Variation of distribution factors with loading
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Abstract—Power transfer distribution factors depend on the op- transmission rights [5], [6], capacity to flow power on a line
erating point and topology of an electric power system. However, or a group of lines is sold or leased to users of the transmission
it is known empirically that, for a fixed topology, the power trans- system. A transmission system user wishing to inject power

fer distribution factors are relatively insensitive to the operating " int and withd it at th tt h
point. We demonstrate this result theoretically for systems of ar- at one point ana witharaw 1t at another may want to purchase

bitrary topology with losses, but only for the special case of having €nough capacity on the line so as to hedge its congestion costs.
reactive compensation sufficient to keep voltages constant at all If the PTDFs for a particular line vary significantly with the

busses. We also analyze a power to current distribution factor that flows on the other lines then it is more difficult to predict the
more closely relates to thermal constraints. We provide empirical amount of capacity needed on each binding “flowgate.” Either
corroboration for the theoretical result. - L )
Keywords: Power transfer distribution factors, shift factors. the risk due to variation of the PTDF,S r_nUSt be b?!me amongst
the sellers and buyers of the transmission capability or conser-
vative capacity limits must be used to compensate for variation
l. INTRODUCTION of the PTDFs. If the PTDFs are relatively constant., however,
) o then presumably the appropriate power flow capacity on each
An (incremental) power transfer distribution factor (PTDFjowgate could be reserved to hedge the transmission conges-
is the relative change in power flow on a particular line due ¥n costs.
a change in injection and corresponding withdrawal at a pair of yo\yever, a further issue is that relative constancy of the
busses. PTDFs depend on the topology of the electric pOWSfpEs may not be the best measure of the lack of risk of un-
system, the behavior of controllable transmission system glsqged transmission requirements. This is because, for exam-
ements as their limits are approached, and on the operaifig in a thermally limited line the fundamental limiting factor
point [1]. Thatis, PTDFs change when an outage of a liné ot jiterally the power flow down the line but rather the resis-
curs, if a controllable element reaches its control limits, and al§ge |osses in the line. which are proportional to the square of the
as the pattern of injections and withdrawals change the loadingghitude of the current. Similarly, in a steady-state stability
on the lines in the system. _ . limited line, the angle across the line (or between a generation
For the case of identical radial parallel lines, however, the\nter and a demand center) is the limiting factor.
PTDFs are completely independent of line loading. MOreover, r, o nsiger current flow in a thermally limited line, we inves-

itis known empirically that, given a fixed topology and ignoringiyate power to current magnitude distribution factors (PIDFs)

controllable device limits, the PTDFs are relatively insensitivg o+ measure the (incremental) effect of a change in power in-
to the levels of injections and withdrawals. See, for examp?g

) ) > ction on the magnitude of the current in a line. (A similar
[21(3, §3.9] for empirical studies of the variation of PTDFS folye\e|opment is possible for stability limited lines by consider-
certain systems. I _ _ing the effect of a change in power injection on the angle across
In this paper we develop theoretical insight into this empirig line.)

cal observation by shawing, in corollary 3, that the PTDFs ar€pbIDFs relate more closely to thermal constraints than do

approximately cqnstant in_ a system With. Iosses_ gnd arbitra@fDFs, and we will see that they have similar properties to
topology but having reactive compensation sufficient to ke DFs. Under the DC power flow approximation, PTDFs and

voltage magnitudes constant at all busses. When the hypot f5Fs are proportional to each other. However, in a nonlin-

S€s Of. co_]rcpllargl/ 3 ch> nc:jt_ hold,hthe PTDFs can be expectedégr setting, the conditions for the PIDFs to be relatively con-
vary significantly as foadings change. stant as line loadings vary are more stringent than those for

The relative ins.ensitivit_y of the PTDFs is due fgndar_nentallp;TDFs’ pointing to technical requirements that must be satis-
to the fact that thein function has a Taylor expansion with Z€1Gied for flowgate rights on thermally limited transmission lines.

quadratic term, so that linearization of thi@ function about The results for systems of general topology are dependent
zero angle results in an error that is cubic and higher ordergﬂ the assumption of there being voltage support at all busses
e nSlfcen o maintain constant vofge. The esuts il o
. . . flold where voltage constraints are binding, since by definition
order rather than_lmear. Moreover, in some circumstances .ttlF%re is inadequate reactive support to maintain constant volt-
power flow equations yield PTDFs that are exactly constant 'Q(je (However, it should be pointed out that in this case, the
dependent of injections [4]. : ' '

