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Abstract—An important aspect of the study of power system 

markets involves the assessment of strategic behavior of 
participants for maximizing their profits. In models of imperfect 
competition of a deregulated system, the key task is to find the 
Nash equilibrium. In this paper, the bimatrix approach for 
finding Nash equilibria is investigated. This approach determines 
pure and mixed equilibria using the complementary pivot 
algorithm. The mixed equilibrium in the matrix approach has the 
equal number of non-zeros property. This property makes it 
difficult to reproduce a smooth continuous distribution for the 
mixed equilibrium. This paper proposes an algorithm for 
adjusting the quantization value of discretization to reconstruct a 
continuous distribution from a discrete one. 
 

Index Terms—Bidding, Bimatrix Game, Complementary Pivot 
Algorithm, Complementarity Problem, Discretization, Market 
Analysis, Mixed Equilibrium, Payoff Matrix Approach. 

I.  INTRODUCTION 
lectric power industries throughout the world are being 
restructured. The major goal of this restructuring is 

lowering prices through harnessing competition. However, the 
electric power industry has the characteristics of an oligopoly 
with imperfect competition, so there is the possibility that 
generating companies exercise market power. In the England 
and Wales market in 1990, the two larger companies were able 
to wield market power by selling power at considerably higher 
prices than their marginal cost [1]. 

The study of market power issues involves the assessment of 
strategic behavior of participants for maximizing their profits. 
In order to analyze the transactions and bidding strategies, 
many papers [2]-[8] use game theory as a rigorous tool. The 
strategies of participants for maximizing their profits can be 
formulated as an optimization problem. However, in a 
deregulated system the formulation is different from that in a 
centralized system. The individual objectives of participants 
are dependent on others’ strategies, so that the participant 
profit maximization problem is constrained by the equilibrium 
conditions [16].  

There are several alternative models of imperfect 
competition, such as the Cournot, Stackelberg, Bertrand, and 

supply function models. However, in each model the key task 
is to find the Nash equilibrium [9]. Solution methods for 
finding Nash equilibria can be categorized into four methods: 
the mathematical programming approach, co-evolutionary 
programming, exhaustive search, and the payoff matrix 
approach.  

In [3]-[5], a mathematical programming approach is used to 
seek a Nash equilibrium. However, in those formulations, the 
overall profit functions are not proved to be concave, so the 
results of applying a local search algorithm might not be a 
Nash equilibrium. Moreover, these approaches do not seem to 
be able to identify if a pure strategy equilibrium fails to exist, 
and do not appear to be able to directly solve for mixed 
strategy equilibria.  

In [3], a probabilistic distribution for a mixed strategy is 
constructed by combining points from a limit cycle of 
calculations in a mathematical programming approach. But 
when the mixed strategy has a distribution that involves non-
zero probabilities for many pure strategies, it is not clear how 
this method could detect and represent the limit cycle.  

In [10], a co-evolutionary technique is used for finding the 
global solution. However, non-differentiability of the profit 
function when there are potentially binding constraints in an 
electricity market poses difficulties for this approach. 

An exhaustive search of the best response functions is 
applied to a three-player game in [11]. However, exhaustive 
search requires considerable effort to search the best response 
function space, and is not well-suited to finding a mixed 
equilibrium.  

A fundamentally different approach is to represent the profit 
function using payoff matrices in a bimatrix game [6][7]. The 
payoff matrix approach can find a global solution for the given 
matrices and can represent mixed strategy equilibria [12]. This 
approach, which is based on Lemke’s algorithm [13], will be 
explored in this paper. 

For solving multi-player games, the payoff matrix approach 
has a difficulty, since the conventional solution technique of 
Lemke’s algorithm is confined to two player games. Although 
the mathematical programming approach can solve the multi-
player game problems in theory, there are few studies showing 
the solution of the multi-player game. This is apparently due to 
computational difficulties in solving for more than two players. 
Consequently, this theoretical superiority of the mathematical 
programming approach in treating multiple players may not be 
of significant practical value, particularly when mixed 
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strategies are sought. 
We propose a method for using the payoff matrix approach 

to analyze mixed strategy equilibria in a two player game. In 
order to apply the payoff matrix approach to a gaming problem, 
discretization of the continuous decision variable is required to 
create the payoff matrix for each player [7]. When the problem 
has a mixed equilibrium, the number of nonzero elements in 
the mixed equilibrium is equal for both players [14][15]. This 
“equal number of non-zeros” property may lead to a solution 
that does not closely represent the distribution of the mixed 
equilibrium in the absence of discretization. In this paper the 
equal number of non-zero elements property will be derived in 
a way that is simple and different from the original derivation 
[15]. Also, this paper proposes a tuning algorithm for 
obtaining a smooth distribution in mixed equilibrium using 
that property. 

