Deriving the Lens Transmittance Function

Thin lens transmission is
given by a phase with unit
magnitude.

t(x, y) = exp| jkDo | exp jk(n- ) D(x, y)]

Find the thickness function
for left half of the lens first.

Use paraxial approximation
for the square root

(R>>x ory). Add the two
halves to get:

_p . 1& 10>
D(x.y) = Do- 55~ £~ X +°)

Val +

VRE — 2t — gyt | > :-E-—Rz — VR? — 27 — 4

= Agy

Figure 6-2 Calculation of the thickness function.
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Fourier Transform Configurations

(a) Objectin lens plane (front or back is
the same).

Gives Fourier transform with a phase
factor.

(b) d, =f gives exact Fourier transform.
Other values of d, give a phase factor.

Object

—~——— [ ——
(a)

Object

IEE—— — | f ——

(b)
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More Fourier Transform Configurations

(c) Gives a scaled Fourier Object
transform with a phase factor. ] =
Omit the lens and you also get a ™S
Fourier transform in a converging >
spherical wave. i -~
P
e —

(c)

Virtual Fourier Transform

(d) Gives a (scaled) virtual \_ observed in plane of point source
Fourier transform in the plane of \

the point source of a diverging
spherical wave. <@ /

__—1 Point Source

Object —= d >

(d)
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Vignetting

Lens Focal plane
Vv

[(df)uq -(@/vy] B (ugv)
Object —

FIGURE 5.6

Vignettipg of the input. The shaded area in the input plane represents
the portion of the input transparency that contributes to the Fourier
transform at (u;, vy).
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Imaging with Lenses (Diffraction Analysis)

1. Fresnel diffraction from U U, u, u/ U,
to U,

|
|
2. Multiply by the lens }
transmittance (quadratic :
phase) :

3. Fresnel diffraction from U, I'(__d°__>| [<—di—>

to U,

Figure 6-8 Geometry for tmage formation.
Shortcut: find the “impulse

. yo yi
response” by making the " 4 A
input a point source (one
. . . 7 i
plxel) In the ObJeCt plane. Geometrical / / ?
object

point
What part of the object really / / o (i y)

contributes to an image
point?

Figure 6-9 The region R where h has significant value for the
particular coordinates (z;,y;) shown.
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General Optical Imaging System with Diffraction

 Diffraction determines spherical wave propagation from object to
entrance pupil (or from exit pupil to image plane).

 Geometrical optics determines laght transfer from entrance to exit
pupil. May contain aberrations.

Entrance  Exit
pupil pupil

Obiject "Black box" Image

FIGURE 6.1
Generalized model of an imaging system.
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Abbé Concept of Image Formation

High spatial frequencies in the object do not pass through the lens
aperture; low frequencies do. The frequencies that pass through the
lens for a Fourier transform (with a phase factor) at the focal pland
(source image plane) before passing on to the image plane.

. ———
) e o @74
. ---.v:v:;::::?:::: Image

TaV®

Diffracted

slane
orders i

Figure 6-2 The Abbe theory of tmage formation.

The University of Texas at Austin Fourier Optics EE383P 7




OTF Calculation via Correlation Function

Area of
overlap

\ Pl <P A

— 7¥Zi|fX| J—

(a) (b)

FIGURE 6.4
Geometrical interpretations of the OTF of a diffraction-limited system.
(a) The pupil function—total area is the denominator of the OTF; (b)

two displaced pupil functions—the shaded area is the numerator of
the OTFE.

Yi
-— 2W_.._.

il

2w . 22y

| B

PN R ——

FIGURE 6.6  7ZilfX
Calculation of the OTF for a square aperture.

Note that the OTF for a square
aperture is linear along the axes
and quadratic along the diagonals
of the base, and that the base is
twice the size of the square
aperture or coherent transfer
function.

5

- e,

CRLLRS
50
22

FIGURE 6.7
The optical transfer function of a
diffraction-limited system with a square

pupil.
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OTF of a Circular Aperture

Again the base circle is twice the
diameter of the aperture and the
coherent transfer function.

—{

<——7»Zifxl2——
(b)

FIGURE 6.8

Calculation of the area of overlap of
two displaced circles.

(a) Overlapping circles, (b) geometry
of the calculation.