The sianifi f th lative i itivity of PTDF tthermal limits themselves are not constant, since they are ulti-
€ signiicance ot the relative Insensitivity o S ?nately derived from the current rating and the operating volt-

loading is that, in the context of flowgate right schemes 1E%lrge.) The results are unlikely to hold on lower voltage parts of
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resistance to reactance. a relatively small amount as the levels of injections and with-
The structure of the paper is as follows. Section Il preserisawals change.

a brief literature survey. In section Ill, we discuss the as- Saueret al. introduce and analyze various distribution fac-

sumptions, the power flow formulation, and formal definition ofors in [11], including two that are closely related to the PIDFs
PTDF. We then analyze PTDFs in section IV. In section V, Wat we consider. In particular, they define distribution factors
define and characterize PIDFs. A refinement of the PTDF cak current injections to current flows (current transfer distribu-
culation is presented in section VI. In section VII, we presefon factors or CTDFs), noting that the CTDFs are customarily
some numerical results for the Electric Reliability Council oonverted to PTDFs. The PIDFs that we define are similar in
Texas (ERCOT) system that confirm the theoretical results. Wgvor to the CTDFs except that our interest is in the effect of

conclude in section VIII. power injections on current flows.
Saueret al. also consider angle distribution factors under
Il. LITERATURE SURVEY outage conditions, generalizing the distribution factors that we

| auth . i th ‘ __consider to the line outage case [£5]. The analysis that we
Several authors discuss PTDFs in the context of approximgasent concerning the relative constancy of distribution factors

ing power flows. For example, Baughman and Schweppe 4sg,1q he applied to the outage distribution factors considered
distribution factors to approximate flows as a function of in-

o / Mh [11] and also to the various other distribution factors defined
jections and Iafter a chang;a |nI the tolpolg?(ly of the[n(]atworkd[7t]1€re_
Sauer formulates PTDFs for linear load flows in [8]. Ng de- _. . . . .
scribes PTDFs for calculating the change in flows on lines give.nFma”y’ Frad|eF al. consider non-linear qllocatlon Of. quan-
changes in generation and conforming changes in load at w%"sl:f tlrr?ncsoancttrlggts \/[\/ltazléonzri](jegr ?&ngﬁgzot:: uvr?éljrtl\?v?ﬂgr]:
busses [9]. Wood and Wollenberg describe the calculation % : N
PTDFs using the DC power flow approximation in [10, ApE e PTDFs are relatively constant.
pendix 11A] and also discuss the calculation of PTDFs for out-
age conditions [10§11.3.2]. The evaluation of PTDFs at an
operating point from the Jacobian of the power flow equations
is described in [10§13.3]. Ill. ASSUMPTIONS AND FORMULATION

Grijalva analyzes in detail the variation of PTDFs in a three
bus, three line ex_ample system with voltages main_tained CON-The material in this section is based on [10], [13] and is
stant and also discusses how the PTDFs vary with loadingostly standard. We develop it in detail so that we can pre-
Grijalva shows that if voltages are maintained constant at glkely state the results to follow. We consider the single phase
busses then, as loading increases from zero injection conditiogguivalent of a power system havingr 1 busses. Bus number
the PTDFs that were largest at zero injection tend to decreaggs the reference bus and will be assumed to have reference an-
while the PTDFs that were smallest at zero injection tend {fje of zero, while the other busses are labeled 1 throughe
increase [3§3.9]. use the symbola, k, £, m, s, t, u to index the busses.