The outline of the paper is as follows. Section II describes 
the formulation of the bimatrix game and its solution using 
Lemke’s algorithm. Section III describes the equal number of 
non-zeros property and examples of mixed equilibria. Section 
IV presents a proposed algorithm for reconstructing a 
continuous distribution and examples of tuning the 
discretization, and section V presents the conclusion. 

II.  BIMATRIX GAME 

A.  Equilibrium Strategy 
A bimatrix game is a two-player, nonzero-sum matrix game. 

The two players are designated N1 and N2. Player N1 has m 
pure strategies, and N2 has n. In a Cournot model, for example, 
the strategies correspond to discretization of the continuous 
quantity variables. In a play, if N1 picks the pure strategy i and 
N2 picks j, then the payoff to N1 is aij and the payoff to N2 is 
bij. Define the m×n payoff matrices A and B by:  

  A = [aij],  B = [bij]. 

Suppose N1 picks strategy i with a probability of xi. That is, 
the players are choosing mixed strategies. The column vector 
x=(xi)∈Rm completely defines N1’s mixed strategy. Similarly 
let the probability vector y=(yj)∈Rn represent N2’s mixed 
strategy. If N1 adopts strategy x and N2 adopts strategy y, the 
expected payoffs to N1 and N2 are xtAy and xtBy respectively.  

 The strategy pair (x*, y*) is said to be an equilibrium pair 
if no player benefits by unilaterally changing his own strategy 
while the other player’s strategy is fixed. That is, if: 

x*tAy*≥ xtAy*, for all x∈Rm , such that xtem=1, x≥0,    (1) 

and   x*tBy*≥ x*tBy, for all y∈Rn , such that yten=1, y≥0 ,   (2) 

where em and en denote the column vectors in Rm and Rn, 
respectively, in which all the elements are equal to 1. 

B.  Conversion to a Complementarity Problem 
The conditions for an equilibrium strategy, (1) and (2), can 

be converted into the form of a linear complementarity 
problem (LCP).  

 Let E=emen
t ∈Rm×n be the matrix of all ones. Let k∈R be 

fixed and large enough to satisfy kE-B>0 and kE-A>0. Then 
the conditions (1) and (2) are equivalent to ([13]):   

 ,x*,ex*B n 00
t

≥≥−  and 0
tt =− )ex*B(y* n ,  (3) 

 ,y*,ey*A m 00 ≥≥−  and 0t =− )ey*A(x* m ,  (4) 

where AkEA −= , and BkEB −= . 

Introducing slack variables corresponding to the inequalities 
in (3) and (4), the conditions for an equilibrium strategy are 
equivalent to: 
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where w and u are slack variables. 
Hence the conditions (1) and (2) of the equilibrium strategy 

are expressed as an LCP that has no objective function to be 
optimized. The LCP can be solved by a complementary pivot 
algorithm due to Lemke [13]. 

III.  MIXED EQUILIBRIUM  

A.  Property of mixed strategy  
Even though the matrix approach is adopted for 

approximating the mixed equilibrium by discretizing the 
continuous bidding parameter, the distribution of the mixed 
equilibrium is typically continuous since the actual bidding 
parameter is continuous. In principle, if the discretization has 
captured the important features of the bidding parameter, then 
interpolation of the discrete distribution of the mixed solution 
can reconstruct a continuous distribution. However, a property 
of mixed equilibria sometimes makes the resulting interpolated 
continuous distribution unrealistic. In this paper, such cases 
are demonstrated and a tuning algorithm is proposed for 
approximating a continuous distribution. 

Reference [15] shows that in a bimatrix game each solution 
has associated with it a square sub-matrix of the payoff matrix 
corresponding to the non-zero entries in x* and y*. Therefore 
x* and y* have the same number of nonzero elements. We call 
this the “equal number of non-zeros property.” In the 
following, the property is derived in a different way from [15].  

