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Variation of distribution factors with loading
Ross Baldick

Abstract—Power transfer distribution factors depend on the op-
erating point and topology of an electric power system. However,
it is known empirically that, for a fixed topology, the power trans-
fer distribution factors are relatively insensitive to the operating
point. We demonstrate this result theoretically for systems of ar-
bitrary topology with losses, but only for the special case of having
reactive compensation sufficient to keep voltages constant at all
busses. We also analyze a power to current distribution factor that
more closely relates to thermal constraints. We provide empirical
corroboration for the theoretical result.

Keywords: Power transfer distribution factors, shift factors.

I. I NTRODUCTION

An (incremental) power transfer distribution factor (PTDF)
is the relative change in power flow on a particular line due to
a change in injection and corresponding withdrawal at a pair of
busses. PTDFs depend on the topology of the electric power
system, the behavior of controllable transmission system el-
ements as their limits are approached, and on the operating
point [1]. That is, PTDFs change when an outage of a line oc-
curs, if a controllable element reaches its control limits, and also
as the pattern of injections and withdrawals change the loadings
on the lines in the system.

For the case of identical radial parallel lines, however, the
PTDFs are completely independent of line loading. Moreover,
it is known empirically that, given a fixed topology and ignoring
controllable device limits, the PTDFs are relatively insensitive
to the levels of injections and withdrawals. See, for example,
[2][3, §3.9] for empirical studies of the variation of PTDFs for
certain systems.

In this paper we develop theoretical insight into this empiri-
cal observation by showing, in corollary 3, that the PTDFs are
approximately constant in a system with losses and arbitrary
topology but having reactive compensation sufficient to keep
voltage magnitudes constant at all busses. When the hypothe-
ses of corollary 3 do not hold, the PTDFs can be expected to
vary significantly as loadings change.

The relative insensitivity of the PTDFs is due fundamentally
to the fact that thesin function has a Taylor expansion with zero
quadratic term, so that linearization of thesin function about
zero angle results in an error that is cubic and higher order in
the angle, not a quadratic error. Consequently, the variation
of the PTDFs with net power injection is quadratic and higher
order rather than linear. Moreover, in some circumstances the
power flow equations yield PTDFs that are exactly constant in-
dependent of injections [4].

The significance of the relative insensitivity of PTDFs to
loading is that, in the context of flowgate right schemes for
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transmission rights [5], [6], capacity to flow power on a line
or a group of lines is sold or leased to users of the transmission
system. A transmission system user wishing to inject power
at one point and withdraw it at another may want to purchase
enough capacity on the line so as to hedge its congestion costs.
If the PTDFs for a particular line vary significantly with the
flows on the other lines then it is more difficult to predict the
amount of capacity needed on each binding “flowgate.” Either
the risk due to variation of the PTDFs must be borne amongst
the sellers and buyers of the transmission capability or conser-
vative capacity limits must be used to compensate for variation
of the PTDFs. If the PTDFs are relatively constant, however,
then presumably the appropriate power flow capacity on each
flowgate could be reserved to hedge the transmission conges-
tion costs.

However, a further issue is that relative constancy of the
PTDFs may not be the best measure of the lack of risk of un-
hedged transmission requirements. This is because, for exam-
ple, in a thermally limited line the fundamental limiting factor
is not literally the power flow down the line but rather the resis-
tive losses in the line, which are proportional to the square of the
magnitude of the current. Similarly, in a steady-state stability
limited line, the angle across the line (or between a generation
center and a demand center) is the limiting factor.

To consider current flow in a thermally limited line, we inves-
tigate power to current magnitude distribution factors (PIDFs)
that measure the (incremental) effect of a change in power in-
jection on the magnitude of the current in a line. (A similar
development is possible for stability limited lines by consider-
ing the effect of a change in power injection on the angle across
a line.)

PIDFs relate more closely to thermal constraints than do
PTDFs, and we will see that they have similar properties to
PTDFs. Under the DC power flow approximation, PTDFs and
PIDFs are proportional to each other. However, in a nonlin-
ear setting, the conditions for the PIDFs to be relatively con-
stant as line loadings vary are more stringent than those for
PTDFs, pointing to technical requirements that must be satis-
fied for flowgate rights on thermally limited transmission lines.

The results for systems of general topology are dependent
on the assumption of there being voltage support at all busses
sufficient to maintain constant voltage. The results will not
hold where voltage constraints are binding, since by definition
there is inadequate reactive support to maintain constant volt-
age. (However, it should be pointed out that in this case, the
thermal limits themselves are not constant, since they are ulti-
mately derived from the current rating and the operating volt-
age.) The results are unlikely to hold on lower voltage parts of
the transmission system but may be applicable to higher voltage
lines having sufficient reactive support and moderate ratios of
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resistance to reactance.
The structure of the paper is as follows. Section II presents

a brief literature survey. In section III, we discuss the as-
sumptions, the power flow formulation, and formal definition of
PTDF. We then analyze PTDFs in section IV. In section V, we
define and characterize PIDFs. A refinement of the PTDF cal-
culation is presented in section VI. In section VII, we present
some numerical results for the Electric Reliability Council of
Texas (ERCOT) system that confirm the theoretical results. We
conclude in section VIII.

