
   IEEE PES PROCEEDINGS PAPER SUBMISSION COVER SHEET         
 
Notes: 1. The paper must be submitted in compliance with a conference's call for papers.  
Acceptance is based on the review of the paper. 

2. In order for a paper to be considered, you MUST submit : 
• Hard copy:  six (6) copies of the complete, formatted paper 
• Hard copy:  three (3) copies of this form (both pages) 
• Hard copy:  one (1) completed copy of the IEEE Copyright Form 
• Electronic:  MS Word file of the paper on 3.5” floppy or Zip disk formatted for 
   use on a PC 
• Electronic:  PDF file of the paper with this completed form as the first part of 
   the file 

3. You will be required to pay the appropriate meeting registration fee (fees  
waived for IEEE Life Members and Student Members only).  Your paper will not  
be scheduled or printed in the Proceedings unless fee, if required, is paid. 

 
1.  NAME AND YEAR OF CONFERENCE:  IEEE PES Winter Meeting 2002 
2.  PAPER’S AUTHORS AND AFFILIATIONS AS PRINTED ON MANUSCRIPT 

(Include supplementary Author Form if more than three authors)               
 •  Primary Author:  Debabrata Chattopadhyay IEEE Mem #, Grade  Non-member 
   Affiliation: Charles River Associates 
•  Author 2:    Ross Baldick  IEEE Mem #, Grade  Member 00963702 
   Affiliation:   University of Texas at Austin 
•  Author 3:          IEEE Mem #, Grade        
   Affiliation:        
 
3.   TITLE OF THE PAPER:  Unit Commitment with Probabilistic Reserve 
 
4.   CLICK THE TECHNICAL COMMITTEE MOST APPROPRIATE TO REVIEW YOUR PAPER: 
 

 Electric Machinery   Power System Communications     Substations 

 Energy Development &   Power System Dynamic Performance    Surge Protective Devices 

     Power Generation   Power System Instrumentation    Switchgear 

 Insulated Conductors      & Measurements     Transformers 

 Nuclear Power Engineering   Power System Operations     Transmission & Distribution 

 Power Engineering Education   Power System Planning & Implementation 

 Power System Analysis,   Power System Relaying 

     Computing, & Economics   Stationary Battery 

 
5.   (ONE ONLY!) NAME, ADDRESS, ETC.  TO WHICH ALL CORRESPONDENCE WILL BE SENT 
Last Name:  Baldick  First Name:  Ross    User ID (if previously provided to you; otherwise, leave blank)         

Street Address:Dept of ECE, Cnr 26th and Speedway, The University of Texas 

City: Austin  State/Prov:  TX  Postal Code: 78712 Country: USA 
Phone No: 512 471-5879Fax No:512 471-5532E-mail:baldick@ece.utexas.edu 
6.  HAS THIS PAPER, OR ESSENTIALLY THE SAME PAPER, BEEN: 

•  Previously published?   Yes        No       •  Previously rejected?   Yes      No 

 



•  Previously reviewed?   Yes      No        •  Currently in review?      Yes     No 

      6a.  If any answer is Yes, please explain, cite references and provide copy of original paper.   Paper 

was previously submitted to Transactions.  Reviewer suggested resubmitting as Proceedings paper.  

(See attached copy of reviews.) 

 
7. DOES THIS PAPER ADDRESS ONE OF THE "PREFERRED TOPICS" OF THE CONFERENCE OR A 

TECHNICAL COMMITTEE?        Yes           No 
7a.  If Yes, which topic?   Advances in Power System Modeling and Simulation      

 
8.   IS THIS PAPER SUBMITTED IN RESPONSE TO A SPECIFIC INVITATION BY A TECHNICAL 

COMMITTEE?     Yes        No 

  8a.  If Yes, name of the technical committee:        

 

9.  SUBMITTED BY:  Ross Baldick  DATE: August 10, 2001 
 
 

 
SUBMISSION DEADLINES 

PES Winter Meetings:  papers must reach the PES Executive Office by August 17 
PES Summer Meetings:  papers must reach the PES Executive Office by February 5 

For other PES meetings: follow instructions and deadlines in meeting's Call for Papers. 
 

 
For PES General Meetings, submit all required material to: 
 

Proceedings Paper Submission (Meeting Name here) 
IEEE PES Executive Office 
445 Hoes Lane 
P.O. Box 1331 
Piscataway, NJ 08855-1331 USA  
 

For other conferences, please follow the specific instructions in the meeting's call for papers. 
 