Lemke’s algorithm can be described by a tableau method 
which is similar to the simplex tableau method for linear 
programming. In comparison with the simplex method, the 
LCP tableau method has a complementarity condition between 
two groups of variables (x, y and w, u), but has no objective 
function.  The tableau of (5) for the augmented variable, z=[w, 
u, y, x], can be expressed in the following (m+n)×2(m+n) 
matrix form: 
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 Fig. 1 Mixed equilibrium of the system in [3] 
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Fig. 2 Mixed equilibrium of the system in [7] 

10 20 30 40 50 60
0

0.05

0.1

0.15

Bid of player 1

M
ix

ed
 s

tra
te

gy

10 20 30 40 50 60
0

0.05

0.1

0.15

Bid of player 2

M
ix

ed
 s

tra
te

gy

 
 Fig. 3 Interpolated distribution from Fig.2 

If an augmented variable is an equilibrium of the game, then 
the variable can be partitioned into basic and nonbasic 
variables, zB and zD , respectively. Let MB be a basis matrix of 
the tableau matrix, which consists of the columns 
corresponding to the basic variables. MB is square and non-
singular. Rearrange MB to form the matrix B'M  as follows: 







=

2

1
B M0

0MM' . 

The columns in M1 correspond to the basic variables among 
the variables w and x, and the columns in M2 correspond to 
those among u and y. In other words, M1 is extracted from the 

submatrix ],[
t

BIn − , and M2 from ],[ AIm − .  
Suppose that N1 has p strategies as non-zero elements in his 

mixed equilibrium, and N2 has q. Then the numbers of basic 
variables that comes from the variables w, u, y, and x, are n-q, 
m-p, q, and p respectively, since w and y are complementary to 
each other, and so are u and x. Hence M1 has a dimension of 
n×(n-q+p), and M2 has that of m×(m-p+q). 

Since the basis MB is non-singular, the sub-matrices, M1 and 
M2, are also non-singular. Since B'M  is block diagonal, M1 
and M2 are n×n, and m×m square matrices respectively. This 
leads to the property that p equals q. That is, each player has 
equal number of strategies in the mixed equilibrium. 

B.  Two bus example 
In the typical mathematical programming approach to solve 

the Nash equilibrium, the problem is formulated 
deterministically. If there is no pure strategy Nash equilibrium, 
then such an algorithm may oscillate in a limit cycle, or,  
converge to a “false equilibrium.” In [3], a model of an 
electricity market with two firms and a transmission line is 
presented. The specification of the system is reproduced in 
Appendix A.1. One of the firms has a jump in its best response 
curve when a transmission line constraint is considered. 
Applying a mathematical programming approach results in a 
limit cycle.  

The characteristics of the limit cycle are used to deduce the 
mixed strategy equilibrium in [3]. Player 1 has one pure 
strategy of bidding parameter k1, and player 2 has two 
candidates for parameter k2. The mixed equilibrium is 
k1=1.372 with probability 1.0, and k2=1.246 with probability 
0.56 and k2=1.525 with probability 0.44. This distribution was 
found by searching the combination of two candidates for the 
best payoff.   

However, if several pure strategies are represented in the 
mixed equilibrium, then detecting limit cycles and determining 

the mixed strategy appears to be computationally prohibitive. 
We find a mixed equilibrium for the same problem by using 
the payoff matrix approach. The approach is also able to find 
mixed equilibria when there are many pure strategies 
represented in the mixed equilibrium. 

Payoff matrices are constructed by discretization with 
∆k=0.01, between k=1.11 and k=1.60. The mixed equilibrium 
is obtained using Lemke’s algorithm, as follows: 

   k1=1.37 with probability 0.4346 
 k1=1.38 with probability 0.5654 

   k2=1.21 with probability 0.5507 
k2=1.52 with probability 0.4493 

By observing the profit for each player with the bids of the 
other player fixed, those strategies can be confirmed to be an 
equilibrium in the given payoff matrices. Figure 1 shows the 
profit curves for each player (shown as □), given the values 
specified above for the other player’s bids, together with the 
probabilities of the bids (shown as bars). 

The mixed strategy has the equal number of non-zeros 
property. The matrix approach gives directly the probabilistic 
distribution in the mixed equilibrium of player 2. However, the 
solution of the two strategies, k1=1.37 and 1.38, in player 1 is 
different from that of mathematical programming approach [3] 
where player 1 plays a pure strategy. In section IV, it is shown 
that this result of k1 for figure 1 can converge to a pure 
strategy between 1.37 and 1.38 by a tuning algorithm that 
refines the discretization. 