Generalizing the three bus, three line system, Grijalva dls'For the analysis in sections IV-V we will have to assume that

cusses PTDFs from a given point of injection and a given pOI%Itage magnitudes are constant (so that each bus, besides the

of withdrawal to each of the lines in a cutset of the power SYPaference bus. is 2V bus [13,510.2].) We will consider the

tem, observing that in a lossless system the sum of the PTD. et power injections at each bus and the voltage angles at each

across aI_I I'gi_sD'g atcutset mlgst be eql:il to one. There;or)e, Blis explicitly. Consequently, we will explicitly represent net
creases in s 0 some fines Must be accompanie yﬁq wer injections and angles as arguments in the functions that

- ) . . _Wa nitudes will not be represented explicitly as arguments, but
limits are approached since the PTDF is zero for the cond|t|9\ﬂ”gbe considered paramgters prctly 9
of maximum transfer across a line when the angle across it is '

/2 [3, §3.3 and Figure 3.3]. We consider the effect of losses. We will explicitly repre-

Grijalva also considers higher order terms in a Taylor expaﬁ@nt the enFries in the .real part of the pus admittance matrix as
sion of the PTDFs using a rectangular representation for {REguments in the functions that we define.
voltage phasor and evaluates a quadratic approximation to th&€t the (£,m) entry of the bus admittance matrix [13] be
solution of the power flow [3§3.9]. We take an analogous ap-Gem + jBem. Collect the entries in the real part of the bus
proach in section IV; however, we use a polar representatiddimittance matrix together into a vectGre R**", whereL
of the voltage phasor and consider a Taylor expansion ab#uthe number of lines in the network. Let the net power in-
the zero injection operating point and also in terms of the ei§cted by generation and demand at nédee 7, so that for
tries in the real part of the admittance matrix. This allows fd#enerator busse#, > 0. Let the voltage magnitude at blse
convenient explicit evaluation of the linear terms in the Tayldpe| and its angle b&®,. Collect the power injections at all the
expansion for arbitrary topo|ogy systems_ bUSSGS, except the reference bUS, together into a VEctoR™

Liu and Gross conduct an empirical study of the variation @nd collect the angles at all busses, except the reference bus,
PTDFs with injections and with other changes [2]. They shot@gether into a vecto® € [—m, 7]".
that for the system considered the PTDFs typically change byFor every bug (including the reference bus) define functions



pe: R? x REF™ x R™ — R by: end flow.) To relate the representative flow to the net injections,
we define the functiopy,, : R x RL+" — R by:
VP € R", VG € RET" vO € R™,

V(P,G) € N, pom(P,G) = pem (G, 0(P,Q)).
pe(P,G,0) = Z |[vel[vim | . S
meK@QU{e} Consider a bug and a line joining bussesandm. We con-
. ider the effect on the representative flow along the line joinin
Gim c08(0; — ©,,) + B sin(©p — ©,,)] — P Sl S representative 9 joining
[Gem c0s(O4 )+ Bem sin(O; ) b ¢ andm of a change in the net injection at bkgrom the level
whereK (¢) is the set of busses directly connected to bbg a P (and assuming a corresponding change in the net withdrawal
line. at the reference bus to maintain a solution of the power flow
Collect the functiong, for each bug, except the reference e€quations.) Following Wood and Wollenberg [10], the (incre-
bus, into a vector functiop : R x RE+™ x R* — R™. Then, mental) power transfer distribution factor (PTDF) from injec-
given a vector of net injection® and a vector of entries in the tion at busk to flow on the line joining’ to m is the sensitivity:
real part of the bus admittance mat€ix solving the power flow

6/\ m * * 8~ m * * 89 * *
is equivalent to solving fo® in: &f,i (P*,G") = age (G*,© )aTDk(P ,G¥).
p(P,G,0) =0, (1) For brevity, we call this sensitivity “the PTDF fror to line
{m.”
where: In general, transactions may involve a change in injection at
« 0is the vector of all zeros and a busk and a corresponding change at another/b(that may
» the injection at the reference bus can be calculated onggt pe the reference bus.) In this case, and if the system is
the vector of angle® is known. lossless, then the PTDF from injection at Buand withdrawal

Consider a vector of netinjectio%", values of the real parts at bush to flow on the line joining/ to m is the difference of
of the bus admittance matri¥*, and a corresponding solutionsensitivities:
©* of the power flow equations (1). We consider the propertiesaA o
of the solution as the vector of net injections is varied atiout 812@’" (P*,G*) — 8?” (P*,G™)
and as we consider changegio. k h

We first note thap is infinitely partially differentiable with _ Obem (G, 0% < 00 00

Opem oB (P76 = g (P61 )
respect to©. Suppose that the Jacobiag%(P*,G*,@*) 90 OF% OF

. . L : For brevity, w Il thi nsitivity “the PTDF fr lin
is non-singular. Then by the implicit function theorem [14 N ,,b evity, we call this sensitivity “the o to fine

