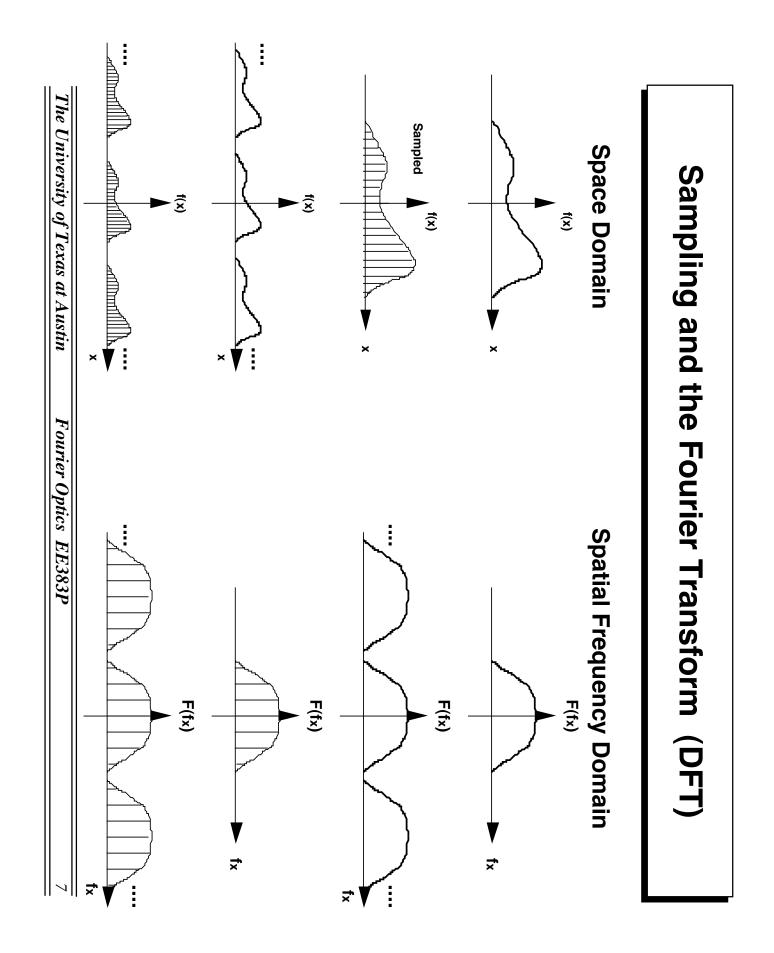


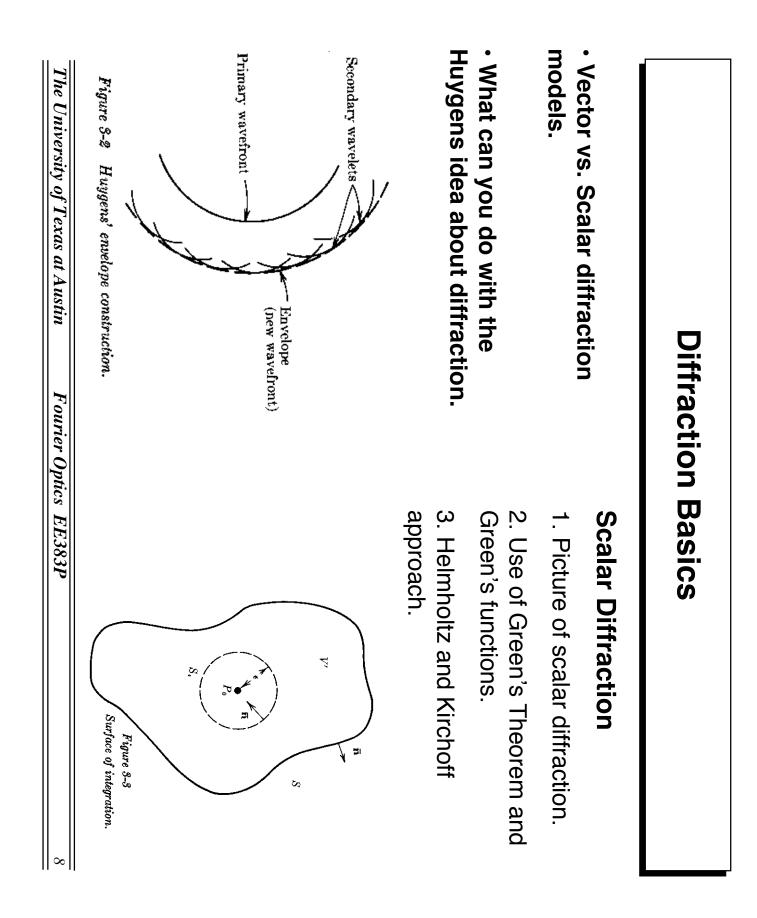
2	Fourier Optics EE383P	The University of Texas at Austin
$F_1 + F_2$		$f_1 + f_2$
$F_1F_2^*$	correlation	$f_1 \otimes f_2$
F_1F_2 $F_1 \circledast F_2$	convolution	$\begin{array}{c} f_1 \circledast f_2 \\ f_1 f_2 \end{array}$
$e^{-i2\pi ux_0}F(u)$ $F(u-u_0)$	shift	$f(x - x_0)$ $e^{i2\pi u_0 x} f(x)$
$F^*(-u)$		$f^*(x)$
a F(a u)	scaling	f(x/a)
Ċ	Basic theorems in 1-D	
$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx$	F(u	$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux}du$
	The 1-D Fourier transform integrals	_
iuide	Fourier Transform Guide	Fouri

383P 4	Fourier Optics EE383P	The University of Texas at Austin
This conserves energy per unit bandwidth.		
(1/a) $Comb(au)$ (8 $areas = 1/a$)		Comb(x/a) (8 areas = 1)
j 2 π u F(u)		$\frac{df(x)}{dx}$
$\frac{1}{2} [F(u-b) + F(u+b)]$	modulation	$cos(2\pi bx) f(x)$
$\delta(u - 1)$	Sindooldo	$exp(j2\pi x)$
$1/2 \delta(u - 1) - 1/2 \delta(u + 1)$	einuenide	$j sin(2\pi x)$
$exp(-\pi u^2)$	Gaussian	$exp(-\pi x^2)$
sinc ² (u)		Triangle(x)