C.  Three bus example 
In [7], a continuous distribution of a mixed equilibrium was 

reconstructed by interpolating the discrete distribution. The 
specification of the system is provided in Appendix A.2. A 
mixed equilibrium is obtained using discretization of the 
generation quantity in 1.0MW steps. In the equilibrium shown 
in Fig.2, each supplier has a distribution with a support of 31 
consecutive pure strategies. So the distribution looks smooth, 
and it can be regarded as the discretization of a continuous 
distribution. The continuous distribution can be reconstructed 
by interpolation. Figure 3 shows the result of interpolating the 
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results of Fig.2. This approximates the mixed strategy of the 
underlying continuous bid parameter. 

However, the smoothness of a discrete distribution in the 
mixed equilibrium is not always guaranteed by the equal 
number of non-zeros property. The property may make it 
difficult to reconstruct a realistic continuous distribution. The 
successful reconstruction of a continuous distribution in this 
example is highly related to the discretization and the “support 
width” of both players. The support of a mixed strategy is the 
set of pure strategies which have positive values. The support 
width is computed by subtracting the ordinal number 
corresponding to minimum parameter from the ordinal number 
corresponding to maximum in the support. For example, in 
figure 2, the support width is 45-14=31 for player 1, and 39-
8=31 for player 2. 

IV.  TUNING OF DISCRETIZATION  

A.  Difficulties in reconstructing a continuous distribution  
In the sample system [7], identical reactance is assumed in 

the three transmission lines. Suppose that we change the line 
parameters so that the reactance between bus 2 and bus 3 is 
twice the other two as given in Appendix. Then the congestion 
occurs at q1-2⋅q2>20 when Gen-1 is cheaper, and 2⋅q2-q1>20 
when Gen-2 is cheaper. Other assumptions are the same as 
those in [7]. Simulation is performed by again discretizing the 
generation quantity by 1.0MW, from 1MW to 70MW in Gen-1 
and 1MW to 50MW in Gen-2. So the payoff matrices have a 
dimension of 70×50. The results are shown in Fig.4 with 
distributions of a mixed equilibrium and the expected profit for 
each supplier. 

The number of strategies in this mixed equilibrium is 21 
which is identical for each supplier. However, the distribution 
of player1’s strategy is not smooth, but castellated, and the 
distribution of the expected profit has a ripple in the vicinity of 
its maximum. The support width of player 1 is 63-23=40 while 
the support width of player 2 is 27-7=20. If an interpolation is 
performed on Gen-1’s distribution, it produces a sawtooth as 
shown in Fig.5. The sawtooth does not represent the mixed 

strategy of the underlying continuous bid parameter. It is an 
artifact of the discretization. 

B.  Tuning algorithm for smooth and continuous distribution  
In order to get a smooth and continuous distribution of a 

mixed equilibrium, we adjust the discretization based on the 
support width of each player. If the support width in each 
player is not identical in a mixed equilibrium, then the 
discretization in each player’s decision parameter needs to be 
adjusted to get a smooth and continuous distribution. In 
particular, the ratio of the discretizations should be changed by 
the ratio of the support widths for the two players. If the 
support width is known in advance, the mixed equilibrium of 
the smooth distribution is obtained directly with the adjusted 
discretization. However, when it is not known in advance, an 
adjustment of the discretization value is performed iteratively. 

C.  Three bus example  
In the example system of section III.C, if a finer 

discretization of 0.5MW is used for both players, then the 
distribution of player 1 remains castellated as shown in Fig.6. 
In Fig.6, many blanks remain between the elements in player 
1’s support. Hence, a finer discretization does not necessarily 
produce a smoother distribution.   

The support width of player 1’s mixed equilibrium in Fig.4 
is 40 (from 22 to 62), while that of player 2’s is 20 (from 6 to 
26). Since player 1’s support width is twice that of player 2, 
the discretization for player 2 needs to be twice as fine, or that 
for player 1 needs to be half (with the discretization of the 
other player fixed). Either case gives a smooth distribution. 
Fig.7 shows the result of the latter case with 1.0MW 
discretization for Gen-1, and 0.5MW for Gen-2.  
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 Fig. 4 Mixed Equilibrium of the modified system from [7] 
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 Fig. 5 Interpolated distribution from Fig.4 
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 Fig. 6 Mixed equilibrium with finer discretization in both players 
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 Fig. 8 Interpolated distribution from Fig.7 
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 Fig. 7 Mixed equilibrium with adjusted discretization in player 2 
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As shown in Fig.7, each distribution is smooth without 
blanks between the elements in each support. After the smooth 
distributions in both players are obtained, the finer 
quantization that keeps the ratio equal to the ratio of support 
widths gives a smoother distribution that is closer to the 
continuous distribution. Fig.8 shows the result of interpolating 
the results of Fig. 7. The sawtooth of Fig.5 has been eliminated 
and the interpolation approximates the mixed strategy for the 
underlying continuous bid parameter. 