§4.4] there exists an infinitely partially differentiable function
6 : R* x RE+™ — R™ such that in some neighborhogd of

(P,G) = (P*,G*), the power flow equations (1) has a solution
satisfying: IV. POWER TRANSFER DISTRIBUTION FACTORS

Y(P,G) € N,p(P,G,0(P,G)) = 0. We calculate an estimgte of the PTDF, under thg assumption
that all the voltage magnitudes are constant. That is, we assume
Thatis, as is well-known, the power flow equations have a wethat all busses arBV busses [13§10.2] with adequate reactive
behaved solution in this neighborhood. support to maintain constant voltage. This assumption is not
Consider the flow along a line joining busseandm. Ne- realistic; however, it can be approximately true. Moreover, after
glecting shunt conductance in a line, we can evaluate the powerollary 3 and in section VI we will comment on weakening
flowing from bus/ into the line joining bus’ andm by the this assumption slightly.

In the following section we calculate the PTDFs frénto
ne {m.

functionpe,, : RET™ x R™ — R defined by: Consider a system with entries in the real part of the ad-
mittance matrixG* and consider the PTDF from to line
VG € RET™ YO € R™, ppn (G, ©) = |vg]|vpm| ¥ /m at some operating poinP*, ®* such that the Jacobian

[Gem c0s(Or — Om) + Bin sin(Of — O, )] — 0> Girm.- %(P*’ G*,©%) is non-singular. Again, using the implicit

If there are losses in the system, so t6at, < 0, then the function theorem, we can solve the power flow equations in a
flow will be different at different points along the line. As aneighborhoodV of (P*,G™*) for a solutiond as a function of
representative flow for the line joiningto m, we take the av- p andg.
erage of the flows at the two ends of the line. That is, define Suppose that this neighborhodd of (P*,G*) includes a
Pem : RET™ x R™ — R by: line segment joining0,0) and (P*,G*). Then, by Taylor's
Ltn W theorem applied to the derivative pf,,, and assuming that the
VG € R¥T,VO € RY, pim (G, O) voltage magnitudes are constant, the PTDF satisfies:
B %(pfm(@) a pnw(@)), aﬁém 8]3im 82ﬁ£m

= |vel[vm|Bem sin(Or — ©1) — 2 (Jve]? — [0m|?) Gem. P, (P,G") = b, (0,0)+8Pkap(0,0)P*

(We would obtain essentially the same results in the theorems n 0?Pom
below if we considered the sending end flow or the receiving 0P,0G

(0,0)G" + o(P",G"),(2)



* * [lo(P*,GM)|| s D
where o(P*,G*) is a function such thatH(P* Il VG, o, 0?p 2 m(G,0) = —|vellvm| X
Oas|/(P*,G*)| — 0. The error in neglecting the term 00
o(P*,G*) in (2) isquadraticand higher order ifP*, G*). B sin(©; — ©,,)[Iy — L] [I, — Im]*
e
a@Qe (050) = Oa
0? Dem o
VG,0,-5-~(G,0) = 0,
ap[m. . . . 0G0O
In (2) (0,0) is the PTDF fromk to line ém for zero in-
9py VP,G,0, -~ op (P,G,0) = -,
jections. For alossless syst ™ (0,0) is the PTDF fromk IPy,
k 2
to line ¢m calculated according to the DC power flow approxi-  vP, G, 0 W’gp 5P (P,G,0) = 0,
H k t
mation. For a system with Ioss%-asme (0,0) can be evaluated 9
P PG00, 2P (PGe) = 0
with a similar calculation that uses the complex part of line ag— N “’v’apka(;w . -
mittances instead of the inverse of the inductive reactances. For 9%
convenience, by “DC PTDF” we will meag%p’m (0,0). vPh,G,8,Vt, 868Pt(P G,8) = 0,
Ips B
vP,G,@,VS,t,T@(P,®> =

