
Figure 2-1 Lines of zero phase for the function $\exp \left[j 2 \pi\left(f_{X} x+f_{Y} y\right)\right]$.

τ		dEsegh suydo .xi.mo ${ }_{\text {d }}$	
	${ }^{2} \boldsymbol{H}+{ }^{I} \boldsymbol{H}$		${ }^{2} f+{ }^{L} f$
	${ }_{*}^{\tau} H^{\top} \pm$	ио!џе\|әлоь	${ }^{2} f \otimes{ }^{\top} f$
	${ }^{2} H *{ }^{5}{ }^{\prime}$		${ }^{2} \mathrm{f} 5$
	${ }^{\tau_{H}{ }^{\text {I }} \text { I }}$	uo!ın\|0^U0才	${ }^{\tau} f *{ }^{1} f$
	$\left({ }^{0} n-n\right) H_{H}$		(x) $f_{x 0 n \pm Z!}{ }^{\circ}$
	(n) $J_{\text {oxnzz }}{ }^{\text {a }}$	H!पS	$\left({ }^{0} x-x\right) f$
	$(n-)_{*}{ }^{\text {d }}$		$(x)_{*} f$
	$(\mathrm{n} \mathrm{e})_{\boldsymbol{H}}\|\mathfrak{e}\|$	6u!peos	$(\mathrm{e} / \mathrm{X}) \mathrm{I}$
	$x p_{x n y z!-} \partial(x) f_{\infty}^{\infty-} \int_{\text {\|\| }}=$	- u! sworоәч! э!seg $(n)_{\boldsymbol{H}}$ 	$\begin{array}{ll} n p_{x n x z!} \partial(n) A_{\infty}^{\infty-} \\ \text { a-เ әчц } \end{array}$
	әр	¢ யגOłSUR』1	1noy

sapplq fo yopis $p=(x)$ quoว

6

Point sources and source Points for Green's
Functions
Fresnel-Kirchhoff boundary cond.

- Illumination of the screen from a
point source at P_{2}
Choice of Green's Functions in the
Rayleigh-Sommerfled treatment of
Diffraction
- In this case the Green's function
source points are symmetric about
the plane of the screen.

səэueıs!p ләлләsqo ләбuol pue ןе!хелед