D.  Two bus example  
In the two bus example in section III.B, Fig.1 shows  

different results from that represented in [3]. The matrix 
approach produces two strategies as player 1’s mixed 
equilibrium, while the mathematical programming and limit 
cycle approach in [3] gives one pure strategy as player 1’s 
mixed equilibrium. This difference can be resolved by 
applying the proposed algorithm to this problem. In figure 1, 
the support width for player 1 is 1, while the support width for 
player 2 is 30. The discretization of player 1 is adjusted to be 
30 times finer, and the result is as shown in Fig.9. The 
opposite case of making the quantization coarser by 30 times 
for player 2 is discarded, since it is trivially unrealistic. The 
mixed equilibrium in Fig.9 is as follows: 

   k1=1.3756 with probability 0.9151 
 k1=1.3759 with probability 0.0849 

   k2=1.21     with probability 0.5507 
k2=1.52     with probability 0.4493 

After the algorithm is applied, the support widths using the 
finer discretization have the same ratio. So the adjustment of 
the discretization will be performed over again. As the process 
is repeated, the solution of player 1 converges to playing the 
pure strategy close to 1.3756 1 with probability 1. Hence, the 
matrix approach is shown to be able to converge to the mixed 
equilibrium where one player has a pure strategy and the other 
plays a mixture of two pure strategies.  

 
 
 
 
 
 

                                                           
1  This result differs very slightly from [3]. We believe that the difference is 

due to round-off errors. 

V.  CONCLUSION   
The matrix approach, co-evolutionary programming, 

exhaustive search, and the mathematical programming 
approach have been used for solving Nash equilibria in power 
markets. The matrix approach provides pure and mixed 
equilibria by the complementary pivot algorithm, while the 
other approaches have difficulties in computing the mixed 
equilibrium.  

The matrix approach requires discretization of the 
continuous decision parameter for constructing the payoff 
matrices. After a mixed equilibrium is obtained, its continuous 
distribution can be reconstructed by interpolating the discrete 
distribution. However, the mixed equilibrium has the equal 
number of non-zeros property that the number of elements in 
each support is equal. This property can produce blanks in the 
distribution of a mixed equilibrium that are not indicative of 
the underlying continuous distribution. In this case, 
interpolation of this castellated distribution does not 
reconstruct a smooth continuous distribution.  

This paper proposes an algorithm for reconstructing a 
continuous distribution from the discrete one. By adjusting the 
quantization value of discretization to the support width in the 
mixed equilibrium, a smooth and continuous distribution can 
be reconstructed.  

Even though the matrix approach is quite fast for finding 
Nash equilibria and is able to find mixed equilibria, it is 
restricted to two player games. The concept of a multi-player 
games is the same as that of bimatrix games, but an efficient 
solution algorithm for multi-player games has not been 
developed yet. 

VI.  REFERENCES 
[1] R.J. Green and D.M. Newbery, “Competition in the British Electricity 

Spot Market,” The Journal of Political Economy, Volume 100, Issue 5, 
pp. 929-953, October 1992. 

[2] X. Bai, S.M. Shahidehpour, V.C. Ramesh, and E. Yu, “Transmission 
Analysis by Nash Game Method,” IEEE Trans. on Power Systems, 
Vol.12, No.3, pp. 1046-1052, August 1997. 

[3] J.D. Weber and T.J. Overbye, “A Two-Level Optimization Problem for 
Analysis of Market Bidding Strategies,” IEEE PES Summer Meeting, 
Vol.2, pp.682-687, 1999. 

[4] B.F. Hobbs, C.B. Metzler, and J.S. Pang, “Strategic Gaming Analysis 
for Electric Power Systems: An MPEC approach,” IEEE Trans. on 
Power Systems, Vol.15, No.2, pp. 638-645, May 2000. 

[5] B.F. Hobbs, “Linear Complementarity Models of Nash-Cournot 
Competition in Bilateral and POOLCO Power Market,” IEEE Trans. on 
Power Systems, Vol.16, No.2, pp.194-202, May 2001. 