 
 
 

 

           
 



 1

Unit Commitment With Probabilistic Reserve 
Debabrata Chattopadhyay, and Ross Baldick,  Member, IEEE*  

 
Abstract-- This paper demonstrates how a probabilistic 

criterion based on the full capacity outage probability 
distribution (e.g., LOLP) could be integrated into the unit 
commitment (UC) optimization using simple statistical 
approximation. While this provides a direct and computationally 
cheaper means as compared to a recently published approach to 
locating the globally optimal SR allocation (and associated UC 
pattern), the usefulness of the results are contingent upon the 
accuracy of such approximation. A case study using the IEEE 
RTS 96 single area system discusses the implementation issues. It 
is shown that the approximation procedure provides a 
reasonably accurate and efficient means to integrate probabilistic 
reserve in UC, and such a criterion leads to a substantially 
improved risk profile as compared to the traditional 
deterministic criterion. 

Keywords: Unit commitment, Spinning Reserve, Risk, Mixed 
integer programming, Spot Pricing. 

II..    INTRODUCTION  

                                                          

A.  Deterministic vs. Probabilistic Spinning Reserve 
Spinning reserve (SR) is needed in the system to cover for 

unforeseen events such as sudden increase in demand, and/or 
loss of generators/lines. SR allocation (over time, and across 
the generating units) often has important bearing on the 
dispatch and unit commitment decision, because it comes at 
some cost, which ideally should be kept minimal. This can be 
achieved by adjusting the SR on various generating units to 
keep the total start-up/back-down and operating cost impacts 
at the minimum. This has long been recognized, and SR 
allocation forms part of the standard economic dispatch and 
unit commitment optimization procedures.  

However, one important feature that has not received much 
attention is to recognize the probabilistic nature of reserves in 
the dispatch/commitment optimization. Although the 
probabilistic nature of reserve has been well understood for 
several decades, its integration into the dispatch/UC 
optimization has been addressed only recently [1].  Spinning 
reserve requirement is set in most traditional UC models using 
various deterministic criteria e.g., a fraction of demand, 
largest generator/line contingency, or maximum on-line 
generation during the dispatch period. Such criteria have 
widely been used, including applications in the market 
environment, mainly because they are easily understood and 
implemented. A probabilistic reserve criterion, on the other 
hand, is more complex, but represents the complete system 
outage probability distribution and enables dispatch of reserve 
to meet an acceptable risk level (e.g., maximum Loss of Load 

Probability - LOLP). Stochastic programming approaches 
have also been attempted in the past (e.g., [2]) but 
computational tractability of stochastic programming models 
have been a major impediment to their success. 

 
* Deb Chattopadhyay is a Principal with Charles River Associates, Asia 

Pacific office (dchattopadhyay@crai.co.nz). 
Ross Baldick is with the Department of Electrical and Computer 

Engineering, The University of Texas, Austin (baldick@ece.utexas.edu). 
 

B.  State-of-the-art in Probabilistic Reserve Modeling  
Gooi et al [1] is a recent approach to model probabilistic 

reserve in a comprehensive way. Their approach involves 
post-processing the UC schedule to check if the target risk 
level is satisfied for each hour, and adjust commitment to 
either cover deficit SR, or eliminate any excess SR. A 
summary of this procedure is presented because it helps to 
understand the concept of probabilistic reserve, and also is the 
motivation behind the present analysis: 

1. Start with some estimate of spinning reserve 
requirement, or SRR; 

2. Perform UC (using Lagrangian Relaxation (LR)); 
3. Develop capacity outage probability 

distribution/table (COPT) for each hour for the set of 
online units; 

4. Check (using COPT) for each hour if the specified 
risk level is attained; 

5. If not, re-specify SRR = (SRR obtained+1), which 
means an additional unit has to be committed; 

6. Repeat steps 2-5 until risk level is attained for all 
hours. 

Since the above procedure leaves the possibility of 
allocating excessive reserve, a problem that is compounded by 
the duality gap of the LR approach, [1] also performs a “de-
commitment” procedure: 

1. If reserve is higher than is needed, it checks for 
every hour if excess reserve is higher than the 
capacity of the marginal unit; 

2. If “TRUE” for any hour, UC is re-performed 
dropping the marginal unit. If it leads to cost 
reduction, then unit is de-committed. 