ZuGK(s) |vs][vu] x

In the development that follows, we will show that the co- [~ Gusin(©s — Ou) + Buw cos(0; — 04,)];

g azﬁém 82ﬁ£m . if ¢ = 8

efﬂmentsap aP(O’O) and 5P aG(O,O) of the linear terms RIEAR
k k .
in the expression (2) for the PTDF are all zero. That is, the G5t sin(©5 — Or) — Byt COS_(QS — 6],
PTDF evaluated aP* is equal to a constant plus terms that if ¢ € K(s),
are quadratic and higher order (#*, G*). This accounts for 0%ps
the relative constancy of the PTDFs at low to medium load if VP, ¥s,t,u, 3@ta@u(P’ 0,0) = 0
voltage constraints are not binding. 9p
VP, Vs,hu,v,a@taGw(P,O,O) = 0,

where we note that:

We evaluate the terms in the PTDF in the following: .
« superscript denotes transpose,

« 0 denotes a vector or matrix of all zeros, and
« I, is the vector with all zeros except for a one in thth

place.
Lemma 1:Consider a lingm and a bug:. We have the fol- Proof: All of the terms follow from definition of the func-
lowing expressions for the derivatives: tions, direct calculation, and substitution.
Corollary 2: Consider a liném and a bug. If gg (0,0,0)

2.5 2.5
is non-singular the%(o, 0)=0 andgppg'é(o, 0) = 0.
o o

Proof: We note that for a lossless syste, = 0 and
© = 0 is a solution of the power flow equations (1). That
is, p(0,0,0) = 0. Again using the implicit function theorem,
there is an infinitely partially differentiable functigh: R™ x
RE+m — R™ such that in some neighborhodd, of (P, G) =
(0,0), the power flow equations (1) have a solution satisfying:

8(94 - @m) _ _ i

VG0, 50 ——"2(0) = [L - L],
ap V(PaG)Eva(P7G79(P7G)):

VG, 0, (G,0) = |vg|[vm]| x

00
By c08(0y — ©,,)[I; — L], Totally differentiatingp(P, G, (P, G)) = 0 with respect to



P, and evaluating atP, G) = (0, 0), we obtain:

_ Op Op o0
0 = 9P, (0,0,0) + 70 (0,0, O)apk (0,0),
_ Ip 96

so that,

00

P, (
Let ¢ be a bus. Totally differentiating(P, G, 0(P,G)) =

with respect taP, and then with respect tB; and evaluating at

00

0, 0) is well-defined.

(P,G) = (0,0), we obtain:
0 = 22 00,0+ 0,00 0.0
- 0PopP T 0P, 00 oP,
29 (92ps 29
9?p 00
+8Pt8®(0 0, O)c’)Pk (0,0)
dp 020
+%(0 0, 0)8Pk8Pt(0’0)’
dp %6
PR I A
by lemma 1, where the terms of the fofm-]s;=1,.., mean

S|nce£(0 0,0) is non-singular by hypothesis,

Pom : .
Also, by lemma 1 b (0,0) = 0. By direct calculation:

002
o
= 50,0057 (0.0),
o 00
- ggem ©, O’SPzaPt‘O’O)
[0 0.0)] 280,02 0.0,
Vu,v,%(o,ﬂ)
= aaGTge\O O’Sf? (0,0)
M ggm (©, O’S;Zac:uv\o’ 0)
+ [gf’k (0, 0)} g;g‘m (070)(;92% (0,0).
Substituting in from the terms previously calculated, we obtain:
v, g;pg"},t(o) — 0 andva, u,%(o) —0.0

Corollary 3: Consider a system with the entries in the real
part of the bus admittance matrix specified &y and reac-

a vector havings-th entry given by the term inside the squardive compensation such that all bus voltage magnitudes are con-

stant. Also consider an operating poift sufficiently close to

brackets. Again, 5'“% (0,0,0) is non-singular, we have he condition of zero net injection such that for all operating

%0
opop, ) = O

Let uv be a line. Totally differentiating(P, G,0(P, G)) =
0 with respect taP, and then with respect t@.,,, and evaluat-
ing at(P, G) = (0, 0), we obtain:

o0
Gy

p 0%p
op0a.. 000+ 5550
00 T o2,
P 907

0 = —__(0,0,0)~——(0,0)
Rl

Gy

+ (0,0)

(0,0,0)

0.0)
s=1,...,n
8%p o6
+ 96,90 % 0 V55
Op %0
4 aPkaGuv
%0
OPLOG

(0,0)

(0,0,0)75—-=—(0,0),

dp
BE)

(0,0,0)75—==—(0,0),

by lemma 1. Again, sincgg (0,0, 0) is non-singular, we have

020

PG, (0,0) = 0.

points on the line segment joinir{@, 0) and(P*, G*) we have
that:
« the solution of the power flow equations are well-defined
and unique and

« the Jacobia% is non-singular.