[6] R.W. Ferrero, S.M. Shahidehpour, and V.C. Ramesh, “Transaction 
Analysis in Deregulated Power Systems Using Game Theory,” IEEE 
Trans. on Power Systems, Vol.12, No.3, pp.1340-1347, August 1997. 

[7] S. Stoft, “Using Game Theory to Study Market Power in Simple 
Networks,” IEEE Tutorial on Game Theory in Electric Power Markets, 
IEEE Press TP-136-0, pp.33-40, 1999. 

[8] X. Guan, Y.C. Ho, D.L. Pepyne, “Gaming and Price Spikes in Electric 
Power Markets,” IEEE Trans. on Power Systems, Vol.16, No.3, pp.402-
408, August 2001. 

[9] D.W. Carlton, J.M. Perloff, Modern Industrial Organization, Addison-
Wesley, 2000. 

[10] T. Curzon Price, “Using Co-evolutionary Programming to Simulate 
Strategic Behavior in Markets,” Journal of Evolutionary Economics, 
Vol.7, pp.219-254, 1997. 

1.3663 1.3713 1.3763 1.3813
325.9

326

326.1

326.2

Bid of player 1

P
ro

fit
 o

f p
la

ye
r 1

P robability 

1.1 1.2 1.3 1.4 1.5 1.6

400

450

500

Bid of player 2

P
ro

fit
 o

f p
la

ye
r 2

P robability

 
 Fig. 9 Mixed equilibrium of finer version of Fig.1 



 6 

[11] L.B. Cunningham, R. Baldick, and M.L. Baughman, “An Empirical 
Study of Applied Game Theory: Transmission Constrained Cournot 
Behavior,” to appear in IEEE Trans. Power Systems, 2001. 

[12] D. Fudenberg and J. Tirole, Game Theory, The MIT Press, 1991. 
[13] C.E. Lemke and J.T. Howson, “Equilibrium Points of Bimatrix Games,” 

SIAM Journal of Applied Mathematics 12, pp.413-423, 1964. 
[14] L.S. Shapley, R.N. Snow, “Basic Solutions of Discrete Games,” 

Contributions to the Theory of Games, Vol.I, Princeton, pp. 27-35, 
1950. 

[15] N.N. Vorob’ev, “Equilibrium Points in Bimatrix Games,” Theory of 
Probability and its Applications, Vol.III, pp.297-309, 1958. 

[16] Z.Q. Luo, J.S. Pang, and D. Ralph, Mathematical Programs with 
Equilibrium Constraints, N.Y.: Cambridge Univ. Press, 1996. 

VII.  BIOGRAPHIES 

Kwang-Ho Lee was born in Seoul, Korea 1965. He received his B.S., M. S., 
and Ph.D. degrees from Seoul National University in 1988, 1990, and 1995, 
respectively, in electrical engineering. He conducted research on Reliability 
Enhancement of power systems in the Korea Electrical Power Research 
Institute. He is presently an Assistant Professor in the Department of 
Electrical Engineering at Dankook University, Seoul, Korea. 

Ross Baldick received his B.Sc. and B.E. from the University of Sydney, 
Australia and his M.S. and Ph.D. from the University of California, Berkeley. 
From 1991-1992 he was a post-doctoral fellow at the Lawrence Berkeley 
Laboratory. In 1992 and 1993 he was an Assistant Professor at Worcestor 
Polytechnic Institute. He is currently an Associate Professor in the 
Department of Electrical and Computer Engineering at the University of 
Texas at Austin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIII.  APPENDIX (SAMPLE SYSTEM MODEL) 
A.1 Two-Bus Model (Supply function equilibrium) [3] 

Supply function of G1: C(s1)=k1(0.01s1
2+10s1) 

Supply function of G2: C(s2)=k2(0.01s2
2+10s2) 

Bidding parameters: k1, k2 
Demand function of D2: B(d2)= – 0.04d2

2+30d2 
Constraint on the transmission line: 80MW 

 

 
 

A.2 Three-Bus Model (Cournot Nash equilibrium) [7] 

Constant marginal cost of G1: $20/MWh 
Constant marginal cost of G2: $40/MWh 
Demand function of D3: B(d3)= – 0.25d3

2+100d3 
Constraint on the line x23: 5MW 
Reactance on the lines: 
① x12=x13=x23  (in the original reference and used in section 

III.B of this paper) 
② x12=x13=½·x23  (modified for discussion in section IV.A of 

this paper) 
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