The approach in [1] has several strong merits, including it:   
• Enables accurate calculation of risk (indices) based 

on the exact probability distribution; 
• Retains the UC optimization procedure intact and 

hence does not add to the complexity of the basic 
model; yet 

• Achieves the basic objective of introducing risk, 
and apparently helps to narrow the duality gap as 
well. 

However, the approach has some drawbacks in that it: 
• Could be computationally intensive given that 

several UC runs may be required as well as 
overheads needed to calculate the probability 
distribution for each hour of all UC runs; and 

• Could yield sub-optimal SR allocation and UC 
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schedule. 
The present work is motivated by the latter observations, 

namely such post-processing, besides being computationally 
intensive, leaves the possibility of sub-optimal solutions. In 
theory, it should be possible to replace the post-processing by 
integrating the risk criterion as a constraint within the UC 
optimization. This is what we explore in this paper. We will 
focus specifically on the random generator outages, although 
the approach could easily be extended to take into account 
demand uncertainty. 

II.  RISK CONSTRAINED UNIT COMMITMENT 

A.  Risk Approximation: Deterministic and Probabilistic 
The deterministic criteria can be adopted in a fairly 

straightforward way. For example, the Australian, Ontario and 
New Zealand linear programming based dispatch models use 
the following as one of the criteria to determine SR: 

 
∀ i, t, SRt ≥ Pi,t        (1) 

 
where, 
i indexes  on-line units 1,….,n 
t indexes  the dispatch period 
Pi,t is the MW dispatch of unit i at time t. 
 
It should be noted that the above criterion forces the SR to 

be at least as large as the maximum on-line generation, which 
itself is a decision variable in the dispatch optimization. The 
“maximum on-line generation” usually, but not necessarily, 
implies the generation of the largest size (and, often relatively 
cheap) generator. It also implies that in a “reserve scarce” 
situation, the cheaper, but larger, generators will be 
discouraged to generate in order to keep the SR requirement 
low. It may lead to strange spot pricing impacts that we will 
discuss later. Although none of the above electricity markets 
employ a formal UC model (i.e., incorporating integer 
decision variables) to determine the day-ahead pre-dispatch 
schedule, the risk criterion nonetheless can be adopted for the 
(integer) UC model. Other deterministic criteria are equally 
naïve e.g.,  

 
SR ≥   some fraction of demand, 

or the maximum import across a line (or, set of lines), 
or some combination of the above two criteria. 

 
The principal difficulty in directly representing probabilistic 

criteria in an optimization problem stems from the fact that 
there is no direct means of incorporating the discrete capacity 
outage probability distribution (or, the so-called COPT - 
capacity outage probability table) in the UC optimization 
procedure. As a result, risk indices such as LOLP are 
commonplace in probabilistic production costing models, but 
the indices have not been incorporated into dispatch/UC 
optimization. 

This difficulty could, however, be overcome using an 

observation made by Garver [4], albeit in a different context 
of calculating the Load Carrying Capability, which is the 
incremental load a generator permits the system to carry. The 
COPT may be approximated using an exponential function: 

 
Cumulative Probability of X MW or more on outage Pr(X)  = a0e (-X/M)     (2) 

 
The parameters a0 and M are specific to the system and can 

be statistically determined. It has been observed for a number 
of applications [4] that the above approximation works 
reasonably well for relatively small levels of (cumulative) 
probability (Pr) e.g., less than 0.05, that are typically of 
interest for real-life systems. Further, taking logarithms on 
both sides a linear function is obtained: 

 
ln [Pr(X)] = ln(a0) – X /M = A0 – X /M       (3) 
 
In the UC problem, we are interested in determining the 

level of SR that attains a permissible risk level, for example, a 
maximum LOLP limit. The probabilistic risk limit can, thus, 
be expressed as a linear constraint as follows: 

 
A0 – SRt /M ≤ ln (LOLP), or SRt  ≥ M [ A0 – ln(LOLP)]  (4) 
 
The LOLP limit could either be based on some pre-

determined criterion, e.g., 1% or, 5%, or implicitly determined 
using cost/benefit analysis [1].  

This (continuous) linear risk approximation resolves one of 
the problems in adopting probabilistic risk criteria, namely, 
representing the discrete COPT in the optimization problem. 
 