II. L ITERATURE SURVEY

Several authors discuss PTDFs in the context of approximat-
ing power flows. For example, Baughman and Schweppe use
distribution factors to approximate flows as a function of in-
jections and after a change in the topology of the network [7].
Sauer formulates PTDFs for linear load flows in [8]. Ng de-
scribes PTDFs for calculating the change in flows on lines given
changes in generation and conforming changes in load at the
busses [9]. Wood and Wollenberg describe the calculation of
PTDFs using the DC power flow approximation in [10, Ap-
pendix 11A] and also discuss the calculation of PTDFs for out-
age conditions [10,§11.3.2]. The evaluation of PTDFs at an
operating point from the Jacobian of the power flow equations
is described in [10,§13.3].

Grijalva analyzes in detail the variation of PTDFs in a three
bus, three line example system with voltages maintained con-
stant and also discusses how the PTDFs vary with loading.
Grijalva shows that if voltages are maintained constant at all
busses then, as loading increases from zero injection conditions,
the PTDFs that were largest at zero injection tend to decrease,
while the PTDFs that were smallest at zero injection tend to
increase [3,§3.9].

Generalizing the three bus, three line system, Grijalva dis-
cusses PTDFs from a given point of injection and a given point
of withdrawal to each of the lines in a cutset of the power sys-
tem, observing that in a lossless system the sum of the PTDFs
across all lines in a cutset must be equal to one. Therefore, in-
creases in PTDFs to some lines must be accompanied by de-
creases in the PTDFs to other lines. Grijalva observes that
PTDFs begin to change significantly as steady-state stability
limits are approached since the PTDF is zero for the condition
of maximum transfer across a line when the angle across it is
π/2 [3, §3.3 and Figure 3.3].

Grijalva also considers higher order terms in a Taylor expan-
sion of the PTDFs using a rectangular representation for the
voltage phasor and evaluates a quadratic approximation to the
solution of the power flow [3,§3.9]. We take an analogous ap-
proach in section IV; however, we use a polar representation
of the voltage phasor and consider a Taylor expansion about
the zero injection operating point and also in terms of the en-
tries in the real part of the admittance matrix. This allows for
convenient explicit evaluation of the linear terms in the Taylor
expansion for arbitrary topology systems.

Liu and Gross conduct an empirical study of the variation of
PTDFs with injections and with other changes [2]. They show
that for the system considered the PTDFs typically change by

a relatively small amount as the levels of injections and with-
drawals change.

Saueret al. introduce and analyze various distribution fac-
tors in [11], including two that are closely related to the PIDFs
that we consider. In particular, they define distribution factors
of current injections to current flows (current transfer distribu-
tion factors or CTDFs), noting that the CTDFs are customarily
converted to PTDFs. The PIDFs that we define are similar in
flavor to the CTDFs except that our interest is in the effect of
power injections on current flows.

Saueret al. also consider angle distribution factors under
outage conditions, generalizing the distribution factors that we
consider to the line outage case [11,§5]. The analysis that we
present concerning the relative constancy of distribution factors
could be applied to the outage distribution factors considered
in [11] and also to the various other distribution factors defined
there.

Finally, Fradiet al. consider non-linear allocation of quan-
tities to transactions [12]. They emphasize the variation of
PTDFs. In contrast, we consider the conditions under which
the PTDFs are relatively constant.

III. A SSUMPTIONS AND FORMULATION

The material in this section is based on [10], [13] and is
mostly standard. We develop it in detail so that we can pre-
cisely state the results to follow. We consider the single phase
equivalent of a power system havingn + 1 busses. Bus number
0 is the reference bus and will be assumed to have reference an-
gle of zero, while the other busses are labeled 1 throughn. We
use the symbolsh, k, `,m, s, t, u to index the busses.

For the analysis in sections IV–V we will have to assume that
voltage magnitudes are constant (so that each bus, besides the
reference bus, is aPV bus [13,§10.2].) We will consider the
net power injections at each bus and the voltage angles at each
bus explicitly. Consequently, we will explicitly represent net
power injections and angles as arguments in the functions that
we define to formulate the power flow equations. The voltage
magnitudes will not be represented explicitly as arguments, but
will be considered parameters.

We consider the effect of losses. We will explicitly repre-
sent the entries in the real part of the bus admittance matrix as
arguments in the functions that we define.