05

FIGURE 6.9

The optical transfer function

of a diffraction-limited system
with a circular pupil. (a) Three-
dimensional perspective, (b) cross
section.

(b)

0.5 1
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Effect of Aberrations - Misfocus Example

General aberration analysis
looks at deviation from

S
Al
W’m&w
spherical wavefronts. "o

NIRRT
NAIIILLT
NS e e ot o e
2 RN RIS LT T
RN

Misfocus with a square aperture
IS a case that can be analyzed.

FIGURE 6.10 fx/2tq 70
Geometry for defining the aberration
Exit  function. (a) FIGURE 6.11
y'e pupil OTF for a focusing error in a
L Ideal H 1 system with a square pupil. (a)
(xy) » image Three-dimensional plot with
Wixy) point 0.8 fx/2f, along one axis and W,,/A
> 06 along the other axis. (b) Cross
' section along the fx axis with
0.4 W, /A as a parameter.
Zi
~y—_ Actual 0.2 10
’_ wavefront :
Gaussian
reference fx/2fy
sphere (b)
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Aperture Shape Effects

Pupil
Intensity Transmission

FIGURE 6.13
Geometrical optics prediction of the point-spread function
of a system having a square pupil function and a severe

focusing error. -1 0.5 0.5 1 ow
(a)

Severe misfocus error goes to

. . . . 10g1(l/1o) .
geometrical optics limit. Interesting ’ S
example is pinhole camera . Rectangular
homework problem. One limiting 2
case is simply shadow casting. 3
_4 N
* One way to improve the point 1 2 3 4 2wulkz,
. . . (b)
Spread functlon_ls to_apodlze the FIGURE 6.14
ap erture. What is gain ed and what Apodization of a rectangular aperture by a Gaussian function.
: o) (a) Intensity transmissions with and without apodization.
IS lOSt . (b) Point-spread functions with and without apodization.
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Apodization Continued

Gains and losses appear in the
frequency domain resulting from
apodization. Don’t confuse this
with the inequality that applied to
(phase) aberrations.

H A
1.0 7
Apodized
05 T Unapodized
0 0.5 1.0 fy/2fy

FIGURE 6.15
Optical transfer functions with and
without a Gaussian apodization.

0.8
Inverse
06 | apodized
0.4
2
-0.5 0.5 1
(a) x/2w
H ‘}
1.0 1
Unapodized
Inverse
apodized
05T

oj5 1 (‘) fy / 2ty

() FIGURE 6.16
Pupil amplitude transmittance
and the corresponding OTF
with and without a particular
“inverse” apodization.
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Comparison Example - Coherent vs. Incoherent

1. Amplitude spectrum of cosine
(left) and intensity spectrum of
the same function (right)

[Object or input function]

2. Coherent (amplitude transfer
function (left) and

OTF (right) [square aperture]
for imaging systems.

3. Output intensity spectra for
coherent imaging system (left)
and Incoherent system (right)

Coherent Incoherent
Gg Gg * Gg

172
TM T1/4
1 I T

; X X
2ty 0 fs 2f, 2t o fo 2f,
H H«H
| » A )
2fo fo fo 2fo -2f0 -fo fo 2fq

F{1j}=GgH * GgH

1/2 1/2
?1/4 ?1/4 <1/4 <A/4
l | | 1 l* | | 41 ¢
- of

fx
20y Ay fo 26 21,

FIGURE 6.17
Calculation of the spectrum of the image intensity for object A.

A: ta(€, M) = cos2m fE
B: ta(€,m) = |cos2m fE|.
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Resolution Criteria

Rayleigh criterion for two incoherent point sources yields a single
result (left). But, for the coherent case, the result depends on the
relative phase of the two coherent point sources

FIGURE 6.18
Image intensity for two equally U
bright incoherent point sources 0
separated by the Rayleigh -0 41
resolution distance. The vertical 0=
lines show the locations of the two 1.2¢
sources. o=n 1t 0=m/2
8 L
067}
0.4¢
21
o ‘ . _ uw/Az;
-2 -1 1 2
FIGURE 6.19
Image intensities for two equally bright coherent point sources
uw / Az; separated by the Rayleigh resolution distance, with the phase
- difference between the two sources as a parameter. The vertical

lines show the locations of the two point sources.
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