B.  Commitment Adjusted Risk Approximation 
Incorporating the linear risk constraint in the UC 

optimization would have been a trivial task but for one 
complication. The COPT and hence its approximation (i.e., A0, 
M) would change as the UC schedule changes. It is practically 
impossible to compute the (A0, M) values for all 2N 
combinations of units even for a moderate system size, let 
alone model all these risk constraints in a practicable way. 
Simplifying assumptions are, therefore, inevitable to the 
extent that the accuracy of the approximation is not seriously 
compromised.  

We propose the following: 
1. Assume that A0 is constant for all commitment 

patterns. This is based on the premise that the linear 
risk characteristics for all commitment patterns 
converge to the common point Pr(0)=1, and hence a 
“constant intercept” assumption is expected to be 
reasonably accurate. It should, however, be noted that 
the approximation for the low probability range (e.g., < 
0.05) may yield an estimate of Pr(0) which is 
significantly different from 1; and 

2. Assume only first order effects for changes in M, and 
that such effects are additive. That is, we will calculate 
the incremental change in M due to a generator i (∆mi) 
based on single generator (i) outage condition alone, 
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and further assume that such incremental changes for 
multiple outage conditions simply add up. 

The second assumption implies that the system M is 
dependent on the commitment decision Ui,t (=1 if ON, 0 if 
OFF). The risk constraint can be restated accordingly as: 

SRt  ≥  [ M - Σi (1-Ui,t) ∆mi ] [ A0 – ln(LOLP)]  (5) 
 

The term in the first parenthesis on the RHS reflects the 
“adjusted M” for different commitment pattern. If certain 
generators are not committed in hour t (i.e., Ui,t = 0 for such 
units) , the risk characteristic is more steep (i.e., lower M). 
The ∆mi values indicate the relative significance of the unit i 
to the overall system. The ∆mi values may easily be computed 
starting from the full-system COPT and applying the recursive 
unit removal formula [5]. The larger the unit and lower the 
forced outage rate, the higher is ∆mi. The summation is 
performed over all off-line units and reflect the assumption 

that the ∆mi are additive. Finally, if all units are on-line, the 
full system outage characteristic is restored. 

C.  Probabilistic Risk Constrained UC Optimization: 
Augmenting the UC optimization procedure with the 

commitment adjusted probabilistic risk constraint is also easy, 
although the presence of commitment variables may entail 
additional computational burden, and/or complicate the 
analysis of dispatch/pricing outcome, as compared to the 
traditional UC model. Either of these issues would be highly 
specific to the system under study, though, and it is hard to 
generalize if computing time and dispatch/pricing outcomes 
would indeed be any worse. It could well be the case, for 
example, that a Branch and Bound procedure to solve the UC 
model is able to locate the integer optimal quicker in the 
presence of the risk constraint, because the underlying linear 
programming sub-problems are “tighter”. On the other hand, 
the dispatch and pricing impacts of deterministic criterion 
could well be “surprising” as we will discuss later. 

The risk constrained UC model incorporating all the usual 
features of its traditional counterpart (e.g., [6]) may be solved 
using any of the standard techniques traditionally employed 
e.g., Lagrangian Relaxation, Dynamic or Mixed Integer 
Programming (MIP). The choice of any specific technique 
over another is largely irrelevant for the present purpose of 
demonstrating the risk approximation, as long as the model is 
solved to optimality without having to resort to any ad-hoc 
procedure that may blur the interpretation of results, in 
particular the dual/price information. In the present analysis, 
we have developed a MIP model using GAMS [7] for the 
IEEE Reliability Test System (RTS 96) [8] and solved it using 
XA [7], a commercial Branch-and-Bound based solver. The 
MIP model is used in the present analysis to avoid the duality 
gap problems associated with the LR based model, although 
the latter has substantial advantages for large system 
applications. The duality gap problem encountered in LR is 
especially relevant because such dual/pricing distortions will 
blur the analysis of spot prices.  