Let the (`,m) entry of the bus admittance matrix [13] be
G`m + jB`m. Collect the entries in the real part of the bus
admittance matrix together into a vectorG ∈ RL+n, whereL
is the number of lines in the network. Let the net power in-
jected by generation and demand at node` be P`, so that for
generator busses,P` > 0. Let the voltage magnitude at bus` be
|v`| and its angle beΘ`. Collect the power injections at all the
busses, except the reference bus, together into a vectorP ∈ Rn

and collect the angles at all busses, except the reference bus,
together into a vectorΘ ∈ [−π, π]n.

For every bus̀ (including the reference bus) define functions
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p` : Rn × RL+n × Rn → R by:

∀P ∈ Rn, ∀G ∈ RL+n, ∀Θ ∈ Rn,

p`(P, G, Θ) =
∑

m∈K(`)∪{`}
|v`||vm|×

[G`m cos(Θ` −Θm) + B`m sin(Θ` −Θm)]− P`,

whereK(`) is the set of busses directly connected to bus` by a
line.

Collect the functionsp` for each bus̀ , except the reference
bus, into a vector functionp : Rn × RL+n × Rn → Rn. Then,
given a vector of net injectionsP and a vector of entries in the
real part of the bus admittance matrixG, solving the power flow
is equivalent to solving forΘ in:

p(P,G, Θ) = 0, (1)

where:
• 0 is the vector of all zeros and
• the injection at the reference bus can be calculated once

the vector of anglesΘ is known.
Consider a vector of net injectionsP ?, values of the real parts

of the bus admittance matrixG?, and a corresponding solution
Θ? of the power flow equations (1). We consider the properties
of the solution as the vector of net injections is varied aboutP ?

and as we consider changes toG?.
We first note thatp is infinitely partially differentiable with

respect toΘ. Suppose that the Jacobian
∂p

∂Θ
(P ?, G?, Θ?)

is non-singular. Then by the implicit function theorem [14,
§4.4] there exists an infinitely partially differentiable function
θ : Rn × RL+n → Rn such that in some neighborhoodN of
(P,G) = (P ?, G?), the power flow equations (1) has a solution
satisfying:

∀(P, G) ∈ N , p(P, G, θ(P, G)) = 0.

That is, as is well-known, the power flow equations have a well-
behaved solution in this neighborhood.

Consider the flow along a line joining busses` andm. Ne-
glecting shunt conductance in a line, we can evaluate the power
flowing from bus` into the line joining bus̀ and m by the
functionp`m : RL+n × Rn → R defined by:

∀G ∈ RL+n, ∀Θ ∈ Rn, p`m(G,Θ) = |v`||vm|×
[G`m cos(Θ` −Θm) + B`m sin(Θ` −Θm)]− |v`|2G`m.

If there are losses in the system, so thatG`m < 0, then the
flow will be different at different points along the line. As a
representative flow for the line joining̀to m, we take the av-
erage of the flows at the two ends of the line. That is, define
p̃`m : RL+n × Rn → R by:

∀G ∈ RL+n, ∀Θ ∈ Rn, p̃`m(G,Θ)
= 1

2 (p`m(Θ)− pm`(Θ)),

= |v`||vm|B`m sin(Θ` −Θm)− 1
2 (|v`|2 − |vm|2)G`m.

(We would obtain essentially the same results in the theorems
below if we considered the sending end flow or the receiving

end flow.) To relate the representative flow to the net injections,
we define the function̂p`m : Rn × RL+n → R by:

∀(P, G) ∈ N , p̂`m(P, G) = p̃`m(G, θ(P,G)).

Consider a busk and a line joining busses̀andm. We con-
sider the effect on the representative flow along the line joining
` andm of a change in the net injection at busk from the level
P ?

k (and assuming a corresponding change in the net withdrawal
at the reference bus to maintain a solution of the power flow
equations.) Following Wood and Wollenberg [10], the (incre-
mental) power transfer distribution factor (PTDF) from injec-
tion at busk to flow on the line joining̀ to m is the sensitivity:

∂p̂`m

∂Pk
(P ?, G?) =

∂p̃`m

∂Θ
(G?, Θ?)

∂θ

∂Pk
(P ?, G?).

For brevity, we call this sensitivity “the PTDF fromk to line
`m.”

In general, transactions may involve a change in injection at
a busk and a corresponding change at another bush (that may
not be the reference bus.) In this case, and if the system is
lossless, then the PTDF from injection at busk and withdrawal
at bush to flow on the line joining̀ to m is the difference of
sensitivities:

∂p̂`m

∂Pk
(P ?, G?)− ∂p̂`m

∂Ph
(P ?, G?)

=
∂p̃`m

∂Θ
(G?,Θ?)

(
∂θ

∂Pk
(P ?, G?)− ∂θ

∂Ph
(P ?, G?)

)
.

For brevity, we call this sensitivity “the PTDF fromkh to line
`m.”