ictions and Theorems	more 1-D Functions	Fourier Guide –

5	Fourier Optics EE383P	The University of Texas at Austin
$F_1F_2^*$	correlation	$f_1 \otimes f_2$
F_1F_2 $F_1 \circledast F_2$	convolution	$\int_{1} (\mathfrak{T}) \int_{2}$ $\int_{1} f_{2}$
$e^{-i2\pi(ux_0+vy_0)}F(u, v)$ $F(u-u_0, v-v_0)$	shift	$f(x - x_0, y - y_0)$ $e^{i2\pi(u_0x + v_0y)}f(x, y)$
$\frac{1}{ a } \frac{1}{ c } F\left(\frac{u}{a}, \frac{v}{c}\right)$ $F^*(-u, -v)$	scaling	$f(ax, cy)$ $f^*(x, y)$
8	Theorems in 2-D	8
$\iint f(x, y)e^{-i2\pi(ux+vy)}dxdy$	$du dv \qquad F(u, v) = \iint_{u \in U} f(u, v)$	$f(x, y) = \iint_{u} F(u, v)e^{i2\pi(ux + vy)}du dv$
8 8	The Fourier transform integrals	88 The F
D	Fourier Guide in 2-D	Fou

The University of Texas at Austin Fourier Optics EE383P	$Comb(x) \ Comb(y) = Comb(x) \ \delta(y) * \ Comb(y) \ \delta(x) = Comb(x)$ orchard or bed-of-nails function	$Comb(x) \delta(y) = a \ I-D$ comb of delta functions	$Comb(x) = a \ stack \ of \ blades$	$\delta(x) = a$ single blade	Comb(x/a, y/b) (1/ab)Comb (au, bv)	Comb(x, y) $Comb(u, v)$	Examples of 2-D Transforms
6	$\delta(x) = Comb(x, y)$	ions			u, bv)	لع ا	