Then the incremental PTDFs at the operating péintfor the
system with entries in the real part of the bus admittance matrix
G™* differ from the PTDFs calculated from the DC load flow by
an error that is quadratic and higher orde( Rt, G*). That is,

aﬁ@m

8pém (P* 55
k

9P, (0,0) 4 o( P*,G™).

3)

,G") =

O
Using a network equivalencing argument, we can slightly
weaken the requirement of constancy of voltage in corollary 3
to only requiring that all generator and load buses and busses
andm are held at constant voltage.
To interpret corollary 3, we consider the conditions when

‘m (p, @) and the
k

the error between the incremental PT

ap@m
DC PTDFaP

based on Grijalva [33.3]:

(0,0) becomes large. We have the following,



Lemma 4:Consider a line/m and a busk. Also consider Combining these yields:
any vector of net injection® and values of real parts of the

admittance matrixG' such that the angle across the life is Opem (lﬁ G — Opem (0,0) ~ 1 5ﬁzm( 0)
Oy — 0,, = 7/2. Then: oP, ‘5’ 0Py ’ 250P, ’
a p m . - . J—
. 512;2 (P,G)=0and That is, for a vector of net injections equald the error be-

tween the incremental and DC PTDFs is only ab%mh, or
around 5%, of the value of the DC PTDF itself.

Now recall that given a vector of net injections equalRo

Do = |Ve|[Vm| Bem — %(|W|2 — |vm|?)Gem. the flow on/m was equal to the steady-state stability liif, .
Therefore, for a vector of net injections only one-fifth as large,
Proof: The first result follows from the definition of thethe flow on¢m will be roughly only one-fifth as large. In sum-
PTDF on substituting the valu@, — ©,, = 7/2 into the ex- mary, for conditions such that the flow on lifie: is no more
: OPem than about 20% of the steady-state stability limit, the error be-
pression fora@ (G,©) from lemma 1. The second resulttween the incremental and DC PTDFs will be no more than
follows from the definition of,,,,. O about 5% of the value of the DC PTDF.

The valuep,,,, defined in lemma 4 is the steady-state stabil- That is, for a thermally limited line with thermal limits that
ity limit of line ¢m for the given value of7. We will now use bind at no more than 20% af,,,,, the error in the PTDF at
corollary 3 and lemma 4 to roughly estimate when we can eall feasible operating conditions would be no more than 5% of
pect the difference between the incremental and DC PTDFsthe DC PTDF. Using the data in [13, Table 3.1], this condition
be smaller than, say, 5%. The condition will involve limitingivould be satisfied for a 138 kV line that is no more than about
the flow on line/m to being a fraction of,,,,. 25 miles long; for a 345 kV line that is no more than about 65

Neglecting cubic and higher order terms in (3), we have thatiles long; and for a 765 line that is no more than about 130
for any P and G satisfying the conditions o** and G* in  miles long.
corollary 3: In contrast, for a stability limited line with flows that are

greater than 20% df,,,, or if the assumption of constant volt-
8ﬁgm( xe) Oem (0,0) ~ [ P ]TE { P } @ age is not maintained, then the error in the PTDF may become

« the representative floy,,, on line/m is at its maximum
value given by:

P, 0P, G G large. For example, if there are binding voltage constraints be-

cause of a lack of reactive power support, the PTDFs may vary

whereE € R(E+20)x(L+2n) js g coefficient matrix characteriz- significantly. It is not appropriate to rely on the constancy of

ing the quadratic terms in (3). Now, in lemma 4, ée= 5G* PTDFs under these circumstances. We note that some errors

andP = P, whereP is any vector of net injections such thain the PTDFs are positive while others are negative since, as

the angle across the liden is ©, — ©,, = 7/2 so that the flow discussed in [3§3.3], the PTDFs from a point of injection and

on line¢m is at its steady state stability limit. That is: withdrawal to each of the lines in a cutset of a lossless power
system must always sum to one.