In the following section we calculate the PTDFs fromk to
line `m.

IV. POWER TRANSFER DISTRIBUTION FACTORS

We calculate an estimate of the PTDF, under the assumption
that all the voltage magnitudes are constant. That is, we assume
that all busses arePV busses [13,§10.2] with adequate reactive
support to maintain constant voltage. This assumption is not
realistic; however, it can be approximately true. Moreover, after
corollary 3 and in section VI we will comment on weakening
this assumption slightly.

Consider a system with entries in the real part of the ad-
mittance matrixG? and consider the PTDF fromk to line
`m at some operating pointP ?, Θ? such that the Jacobian
∂p

∂Θ
(P ?, G?, Θ?) is non-singular. Again, using the implicit

function theorem, we can solve the power flow equations in a
neighborhoodN of (P ?, G?) for a solutionθ as a function of
P andG.

Suppose that this neighborhoodN of (P ?, G?) includes a
line segment joining(0,0) and (P ?, G?). Then, by Taylor’s
theorem applied to the derivative ofp̂`m, and assuming that the
voltage magnitudes are constant, the PTDF satisfies:

∂p̂`m

∂Pk
(P ?, G?) =

∂p̂`m

∂Pk
(0,0) +

∂2p̂`m

∂Pk∂P
(0,0)P ?

+
∂2p̂`m

∂Pk∂G
(0,0)G? + o(P ?, G?),(2)
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where o(P ?, G?) is a function such that‖o(P ?,G?)‖
‖(P ?,G?)‖ →

0 as ‖(P ?, G?)‖ → 0. The error in neglecting the term
o(P ?, G?) in (2) isquadraticand higher order in(P ?, G?).

In (2),
∂p̂`m

∂Pk
(0,0) is the PTDF fromk to line`m for zero in-

jections. For a lossless system,
∂p̂`m

∂Pk
(0,0) is the PTDF fromk

to line `m calculated according to the DC power flow approxi-

mation. For a system with losses,
∂p̂`m

∂Pk
(0,0) can be evaluated

with a similar calculation that uses the complex part of line ad-
mittances instead of the inverse of the inductive reactances. For

convenience, by “DC PTDF” we will mean
∂p̂`m

∂Pk
(0,0).

In the development that follows, we will show that the co-

efficients
∂2p̂`m

∂Pk∂P
(0,0) and

∂2p̂`m

∂Pk∂G
(0,0) of the linear terms

in the expression (2) for the PTDF are all zero. That is, the
PTDF evaluated atP ? is equal to a constant plus terms that
are quadratic and higher order in(P ?, G?). This accounts for
the relative constancy of the PTDFs at low to medium load if
voltage constraints are not binding.

We evaluate the terms in the PTDF in the following:

Lemma 1:Consider a linèm and a busk. We have the fol-
lowing expressions for the derivatives:

∀G,Θ,
∂(Θ` −Θm)
∂Θ

(Θ) = [I` − Im]†,

∀G, Θ,
∂p̃`m

∂Θ
(G, Θ) = |v`||vm| ×

B`m cos(Θ` −Θm)[I` − Im]†,

∀G, Θ,
∂2p̃`m

∂Θ2 (G,Θ) = −|v`||vm| ×

B`m sin(Θ` −Θm)[I` − Im][I` − Im]†,

∂2p̃`m

∂Θ2 (0,0) = 0,

∀G, Θ,
∂2p̃`m

∂G∂Θ
(G,Θ) = 0,

∀P, G, Θ,
∂p

∂Pk
(P, G, Θ) = −Ik,

∀P, G, Θ, ∀t, ∂2p

∂Pk∂Pt
(P, G, Θ) = 0,

∀P,G, Θ,∀u, v,
∂2p

∂Pk∂Guv
(P, G, Θ) = 0,

∀P, G, Θ, ∀t, ∂2p

∂Θ∂Pt
(P, G, Θ) = 0,

∀P, G, Θ, ∀s, t, ∂ps

∂Θt
(P, Θ) =





∑
u∈K(s) |vs||vu|×

[−Gsu sin(Θs −Θu) + Bsu cos(Θs −Θu)],
if t = s,

|vs||vt|×
[Gst sin(Θs −Θt)−Bst cos(Θs −Θt)],

if t ∈ K(s),

∀P, ∀s, t, u,
∂2ps

∂Θt∂Θu
(P,0,0) = 0,

∀P, ∀s, t, u, v,
∂2ps

∂Θt∂Guv
(P,0,0) = 0,

where we note that:

• superscript† denotes transpose,
• 0 denotes a vector or matrix of all zeros, and
• I` is the vector with all zeros except for a one in the`-th

place.

