kernels corresponding to 

consecutive non-zero entries in the strategy vector when the 
payoffs are discontinuous. If the search space for finding a 
kernel of the NE is restricted only to the consecutive strategies, 
the amount of the search space reduces dramatically.  

On the other hand, a mixed strategy where the non-zero 
elements are split into two parts generally appears if the payoff 
is a continuous function of the strategic variables, such as in 
the Cournot model and the supply function equilibrium model. 
In this type of payoff, a series of many consecutive non-zero 
elements does not usually appear. Each region of non-zero 
elements has only one or a few non-zero elements. This 
heuristic is also useful in adjusting the fineness of the grid.  

These two typical patterns of mixed strategies are simulated 
and introduced in sections IV and V.  

E.  Using the bimatrix game 
The continuous payoffs also show another tendency that 

one of the players, say P1, chooses a pure strategy in 
equilibrium, while the others choose mixed strategies. Taking 
advantage of this observation allows conversion of the three-
player game into a bimatrix game between players P2 and P3. 
As is well known, the solution of a bimatrix game can be 
computed rapidly using the linear complementarity algorithm 
of Lemke and Howson [13].  

If this tendency is observed in a three-player game after 
coarse grid process, then the strategy of the player that is 
apparently choosing a pure strategy is tentatively fixed as a 
pure strategy. This heuristic is also quite effective in reducing 
the search space. Lemke’s algorithm [13] can then be used 
instead of the search and computation process explained 
previously. This bimatrix game computation produces a 
solution very rapidly. This heuristic is also valuable when 
there are more than three players; however, in this case if one 
player adopts a pure strategy, the other players are still 
involved in a multi-player game. 

IV.  APPLICATION TO THE COURNOT MODEL 

A.  System and problem description  
The test system for the Cournot model is shown in Fig.1, 

and the marginal cost function of generators and the inverse 
demand function at each node are provided in Table 1. This 
system and the market data are quoted from [11]. The power 
flows are approximated using a DC power flow solution, and 
the transmission lines are assumed to be lossless and have 
equal reactance [20].  

The three generation firms bid generation quantities in the 
Cournot model. The clearing prices are determined by benefit 

TABLE I. BENEFIT AND COST DATA. (SOURCE: THIS DATA IS QUOTED FROM 
[11, TABLE  I].) 

 Utility A Utility B Utility C 
iβ =  108.4096 103.8238 105.6709 Inverse Demand 

i i i iP qβ α= −  
iα =  0.055500 0.066909 0.063703 

iφ =  0.015718 0.021052 0.012956 

iγ =  1.360575 -2.07807 8.105354 
Total Cost 

21/ 2i i i i i iC q qφ γ η= + +  
iη =  9490.366 11128.95 6821.482 
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maximization of demands located at each node and by 
considering the system constraints. The payoffs of the firms 
are computed by the product of the bid quantity and the 
clearing price at each node less the cost. By this mechanism 
and discretization, the payoff cubes of the firms are produced. 
The minimum size of the bid quantity is assumed 1MW in this 
simulation. 

B.  Solution of the Cournot model  
In this simulation, two cases are considered:  

1. no constraints and  
2. a transmission line limit on the line joining node A and node 
C.   

For the given market data, the result of the perfect 
competition shows that the generation levels are between 
1200~1500MW. Therefore the initial range of the generation 
bid is guessed as 600~1500MW, since imperfect competition 
such as in the Cournot model typically results in less 
generation than under perfect competition. 

1. No constraints 
The coarse grid with discretization of 100MW in the range 

600~1500MW is applied initially to the case of no constraints. 
The process of discarding the dominated strategies reduces the 
original dimension of 10×10×10 to 2×3×2. The search and 
computation process results in the pure strategies of 1100, 
1000, and 1000MW for players A, B, and C, respectively. So, 
using the variable grid heuristic of section III.C, the range of 
the strategies are shrunk to 1000~1200 for A, 900~1100 for B, 
and 900~1100 for C. After several iterations, the NE solution 
is found as 1106, 1045, and 995 MW respectively.  

Figure 2 illustrates the pure strategies and the expected 
payoff distribution showing that each pure strategy computed 
is the best to each player.  In figure 2 and subsequently, the 
vertical lines indicate the value and probability mass of the NE 
strategy, while the curves show, for each player, the payoff 
versus strategy for that player, given the equilibrium strategy 
of the other players. The resulting flow along the line from 
node C to node A is 29MW. This result is consistent with that 
presented in [11]. 

2. Transmission constraints 
For the transmission constrained problem a transmission 

limit of 40MW was imposed on the line between A and C in a 
bi-directional way. The same initial grid as for the case of no 
constraints is applied for the constrained case. The initial 
undominated payoffs result in the reduced payoffs of 5×4×5. 

The search and computation process produces the following 
mixed strategies: A picks quantities [800, 900, 1100] with 
probabilities of [0.11, 0.27, 0.61], respectively, B picks 
quantity 1100 as a pure strategy, and C picks quantities [700, 
800, 900] with probabilities of [0.12, 0.18, 0.70], respectively.  