 
The MIP based UC model may be stated as follows: 
 

Minimize total generation and start-up costs, subject to, 
• Meeting demand; 
• Keeping enough spinning reserve to meet maximum 

LOLP level; 
• Restrictions on Ui,t e.g., minimum up/down time; 
• Restrictions on Pi,t e.g., max/min generation, ramp  limits; 
• Incurring costs for starting up from hot/cold state where 

start up decision Si,t (1 ≥ S ≥ 0) defined as  
S’i,t = Ui,t – Ui,t-1, and S i,t ≥ S’i,t   

 
It should be noted that Si,t and S’i,t are both defined as 

continuous variables, but they are naturally integer. 
The overall procedure for probabilistic risk constrained UC 

optimization may be summarized as follows: 
1. Develop capacity outage probability distribution for the 

full system (i.e., all generators in service), and also for all 
single generator outage conditions to calculate (A0, M) for 
the system and ∆mi for each generator; 

2. Approximate the distribution for the relevant range of 
probability (say, less than 0.05) using ordinary least 
square or its variants, as Pr (X ) = a0. e (-X/M) 

3. Incorporate the risk constraint in the UC optimization as, 

SRt  ≥  [ M - Σi (1-Ui,t) ∆mi ] [ A0 – ln(LOLP)] 
 

The advantage of the proposed approach compared to that 
in [1] is that the optimization needs to be performed only 
once, and the MIP model gives the globally optimal solution 
within the limitations of the approximation to the outage 
probabilities. The disadvantage is that the results are 
dependent on the accuracy of the approximation. The 
approximation may be crude for smaller systems having a few 
large units, or systems having large share of units with high 
forced outage rate, etc. The other source of inaccuracy could 
be due to the assumptions made to extend the risk 
approximation for different unit commitment patterns. The 
idea of incremental M while simple and easy to implement, 
may not provide a good approximation of the exact 
distribution. Any improvement in accuracy under such 
circumstances will come at the cost of adding complexity to 
the risk constraint e.g., adding higher order terms, which in 
turn will add to the difficulty in solving the UC optimization 
problem. 

Summing up, if the present approach  gives a reasonable 
approximation to the probability distribution, then it has 
advantage over [1], else [1] is a better option, unless the 
solution is grossly sub-optimal.  

III.  CASE STUDY BASED ON IEEE-RTS 96  
The risk constrained MIP model has been implemented for 

the RTS 96 [9] single area system for the “Winter weekday”. 
The system has two must-run nuclear units and 24 thermal 
units. We have assumed the following prices [6]: oil $6/MBtu, 
coal $4/MBtu and nuclear plant input $2/MBtu. Piecewise 
linear cost characteristics for the generators are constructed 
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based on the incremental heat rate data (Table 9, [8]). The 
hourly load distribution is same as in Table 4 [8], but the total 
system (peak) load is assumed to be lower at 2,400 MW to 
enable imposing realistic hourly LOLP targets (5%). We have 
not considered minimum up/down time and ramp limits 
because these are not particularly relevant for our purpose and 
omitting them helps to make the computation faster as well as 
interpretation of results simpler. These are not requirements 
though – in fact, the MIP model sometimes requires less 
branching if there are more constraints. 

Firstly, the COPT for the 26 generators system has been 
developed and approximated using OLS regression. The R2 or 
“goodness of fit” is fairly high at 0.985 and so are the t-
statistics for the regression parameters (A0, M). Fig.1 shows 
the original distribution and the fitted curve. The 
approximation is generally quite accurate especially for LOLP 

values < 0.02.  
Fig.1: Approximation of capacity outage probability distribution 

 
The slightly high level of inaccuracy at LOLP values > 0.02 

shown in Fig.1 is attributable to the relatively small number of 
generators, and also the high (largest unit/system capacity) 
ratio. This is evident from the improved accuracy of 
approximation (R2 = 0.995) for the 104 generator RTS four 
region system which is obtained by replicating the single area 
system. This is shown in Fig.2. 

Fig. 2: Approximation for 104 generator RTS four region system 
 
The exponential variation of LOLP with SR is noteworthy 

because it explains why a constant spinning reserve margin 
for all time periods may not be a good idea. It further becomes 

clear when we look at the ∆mi values for different size 
generators (Fig.3). 

The smaller generators (≤ 100 MW) barely have any 
perceptible impact on the reliability characteristics, while the 
largest generator (400 MW) has nearly 29 times as much 
impact as a 100 MW generator. This also explains why a 
system having a few large generating units is much more 
vulnerable than one having same capacity distributed over a 
large number of smaller units (but with similar failure rates). 
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While the M values (slope of the risk characteristic line) 

vary considerably across various generator outage 
configurations from 136.7 for full system to 98.8 with the 400 
MW unit out of service, the A0 values are relatively constant. 