Proof: All of the terms follow from definition of the func-
tions, direct calculation, and substitution.2

Corollary 2: Consider a linèm and a busk. If
∂p

∂Θ
(0,0,0)

is non-singular then
∂2p̂`m

∂Pk∂P
(0,0) = 0 and

∂2p̂`m

∂Pk∂G
(0,0) = 0.

Proof: We note that for a lossless system,P = 0 and
Θ = 0 is a solution of the power flow equations (1). That
is, p(0,0,0) = 0. Again using the implicit function theorem,
there is an infinitely partially differentiable functionθ : Rn ×
RL+n → Rn such that in some neighborhoodN0 of (P, G) =
(0,0), the power flow equations (1) have a solution satisfying:

∀(P, G) ∈ N , p(P, G, θ(P, G)) = 0.

Totally differentiatingp(P, G, θ(P, G)) = 0 with respect to
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Pk and evaluating at(P, G) = (0,0), we obtain:

0 =
∂p

∂Pk
(0,0,0) +

∂p

∂Θ
(0,0,0)

∂θ

∂Pk
(0,0),

= −Ik +
∂p

∂Θ
(0,0,0)

∂θ

∂Pk
(0,0),

so that, since
∂p

∂Θ
(0,0,0) is non-singular by hypothesis,

∂θ

∂Pk
(0,0) is well-defined.

Let t be a bus. Totally differentiatingp(P, G, θ(P, G)) = 0
with respect toPk and then with respect toPt and evaluating at
(P,G) = (0,0), we obtain:

0 =
∂2p

∂Pk∂Pt
(0,0,0) +

∂2p

∂Pk∂Θ
(0,0,0)

∂θ

∂Pt
(0,0)

+

[[
∂θ

∂Pk
(0,0)

]†
∂2ps

∂Θ2 (0,0,0)
∂θ

∂Pt
(0,0)

]

s=1,...,n

+
∂2p

∂Pt∂Θ
(0,0,0)

∂θ

∂Pk
(0,0)

+
∂p

∂Θ
(0,0,0)

∂2θ

∂Pk∂Pt
(0,0),

=
∂p

∂Θ
(0,0,0)

∂2θ

∂Pk∂Pt
(0,0),

by lemma 1, where the terms of the form[· · · ]s=1,...,n mean
a vector havings-th entry given by the term inside the square

brackets. Again, since
∂p

∂Θ
(0,0,0) is non-singular, we have

∂2θ

∂Pk∂Pt
(0) = 0.

Let uv be a line. Totally differentiatingp(P, G, θ(P, G)) =
0 with respect toPk and then with respect toGuv and evaluat-
ing at(P,G) = (0,0), we obtain:

0 =
∂2p

∂Pk∂Guv
(0,0,0) +

∂2p

∂Pk∂Θ
(0,0,0)

∂θ

∂Guv
(0,0)

+

[[
∂θ

∂Pk
(0,0)

]†
∂2ps

∂Θ2 (0,0,0)
∂θ

∂Guv
(0,0)

]

s=1,...,n

+
∂2p

∂Guv∂Θ
(0,0,0)

∂θ

∂Pk
(0,0)

+
∂p

∂Θ
(0,0,0)

∂2θ

∂Pk∂Guv
(0,0),

=
∂p

∂Θ
(0,0,0)

∂2θ

∂Pk∂Guv
(0,0),

by lemma 1. Again, since
∂p

∂Θ
(0,0,0) is non-singular, we have

∂2θ

∂Pk∂Guv
(0,0) = 0.

Also, by lemma 1,
∂2p̃`m

∂Θ2 (0,0) = 0. By direct calculation:

∂p̂`m

∂Pk
(0,0)

=
∂p̃`m

∂Θ
(0,0)

∂θ

∂Pk
(0,0),

∀t, ∂2p̂`m

∂Pk∂Pt
(0,0)

=
∂p̃`m

∂Θ
(0,0)

∂2θ

∂Pk∂Pt
(0,0)

+
[

∂θ

∂Pk
(0,0)

]†
∂2p̃`m

∂Θ2 (0,0)
∂θ

∂Pt
(0,0),

∀u, v,
∂2p̂`m

∂Pk∂Guv
(0,0)

=
∂2p̃`m

∂Guv∂Θ
(0,0)

∂θ

∂Pk
(0,0)

+
∂p̃`m

∂Θ
(0,0)

∂2θ

∂Pk∂Guv
(0,0)

+
[

∂θ

∂Pk
(0,0)

]†
∂2p̃`m

∂Θ2 (0,0)
∂θ

∂Guv
(0,0).

Substituting in from the terms previously calculated, we obtain:

∀t, ∂2p̂`m

∂Pk∂Pt
(0) = 0 and∀u, v,

∂2p̂`m

∂Pk∂Guv
(0) = 0. 2

Corollary 3: Consider a system with the entries in the real
part of the bus admittance matrix specified byG? and reac-
tive compensation such that all bus voltage magnitudes are con-
stant. Also consider an operating pointP ? sufficiently close to
the condition of zero net injection such that for all operating
points on the line segment joining(0,0) and(P ?, G?) we have
that:
• the solution of the power flow equations are well-defined

and unique and

• the Jacobian
∂p

∂Θ
is non-singular.