Because B picks a pure strategy, the bimatrix game 
heuristic of section III.E is applied to the next step. The 
computation is executed like a bimatrix game with varying the 
pure strategies of B from 1000 to 1200. This heuristic 
computes rapidly. The final solution is as follows: A picks 
quantities [829, 1073, 1074] with probabilities of [0.21, 0.2, 
0.59], respectively, B picks quantity 1115 as a pure strategy, 
and C picks quantities [699, 873, 874] with probabilities of 
[0.08, 0.22, 0.7], respectively. Figure 3 shows the mixed 
strategies as vertical lines and the payoffs. Because the 
equilibrium generations are random, the resulting flow along 
the line from node C to node A is also random. The maximum 

f1 f2 

f3 

f4 f5 

f6 

A B 

C 

 
Fig.1 Sample system for the Cournot model. (Source: This figure is based on 

[11, Fig.1].) 

 
Fig.2 Strategies and expected payoffs of unconstrained Cournot NE. 

  
Fig.3 Strategies and expected payoffs of constrained Cournot NE. 
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flow from C to A is 40MW and the expected flow is 4.07MW. 
The reason why B maintains a pure strategy while A and C 

have mixed strategies is that the transmission constraint 
between A and C primarily affects generation at nodes A and 
C, making the payoff of both A and C non-concave and non-
differentiable. However, B’s payoff remains concave and 
differentiable and a pure strategy remains best for B. 

In practice, for any given demand level and supply 
configuration, transmission constraints in a large 
interconnected electricity system will tend to affect some 
players strongly while not significantly affecting others. 
Consequently, the heuristic of section III.E is likely to be 
applicable in practice. 

It is interesting to note that the transmission constraint of 40 
MW is great than the flow on the line from C to A in the 
unconstrained case solved in section IV.B.1, yet this constraint 
disrupts the unconstrained equilibrium. This somewhat 
surprising result is consistent with [11,12] and is due to the 
multiple local maxima of the profit functions in the constrained 
case. 

C.  Computational effort and comparison to GAMBIT  
The initial estimated range of the generation bid is large, 

involving a grid of size 900×900×900.  However, the regions 
of the non-zero elements can be narrowed gradually as the 
variable grid method is applied. At each step, the cubes 
extracted by the grids are reduced again to lower dimension by 
eliminating the dominated strategies. The characteristic that 
one player chooses a pure strategy contributes much to saving 
the overall computation time and to reducing the manual effort 
to adjust the grids. As explained in section III.D, this Cournot 
model has continuous payoffs even in the constrained case, 
and the mixed equilibrium shows the pattern of being split into 
two regions. The bimatrix game heuristic also contributes to 
reducing the search space by neglecting other regions and 
focusing on the two regions where the strategies have non-zero 
probability of being played. 

The overall computation time is hard to estimate since, 
between iterations, manual adjustment was included in the 
prototype implementation, and the performance is highly 
dependent on the heuristic decision. Hence, the computation 
time is reported for the extracted payoffs using several 
particular choices of fixed grids rather than using the variable 
grids. We ran each case under two assumptions: first, with the 
heuristics in sections III.B-III.E applied and second with only 
the heuristics in sections III.B-III.D applied. 

We compared the results to that of the game theory 
software, GAMBIT. As an option for the solution method in 
GAMBIT, the ‘Simpdiv’ option is more stable and faster than 
other options in the software, so it was used throughout for the 
numerical studies with GAMBIT. The Simpdiv method uses 
the NLCP [14].  

Table 2 shows the comparison of computation time between 
GAMBIT [15] and the proposed method for the Cournot 
model. All computations were performed on a Pentium III 
processor of 233MHz.  Several grids of different dimension 
are used.  

The test cases are extracted by the variable grids heuristic 
of section III.C. The simple case of 3×3×3 shows fast 
computation for the proposed method. In the proposed method, 
the elimination of the dominated strategies leads to a pure 
strategy directly. Since this undominated strategy is the NE, no 
further heuristics are required and the NE is found quickly.  

In GAMBIT, the ‘Simpdiv’ method can be run to seek a 
mixed strategy or to seek only pure strategies. If the former 
option is used, GAMBIT takes 2 seconds to find the pure 
strategy for the 3×3×3 case; however, if it is run with the 
option for seeking only the pure strategy then it takes 0.05 sec 
for this case (as indicated by the 0.05* in parenthesis in the 
table), which is comparable to the computation time for the 
proposed method. In all subsequent cases, GAMBIT was run 
to seek only one Nash equilibrium (rather than seeking all 
possible NEs.)  

In Table 2, the cases using the heuristic of sections III.B-
III.E are compared with the cases where the heuristics of 
sections III.B-III.D only are used. In the row of 5×5×5, the 
computation (0.03sec) using the bimatrix game heuristic of 
section III.E in addition to the other heuristics improves the 
performance by a factor of 15 times (from 0.5sec). The 
improvement due to using the heuristic of section III.E 
increases for the largest case considered.  