The standard deviation of A0 across the 26 single outage 
scenarios is only 0.019 as compared to the mean value of 1.85. 
This corroborates our first assumption that A0 is constant. We 
also verified the second assumption regarding the additivity of 
∆mi values for multiple uncommitted unit conditions. In 
particular, we have considered the worst case when both 400 
MW units are not committed, i.e., 800 MW out of 3,105 MW 
system capacity is not committed. In fact, this is never going 
to happen because both the units are designated as must-run 
units. We calculated the system M value (using OLS) as 63.7 
which is reasonably close to [136.7– 2 *(136.7 – 98.8)=] 60.9. 
The latter calculation is based on the additivity assumption 
i.e.,  
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M (with Generator A and B out) = M (full system) –   ∆mA – ∆mB 
 
The impact of this inaccuracy on LOLP is relatively minor, 

and almost negligible for smaller uncommitted units. In fact, 
the risk constraint is likely to be a critical consideration during 
the peak hours when the majority, if not all, of the large 
generators are likely to be committed. If we combine this with 
the observation that the ∆mi values for relatively smaller 
generators are very low, the additivity assumption appears to 
be reasonable for a practical system. 

Having obtained all the relevant parameters (A0,M, ∆mi), 
the risk constraint is formulated for different (hourly) LOLP 
targets as: 

 
SRt  ≥  6.45 [ 136.7  - Σi (1-Ui,t) ∆mi ] for LOLP = 1% 
SRt  ≥  4.85 [ 136.7  - Σi (1-Ui,t) ∆mi ] for LOLP = 5% 
SRt  ≥  4.15 [ 136.7  - Σi (1-Ui,t) ∆mi ] for LOLP = 10% 
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We have systematically investigated how the risk 

constrained UC adjusts the commitment pattern as we 
progressively enforce tighter risk criterion, and further how 
these compare with the deterministic (largest generation) 
solution. Table-1 compares some of the broad features to start 
with.  

 
TABLE-1: COMPARISON OF RESULTS UNDER DIFFERENT RISK CRITERIA 

 
 No risk 10% 

LOLP 
5%  
LOLP 

1% 
LOLP * 

Deter-
ministic ** 

Total cost  1458746 1459394 1461302 4510343 1459117 
Min SR 82  511 599 705 398 
Max 
LOLP 

70% 9.7% 4.8% 3.7% * 28.6% 

Max spot 
price 

53.2 52.9 52.9 52.9 79.5 

Deficit 
SR 

0 0 0 Hr 9-20 
Max 176 

0 

*  Note: 1% LOLP could not be achieved as evident from deficit SR. 
The high cost is an outcome of the penalty $3/kWh applied on 
violation of SR constraint. 

** We have used SRt ≥ Pi,t as the deterministic criterion 
 
Some remarks based on Table-1 results are in order: 
• The “no risk” case has the lowest cost, but highly 

unacceptable risk level; 
• The risk constrained UC model does remarkably well 

to accommodate LOLP targets to the extent possible at 
little cost by adjusting commitment and dispatch. For 
example, 10% LOLP target is achievable at an 
additional cost over the no risk case of $648 (0.04% of 
the system cost without any risk constraint)) and 5% at 
an additional $2,556 (0.17% of the system cost without 
any risk constraint); 

• The LOLP level of 1% is unachievable in the present 
case because of the high spinning reserve requirement 
that it entails. The system, being small with relatively 
low margin for about 50% of the day, is unable to 
comply with the 1% LOLP criterion. What is 
interesting to note though is that the UC optimization is 
capable of trading the benefit from  additional SR 
(assumed to be valued at $3/kWh by the customers in 
this example), against the cost of providing it, to 
determine the optimal level of LOLP; 

• The deterministic criterion SRt ≥ Pi,t has slightly lower 
cost impact $371 (0.025%), but unacceptably high 
LOLP implications for the peak hours (hours 18,19). 
Probabilistic risk constraints, in comparison, achieve 
much better spread of risk at a marginally higher cost. 
In this case, the high LOLP of 28.6% (hour 18, 19) is 
entirely due to the commitment of Unit 1(20 MW) 
instead of Unit 13 (197 MW) [in the case of 10% 
LOLP]; a difference of 177 MW which brings down 
the LOLP to 9.7%! Though the deterministic criterion 
could be important from some other respect e.g., 
security, it fails to achieve requisite system adequacy 
performance primarily because the non-linear overall 
outage probability distribution is largely ignored. As 

we have seen, this is approximated well in the 
probabilistic risk constraint; 