Then the incremental PTDFs at the operating pointP ? for the
system with entries in the real part of the bus admittance matrix
G? differ from the PTDFs calculated from the DC load flow by
an error that is quadratic and higher order in(P ?, G?). That is,

∂p̂`m

∂Pk
(P ?, G?) =

∂p̂`m

∂Pk
(0,0) + o(P ?, G?). (3)

2

Using a network equivalencing argument, we can slightly
weaken the requirement of constancy of voltage in corollary 3
to only requiring that all generator and load buses and busses`
andm are held at constant voltage.

To interpret corollary 3, we consider the conditions when

the error between the incremental PTDF
∂p̂`m

∂Pk
(P, G) and the

DC PTDF
∂p̂`m

∂Pk
(0,0) becomes large. We have the following,

based on Grijalva [3,§3.3]:
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Lemma 4:Consider a linè m and a busk. Also consider
any vector of net injectionsP and values of real parts of the
admittance matrixG such that the angle across the line`m is
Θ` −Θm = π/2. Then:

•
∂p̂`m

∂Pk
(P, G) = 0 and

• the representative floŵp`m on line`m is at its maximum
value given by:

p`m = |v`||vm|B`m − 1
2 (|v`|2 − |vm|2)G`m.

Proof: The first result follows from the definition of the
PTDF on substituting the valueΘ` − Θm = π/2 into the ex-

pression for
∂p̃`m

∂Θ
(G, Θ) from lemma 1. The second result

follows from the definition of̂p`m. 2

The valuep`m defined in lemma 4 is the steady-state stabil-
ity limit of line `m for the given value ofG. We will now use
corollary 3 and lemma 4 to roughly estimate when we can ex-
pect the difference between the incremental and DC PTDFs to
be smaller than, say, 5%. The condition will involve limiting
the flow on linè m to being a fraction ofp`m.

Neglecting cubic and higher order terms in (3), we have that
for any P and G satisfying the conditions onP ? and G? in
corollary 3:

∂p̂`m

∂Pk
(P,G)− ∂p̂`m

∂Pk
(0,0) ≈

[
P

G

]†
E

[
P

G

]
, (4)

whereE ∈ R(L+2n)×(L+2n) is a coefficient matrix characteriz-
ing the quadratic terms in (3). Now, in lemma 4, setG = 5G?

andP = P , whereP is any vector of net injections such that
the angle across the linèm is Θ`−Θm = π/2 so that the flow
on line`m is at its steady state stability limit. That is:

p`m = |v`||vm|B`m − 1
2 (|v`|2 − |vm|2)G`m,

= |v`||vm|B`m − 1
2 (|v`|2 − |vm|2)5G?

`m.

By lemma 4,
∂p̂`m

∂Pk
(P , 5G?) = 0. We assume thatG andP

satisfy the conditions onG? andP ? in corollary 3. We obtain
that:
[

P

5G?

]†
E

[
P

5G?

]
≈ ∂p̂`m

∂Pk
(P , 5G?)− ∂p̂`m

∂Pk
(0,0),

by (4) forP = P andG = 5G?,

= 0− ∂p̂`m

∂Pk
(0,0).

Dividing both sides by52 = 25 yields:

[
1
5P

G?

]†
E

[
1
5P

G?

]
= − 1

25
∂p̂`m

∂Pk
(0,0).

But evaluating (4) forP = 1
5P andG = G?, we obtain:

∂p̂`m

∂Pk
(
1
5
P , G?)− ∂p̂`m

∂Pk
(0,0) ≈

[
1
5P

G?

]†
E

[
1
5P

G?

]
.

Combining these yields:

∂p̂`m

∂Pk
(
1
5
P ,G?)− ∂p̂`m

∂Pk
(0,0) ≈ − 1

25
∂p̂`m

∂Pk
(0,0).

That is, for a vector of net injections equal to1
5P the error be-

tween the incremental and DC PTDFs is only about1
25 -th, or

around 5%, of the value of the DC PTDF itself.
Now recall that given a vector of net injections equal toP

the flow on`m was equal to the steady-state stability limitp`m.
Therefore, for a vector of net injections only one-fifth as large,
the flow on`m will be roughly only one-fifth as large. In sum-
mary, for conditions such that the flow on line`m is no more
than about 20% of the steady-state stability limit, the error be-
tween the incremental and DC PTDFs will be no more than
about 5% of the value of the DC PTDF.