As the dimension goes up, the computation time of 
GAMBIT increases extremely rapidly. While the computation 
of the GAMBIT depends on the total size of the cubes, the 
proposed method depends on the initial undominated sub-cube. 
Since this comparison is performed only for a sample of 
electricity market problems, it is hard to compare the overall 
performance of both methods for general game theory 
problems. However, in the game of the power market, the 
proposed heuristics are applicable, and can speed up the 
computation.  

TABLE 2. COMPARISONS OF COMPUTATION TIME BETWEEN THE PROPOSED METHOD AND GAMBIT 
Test cases Proposed method GAMBIT Solutions 

Computation time [sec] 
Dimension Grids of generation 

quantities 

Initial 
undominated 

sub-cube 
Heuristics in 

III.B-III.E used 
Heuristics in 

III.B-III.D used 

Computation 
time [sec] 

Dimension 
of Kernel 

3×3×3 [800~1200] by 200 1×1×1 0.01 0.01 2 (0.05*) 1×1×1 
5×5×5 [800~1200] by 100 5×3×3 0.03 0.50 38 2×1×2 
7×7×7 [700~1300] by 100 5×3×4 0.06 0.71 240 3×1×3 
9×9×9 [800~1200] by 50 8×4×5 0.11 5.22 2028 3×1×3 
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V.  APPLICATION TO THE PRICE COMPETITION MODEL 

A.  Market description  
Another model for analyzing imperfect competition is the 

Bertrand price competition model. The market rules used in 
this simulation by the Bertrand model with constraints are 
defined as follows: the participants submit the prices with 
quantity they want to sell, and suppliers are ordered by price to 
meet the demand [21]. Prices are set using a pay-as-bid model. 
For example, if there were two bidders P1 and P2 and they bid 
$3/MWh for 5MW and $5/MWh for 10MW, respectively, and 
10MW of demand is cleared. In the pay-as-bid model, prices 
of P1 and P2 are $3 and $5 respectively. (In comparison, a 
clearing price of $5 would be awarded to both in a uniform-
price model.) 

The cost data, demand function, and the power system in 
this simulation are the same as those in section IV. Only the 
market rules are replaced by the price competition model. 
Under perfect competition, the nodal price is 24.4 at all the 
nodes. The price under Cournot competition without 
constraints is 41.47 as shown in Fig.2. Since the price of 
Bertrand equilibrium generally lies between that of the perfect 
competition and that of the Cournot equilibrium, the range of 
the bid prices is set between 20~40 in this simulation.  

B.  Solution of the Bertrand model  
The discretization for bidding prices is assumed to be 1, so 

the initial cubes have a dimension of 21×21×21. Since the 
transaction is determined by the difference among the bid 
prices, the profit of each player is discontinuous in the 
continuous price space given a pure strategy for the other 
players. Thus in this simulation, the consecutive non-zero 
heuristic of section III.D is applied directly without the 
variable grid heuristic of section III.C.  

The first step is an elimination of the dominated strategies, 
which reduces the cubes to 8×7×7 sub-cubes. The solution is 
obtained directly by search and computation using the 
consecutive non-zero heuristic of section III.C. Figure 4 
illustrates the distributions of the mixed equilibrium and the 
expected profits. 

This result shows that the solution has a kernel of 6×2×6. 
While the proposed solution method took 19 seconds to 
compute this solution, the computation time of GAMBIT 
could not be checked, since it stalled. The authors of GAMBIT 
apparently primarily intended GAMBIT for problems where 
each player had only a small number of strategies, so that 
problems that arise from continuous strategy spaces, such as in 
electricity markets, are not well-suited to GAMBIT. 

In this simulation, another pattern of the mixed equilibrium 
in power market problem is investigated, in that the mixed 
equilibrium of the discontinuous payoffs has consecutive non-
zero elements. We confirm that the heuristics can speed up the 
solution procedure and can be applied to problems such as the 
Bertrand model. 

VI.  CONCLUSION 
In the approaches for finding the NE, there have been two 

major bottlenecks: computation of the mixed strategy 
equilibrium and treatment of the multi-player game. This paper 
proposes a payoff matrix approach that resolves these 
bottlenecks.  

In order to deal with the payoffs of a three-player game, a 
“cube” of payoff is proposed and the NE condition is 
expressed by the payoffs. By solving the nonlinear equations 
of the necessary NE condition and checking inequalities, the 
equilibrium solution is obtained. However, a difficult problem 
arises in finding the kernel of the solution because it involves 
searching the large number of candidate kernel sub-cubes.  

 Several techniques are used for decreasing the search 
space. First, dominated strategies that do not affect the 
solutions are eliminated before the search process. The 
variable grid method is applied to extract the key features of 
the distribution of mixed strategies by partial information of 
the payoffs. The LCP method is executed when one of the 
players is estimated to maintain a pure strategy. The shape of 
payoffs is considered heuristically to confine the region of the 
non-zero elements of strategies. 

Two example payoff models in power market problem are 
used to test the proposed method. It is verified that the 
proposed method is effective in decreasing the search space 
and the overall computation time is relatively modest. 

The proposed method for three-player game may not be 
practical to apply directly to a realistic many players game. 
However, the heuristics are a starting point in solving multi-
player games.  
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