• All the hourly spot prices for no risk as well as 
probabilistic risk cases (Fig.4) are equal to the marginal 
generation offer. The fact that the max spot prices 
(hour 18, 19) have slightly decreased from the “No 
risk” level (although, total cost has increased), 
indicates that the underlying commitment schedules are 
different. These price differentials also reflect the 
judicious selection of units to build up enough capacity 
early on to meet the LOLP target; 
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• This is, however, not true about the deterministic 

criterion. Whenever there is a cost implication due to 
SR, the shadow prices of all binding spinning reserve 
constraints will get added to the marginal generation 
offer, and thereby lead to surprising price impacts e.g., 
the strong peak at hour 7. The peak price may occur 
during off-peak hours due to the largest (but relatively 
cheap) generator  being constrained down by the SR 
constraint. In the present case, the SR constraint is 
binding for the 400 MW nuclear units during hour 7 
(74% of peak demand). Even though the marginal 
generation offer at hour 7 is only $39, the shadow 
prices of spinning reserve constraints ($20.25 for both 
nuclear units) get added to it to produce the high price 
of $79.50. The shadow price indicates the opportunity 
cost of backing off these cheapest (but largest) units 
and equals the difference between the nuclear 
generation cost and the marginal generation cost. 

 
Comparison with [1]:We have also compared the solution 

of the MIP model for the 5% LOLP case with that of the 
algorithm proposed in [1]. The summary of the procedure is 
included in section 1.2. We started with the “No risk” case 
and gradually tightened the SR requirement as the risk level 
for some hours fall short of 5%. However, incrementing the 
SR requirement by 1 MW leads to very slow convergence, 
and no feasible solution is encountered after 100 UC runs. The 
increment is raised to 10 MW and it still required 27 runs. The 
relatively high number of UC runs in this case is due to the 
fact that satisfying the risk limit for one hour often led to 
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violating it in another hour. Fig. 5 shows how the LOLP 
declines as SR requirement goes up. It was verified that the 
surplus SR for all hours is less than the capacity of the 
marginal generator. No de-commitment is, therefore, 
necessary. 

Fig.5: LOLP for hour 1 over the UC runs 
 

The total system cost for the 27th UC run (when all hourly 
LOLPs are below 5%) is $1,539,725 which is approximately 
5.3% higher than that associated with the optimal schedule 
(i.e., 5% LOLP case in Table-1). The additional cost over and 
above the optimal schedule is mostly due to unnecessary 
commitment of some units. 

The integrated risk constrained UC model in this case 
proves to be superior both in terms of computational 
performance (requires only one UC run as compared to 27 
runs), as well as locating a significantly (5.3%) cheaper 
solution, albeit at the expense of slight inaccuracy in 
calculating the LOLP values. 

IV.  CONCLUDING REMARKS 
This paper proposes a simple statistical approximation to 

integrate the capacity outage probability distribution in unit 
commitment optimization. It has been demonstrated using the 
IEEE Reliability Test System 1996 that the approximation is 
reasonably accurate for realistic LOLP values. The advantage 
of this approach over the state-of-the-art risk constrained unit 
commitment procedure [1] is that it is computationally less 
intensive and provides the globally optimal solution. We have 
extensively analyzed the risk implications of the deterministic, 
probabilistic and composite criteria. The test results indicate 
that the deterministic criterion may lead to unacceptably high 
risk and also may have strange pricing implications. The 
probabilistic risk constrained model, on the other hand, 
ensures a much better risk profile, but may fall short of 
covering the deterministic criterion, e.g., largest on-line 
generation source. We have also compared the outcome for 
5% LOLP case with the algorithm proposed in [1]. The 
algorithm in [1], while enabling accurate calculation of LOLP, 
requires a very high number of UC runs and locates a sub-
optimal UC schedule. The slight inaccuracy of the present 
method in calculating LOLP may be worthwhile given the 
improved quality of the solution and the requirement of 
solving the optimization problem only once.  
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