Pem = |vel|vm|Bem — %(|W‘2 - ‘vm|2)G5m»
= |vellvm|Bem = 5 ([vel* = [vm|*)5G7,,- V. POWER TO CURRENT DISTRIBUTION FACTORS
o Although PTDFs are often discussed in relation to thermally
By lemma 4,6?’” (P,5G*) = 0. We assume tha& and P limited lines, in fact it is the heating due to current flowing on
satisfy the conditions o6 and P* in corollary 3. We obtain the line that determines the thermal limit. Instead of consid

ering the effect of the change of power injection on the power
flowing down a line, a more direct measure of the effect on a
T A - thermal constraint is the effect of a change in injection on the
P P apﬁm * ap(m . . . .
sar | B ser | R P, (P,5G™) — P, (0,0),  magnitude of the current flowing down the line. (In practice,
’ _ the magnitude of the complex flow is often used as a proxy to
by (4) for P = P-andG = 5G*,  the magnitude of the current.)

that:

Opem We again maintain the assumption that the voltage magnitude
= 0= 0P, (0,0). at each bus is constant. However, this assumption is insufficient
to yield a result similar to corollary 3. In order for the power
Dividing both sides by? = 25 yields: to current magnitude distribution factor frokrto line ¢m to be
4 B approximately constant, we will see that we must additionally
[ P ] B { P } _ 1 5ﬁem( ) require thatjv| = |v,,|. The reason for this is that if these
G* G* 250P ’ voltages are different then there will be reactive power flowing
- along the line and the PTDFs will change more rapidly with
But evaluating (4) for® = L P andG = G*, we obtain: flow.

o - Moreover, since we are interested in current magnitudes but
e (lﬁ G — e (0,0) ~ [ iP ] g { ip } the current magnitude is not differentiable at the condition of

oP, ‘5 P, zero current, we will define a “directed” current magnitude that



is differentiable and captures the relevant behavior of the claeth ends of each flowgate. If these conditions are not satisfied,
rent magnitude. We will assume that the power to current disttiren the PIDFs (and indeed the thermal capacity) will vary with
bution factor of interest is relevant to a thermal limit that corrdeading. In particular,

sponds to power flowing from bugo busm, so thato, > ©,, « the PIDFs will vary agv| — |v,,| varies and

at the operating point. « the capacity to transmit real power will fall as the voltages
Ignoring the current flowing in the shunt capacitance of the  at the sending or receiving end fall, since the thermal ca-

line, the square of the current magnitude is given by: pacity is the product of the current carrying capability and

the operating voltage.

2 2 2 2
(Gl + Bim)([0e]” + [0m " = 2[ve|[vm| cos(Or — ©1n)) In the extreme, if voltage constraints are binding then we cannot

= (G}, + Bi) rely on constancy of PTDFs [1], [15]. In section VI, we will
x ([Jvel = [vml]? + 2|ve|[vm|[1 — cos(©r — ©,,)]), mention a refinement of the calculation to help alleviate this
= 2(Ghn + Bl vellvm|[1 = cos(©r — ©,0)], imitation.
if [ve] = vl VI. REFINEMENTS FOR FLOWGATE APPLICATIONS

Paralleling the development in section I, we define the func-

fion iy, - RL*™ x R* — R by’ One important application of PTDFs is in flowgate transmis-

sion rights mechanisms. In this application, the most critical

VG € R VO € R™, iy (G, ©) = condition is when a line, for example lirfen, is congested. If
5 5 the injections in the system for this condition were known, we
VGl + Biy v/ 2lvel[uml[1 — COS(GZ — Om)l; could directly use the incremental PTDF evaluated at this op-
if Oy > O, erating point. However, because many system conditions can
—/G3,, + BE A/ 2[vel[um][1 — cos(©r — ©,,)], give rise to congestion on a lifen, we cannot determine these
if ©, < O, conditions precisely in advance. The results we have developed
0, if O, = Oy,. show that in some cases the DC PTDF is a reasonable approxi-

~ mation that applies over a range of conditions.
The functioni,,, is twice partially differentiable and its ab- However, we can refine the estimate of the incremental PTDF
solute value is the magnitude of the current on the line by utilizing the conditions for line/m to be congested. In
(Strictly speaking, in the presence of shunt capacitance, thigrticular, suppose that a thermally limited lide: is con-
function is equal to the current only at the mid-point of the lingested when the angle difference across the line is given by
between the bussé&sandm.) To relate the current to the nete, — ©,,, = AO,,,. Define® € R to be a vector of all zeros
injections, we define the functian,, : R” x RE4" — Rby:  except that in thé-th place there is the ent®,,. Then we