6	Fourier Optics EE383P	Fourier	The University of Texas at Austin
$\overline{\mathbf{r}}_{01}$ P_0 R S_2 $\overline{\mathbf{r}}_{01}$ P_0 R S_2 Kirchhoff formulation of diffraction by a plane screen.	Figure $3-4$	on 1s is broken adius goes	 Select surface of integration Define boundary conditions Kirchoff (first approach) Rayleigh (later approach) Segment sphere into different regions The sphere of integration is broken into several segments: Inside the opening, Σ Behind the screen, S₁ On the sphere whose radius goes to infinity, S₂
ar Diffraction	on of Scal	undatic	Theoretical Foundation of Scalar

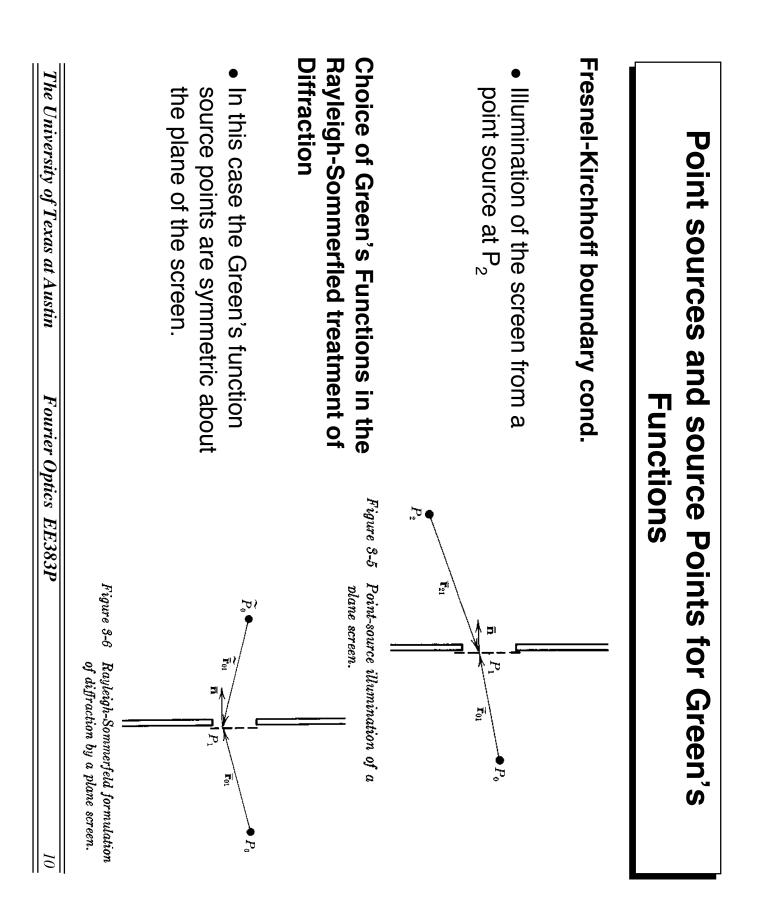


Figure 4-1 Diffraction geometry. The University of Texas at Austin Fourier Optics EE383P 11	P_{1} P_{1} P_{1} P_{1} P_{1} P_{2} P_{2	 Begin with the Rayleigh-Sommerfeld Diffraction Integral (same as Huygens-Fesnel with correction) Apply successive approximations: paraxial and longer observer distances 	Fresnel Diffraction
---	--	---	---------------------

Choose the phase of the time phasor: $exp[-j 2\pi v t]$ Positive direction plane wave: $exp[j k \cdot z]$ And for a diverging spherical wave: $exp[j k \cdot r]$ And for the quadratic (paraxial) approximation to the diverging spherical wave: $exp[j k/2z (x^2 + y^2)]$ $exp[j k/2z (x^2 + y^2)]$ Wavefront z=0 y z=0 z
--