That is, for a thermally limited line with thermal limits that
bind at no more than 20% ofp`m, the error in the PTDF at
all feasible operating conditions would be no more than 5% of
the DC PTDF. Using the data in [13, Table 3.1], this condition
would be satisfied for a 138 kV line that is no more than about
25 miles long; for a 345 kV line that is no more than about 65
miles long; and for a 765 line that is no more than about 130
miles long.

In contrast, for a stability limited line with flows that are
greater than 20% ofp`m or if the assumption of constant volt-
age is not maintained, then the error in the PTDF may become
large. For example, if there are binding voltage constraints be-
cause of a lack of reactive power support, the PTDFs may vary
significantly. It is not appropriate to rely on the constancy of
PTDFs under these circumstances. We note that some errors
in the PTDFs are positive while others are negative since, as
discussed in [3,§3.3], the PTDFs from a point of injection and
withdrawal to each of the lines in a cutset of a lossless power
system must always sum to one.

V. POWER TO CURRENT DISTRIBUTION FACTORS

Although PTDFs are often discussed in relation to thermally
limited lines, in fact it is the heating due to current flowing on
the line that determines the thermal limit. Instead of consid-
ering the effect of the change of power injection on the power
flowing down a line, a more direct measure of the effect on a
thermal constraint is the effect of a change in injection on the
magnitude of the current flowing down the line. (In practice,
the magnitude of the complex flow is often used as a proxy to
the magnitude of the current.)

We again maintain the assumption that the voltage magnitude
at each bus is constant. However, this assumption is insufficient
to yield a result similar to corollary 3. In order for the power
to current magnitude distribution factor fromk to line `m to be
approximately constant, we will see that we must additionally
require that|v`| = |vm|. The reason for this is that if these
voltages are different then there will be reactive power flowing
along the line and the PTDFs will change more rapidly with
flow.

Moreover, since we are interested in current magnitudes but
the current magnitude is not differentiable at the condition of
zero current, we will define a “directed” current magnitude that
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is differentiable and captures the relevant behavior of the cur-
rent magnitude. We will assume that the power to current distri-
bution factor of interest is relevant to a thermal limit that corre-
sponds to power flowing from bus̀to busm, so thatΘ` > Θm

at the operating point.
Ignoring the current flowing in the shunt capacitance of the

line, the square of the current magnitude is given by:

(G2
`m + B2

lm)(|v`|2 + |vm|2 − 2|v`||vm| cos(Θ` −Θm))
= (G2

`m + B2
lm)

× ([|v`| − |vm|]2 + 2|v`||vm|[1− cos(Θ` −Θm)]),
= 2(G2

`m + B2
lm)|v`||vm|[1− cos(Θ` −Θm)],

if |v`| = |vm|.
Paralleling the development in section III, we define the func-

tion ĩ`m : RL+n × Rn → R by:

∀G ∈ RL+n,∀Θ ∈ Rn, ĩ`m(G, Θ) =




√
G2

`m + B2
lm

√
2|v`||vm|[1− cos(Θ` −Θm)],

if Θ` > Θm,
−

√
G2

`m + B2
lm

√
2|v`||vm|[1− cos(Θ` −Θm)],

if Θ` < Θm,
0, if Θ` = Θm.

The function ĩ`m is twice partially differentiable and its ab-
solute value is the magnitude of the current on the line`m.
(Strictly speaking, in the presence of shunt capacitance, this
function is equal to the current only at the mid-point of the line
between the busses` andm.) To relate the current to the net
injections, we define the function̂i`m : Rn × RL+n → R by:

∀(P, G) ∈ N , î`m(P,G) = ĩ`m(G, θ(P,G)).

The (incremental) power to current magnitude distribution
factor (PIDF) from injection at busk to current magnitude on
the line`m is the sensitivity:

∂î`m
∂Pk

(P ?, G?) =
∂ĩ`m
∂Θ

(G?, Θ?)
∂θ

∂Pk
(P ?, G?).

For brevity, we call this sensitivity “the PIDF fromk to line
`m.”

As in corollary 3 of section IV, we have:

∂î`m
∂Pk

(P ?, G?) =
∂î`m
∂Pk

(0,0) + o(P ?, G?),

so that the incremental PIDFs at the operating pointP ? differ
from the PIDFs calculated from the DC load flow by an error
that is quadratic and higher order in(P ?, G?).

Note that under the assumption of constant voltages, the
PTDFs and the PIDFs calculated from the DC power flow are
proportional to each other. At other operating points, however,
the PIDFs can be expected to change more rapidly with flows
than the PTDFs unless the condition|v`| = |vm| is maintained.

The implication is that in a thermally limited system, for
PIDFs to be constant, voltage support must be provided on the
constrained lines to make the voltages constant and equal at

both ends of each flowgate. If these conditions are not satisfied,
then the PIDFs (and indeed the thermal capacity) will vary with
loading. In particular,
• the PIDFs will vary as|v`| − |vm| varies and
• the capacity to transmit real power will fall as the voltages

at the sending or receiving end fall, since the thermal ca-
pacity is the product of the current carrying capability and
the operating voltage.