. . can approximate the incremental PTDF when line is con-
V(Pv G) € N7 Z@m(Pa G) = me(Ga G(Pa G)) gested by

The (incremental) power to current magnitude distribution 55 9% _ 90
U . . Pem * * Dem * \ * *
factor (PIDF) from injection at buk to current magnitude on P, (P.G") = 55 (G ’@’8Pk (P*,G%),
the line/m is the sensitivity:

Obem, — 00
. . R~ — (G*,0) 0,0),
aifm (P* G*) _ 8Wm (G* 6*)879 (P* G*) 00 ( japk ( )
0Py ’ - 00 "7 7OPy ’ ' }
Pem
For brevity, we call this sensitivity “the PIDF frorh to line where we note th P, depends only otz and; — Oyn.
m.” That is, we use the actual congestion conditions to evaluate the
As in corollary 3 of section 1V, we have: sensitivity of the flow on liném to angle, but then approximate
. . the sensitivity of angle on injections using the DC approxima-
Digm, Digm, tion. A similar approach applies for PIDFs.
P*,G*)=--=-"(0,0 P* G*), . S . .
OP;, ( ) 0Py (0,0) +of ) This approximation could potentially be applied even for

voltage limited lines. In particular, we could consider the con-

so that the incremental PIDFs at the operating péihdiffer  gitions under which voltage constraints are binding on the flow
from the PIDFs calculated from the DC load flow by an error g

that is quadratic and higher order(if*, G*). along a line and use this to estimggﬂ orop at the con-
Note that under the assumption of constant voltages, thgions where voltage constraints aré bindingfﬂ
PTDFs and the PIDFs calculated from the DC power flow are
proportional to each other. At other operating points, however,
the PIDFs can be expected to change more rapidly with flow¥ !
than the PTDFs unless the conditipn| = |v,,| is maintained.
The implication is that in a thermally limited system, for In this section, we empirically validate the theoretical results
PIDFs to be constant, voltage support must be provided on tsing the Electric Reliability Council of Texas (ERCOT) sys-
constrained lines to make the voltages constant and equateah. Figure 1 shows DC PTDFs versus the incremental PTDFs

RESULTS FORELECTRIC RELIABILITY COUNCIL OF
TEXAS SYSTEM
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Fig. 1. DC PTDFs versus incremental PTDFs at 2002 Summer peak conditions for ERCOT system.

calculated for a 2002 Summer peak study case for thirteen dif- hold approximately even when the assumption of constant

ferent points of injection distributed across ERCOT and faroltage is not completely met.

5989 transmission lines. Each point of injection is illustrated

with a different symbol in figure 1. For each PTDF, the point VIIl. CONCLUSION

of withdrawal is the reference bus. That is, there are approxi- . -
X n this paper we presented conditions for PTDFs to be ap-

mately 78,000 DC PTDFs and incremental PTDFs represengté bap P P

in fi 1. The PTDF h d ximately independent of the injections and withdrawals in
In gure 1. The S are shown as percentages an eSSf'electric power system. We showed theoretically that for sys-
tially all of them fall on a line with slope equal to one and in

tems with losses and arbitrary topology, multiple points of in-
tercept equal to zero. jection and withdrawal, and losses, the PTDFs are relatively
Figure 1 shows that for all points of injection and almost alhdependent of injections and withdrawals if topology is fixed,
lines, the DC PTDF and incremental PTDF are essentially thgitages are held constant, and the flows on lines are sufficiently
same. The only exception are the 13 PTDFs calculated for §3gs than the steady-state stability limit.
line that jOinS the reference bus to the rest of the SyStem. A”We also ana|yzed power to current magnitude distribution
power flowing to the reference bus flows through this line arglctors PIDFs. For relative constancy of the PIDFs frbmno
consequently the incremental affect on losses throughout ¥1@ine ¢, we found that we must assume that| = |v,,,| in
system is reflected in this line. addition to the assumptions for relative constancy of PTDFs.
It is important to note that the bus voltages for the Summ@&hat is, we must assume that there is adequate voltage support
peak case are not all held constant. That is, corollary 3 seeassa condition for the effectiveness of flowgate rights schemes.
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