In the extreme, if voltage constraints are binding then we cannot
rely on constancy of PTDFs [1], [15]. In section VI, we will
mention a refinement of the calculation to help alleviate this
limitation.

VI. REFINEMENTS FOR FLOWGATE APPLICATIONS

One important application of PTDFs is in flowgate transmis-
sion rights mechanisms. In this application, the most critical
condition is when a line, for example linèm, is congested. If
the injections in the system for this condition were known, we
could directly use the incremental PTDF evaluated at this op-
erating point. However, because many system conditions can
give rise to congestion on a linèm, we cannot determine these
conditions precisely in advance. The results we have developed
show that in some cases the DC PTDF is a reasonable approxi-
mation that applies over a range of conditions.

However, we can refine the estimate of the incremental PTDF
by utilizing the conditions for linè m to be congested. In
particular, suppose that a thermally limited line`m is con-
gested when the angle difference across the line is given by
Θ` − Θm = ∆Θ`m. DefineΘ ∈ Rn to be a vector of all zeros
except that in thè-th place there is the entry∆Θ`m. Then we
can approximate the incremental PTDF when line`m is con-
gested by:

∂p̂`m

∂Pk
(P ?, G?) =

∂p̃`m

∂Θ
(G?,Θ)

∂θ

∂Pk
(P ?, G?),

≈ ∂p̃`m

∂Θ
(G?,Θ)

∂θ

∂Pk
(0,0),

where we note that
∂p̃`m

∂Pk
depends only onG`m andΘ`−Θm.

That is, we use the actual congestion conditions to evaluate the
sensitivity of the flow on linèm to angle, but then approximate
the sensitivity of angle on injections using the DC approxima-
tion. A similar approach applies for PIDFs.

This approximation could potentially be applied even for
voltage limited lines. In particular, we could consider the con-
ditions under which voltage constraints are binding on the flow

along a line and use this to estimate
∂p̃`m

∂Pk
or

∂ĩ`m
∂Pk

at the con-

ditions where voltage constraints are binding.

VII. R ESULTS FORELECTRIC RELIABILITY COUNCIL OF

TEXAS SYSTEM

In this section, we empirically validate the theoretical results
using the Electric Reliability Council of Texas (ERCOT) sys-
tem. Figure 1 shows DC PTDFs versus the incremental PTDFs
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Fig. 1. DC PTDFs versus incremental PTDFs at 2002 Summer peak conditions for ERCOT system.

calculated for a 2002 Summer peak study case for thirteen dif-
ferent points of injection distributed across ERCOT and for
5989 transmission lines. Each point of injection is illustrated
with a different symbol in figure 1. For each PTDF, the point
of withdrawal is the reference bus. That is, there are approxi-
mately 78,000 DC PTDFs and incremental PTDFs represented
in figure 1. The PTDFs are shown as percentages and essen-
tially all of them fall on a line with slope equal to one and in-
tercept equal to zero.

Figure 1 shows that for all points of injection and almost all
lines, the DC PTDF and incremental PTDF are essentially the
same. The only exception are the 13 PTDFs calculated for the
line that joins the reference bus to the rest of the system. All
power flowing to the reference bus flows through this line and
consequently the incremental affect on losses throughout the
system is reflected in this line.

It is important to note that the bus voltages for the Summer
peak case are not all held constant. That is, corollary 3 seems

to hold approximately even when the assumption of constant
voltage is not completely met.

VIII. C ONCLUSION

In this paper we presented conditions for PTDFs to be ap-
proximately independent of the injections and withdrawals in
an electric power system. We showed theoretically that for sys-
tems with losses and arbitrary topology, multiple points of in-
jection and withdrawal, and losses, the PTDFs are relatively
independent of injections and withdrawals if topology is fixed,
voltages are held constant, and the flows on lines are sufficiently
less than the steady-state stability limit.

We also analyzed power to current magnitude distribution
factors PIDFs. For relative constancy of the PIDFs fromk to
a line `m, we found that we must assume that|v`| = |vm| in
addition to the assumptions for relative constancy of PTDFs.
That is, we must assume that there is adequate voltage support
as a condition for the effectiveness of flowgate rights schemes.
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In the context of a contingency limited system, this requires that
controllable voltage support must also be available under con-
tingency conditions. The conditions for the relative constancy
of the distribution factors are stringent and may not hold in typ-
ical transmission systems.

We showed that the theoretical predictions are well corrobo-
rated for the ERCOT system, even when voltages are not held
exactly constant. In future work, an extensive numerical study
of the Eastern, Western, and ERCOT Interconnections will be
undertaken to complement and further validate the theoretical
results in this paper.
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