er Optics EE383P	The University of Texas at Austin Fouri
	end;
	end;
	end;
	a(i1,i2)=1;
	if (i1-N21)^2+(i2-N21)^2<=R1sq
	for i2=1:N
	for i1=1:N
a=fftshift(a);	
	pi=3.14159;
colormap(gray);	z=400;
<pre>imagesc(a);</pre>	NZSQ-0 Z
figure(1);	D000-0000.
a=a-c;	ph2=zeros(N);
	ph=zeros(N);
<pre>%end;</pre>	c=zeros(N);
% end;	b=zeros(N);
ه c(⊥⊥,⊥∠)−⊥; % end:	a=zeros(N);
% if (i1-N21)^2+(i2-N21)^2<=R2sq	N21=N2+1;
% for i2=1:N	N2=N/2;
%for il=1:N	N=512;
ular Spectrum Approach	Fresnel Code - Angu

⁷ ourier Optics EE383P	The University of Texas at Austin F
	b=b.*ph2;
plot(1:N, abs(c1));	enq;
figure(3);	end;
c1=c(N21,1:N);	x^2-y^2));
rt (1-	ph2(i1,i2)=exp(j*2*pi*z*sq
colorbar;	j*pi*z*(x^2+y^2));
colormap(gray);	%ph(i1,i2)=exp(-
<pre>imagesc(d);</pre>	y=(i2-N21)/N;
d=d.^2;	x = (i1 - N21) / N;
d=abs(c);	for i2=1:N
figure(2);	for il=1:N
c=fftshift(c);	<pre>imagesc(abs(b));</pre>
c=ifft2(b);	figure(4);
b=fftshift(b);	b=fftshift(b);
<pre>imagesc(angle(ph2));</pre>	
figure(5);	b=fft2(a);
ngular Spectrum Approach	Fresnel Code - A

|| N||

Towards the far-field. R = 10 lambda; z = 400 lambda

Fresnel Diffraction from a Disk

First minimum on axis. R = 10 lambda; z = 50 lambda

Fresnel Diffraction from a Disk

Fresnel Diffraction from a Disk

Where the disk was a minimum. R = 10 and 8 lambda; z = 50 lambda

Fresnel Diffraction from a Ring

|| o

Towards the shadow region. R = 10 and 8 lambda; z = 20 lambda

Fresnel Diffraction from a Ring

The University of Texas at Austin

Off Axis and with the Fourier-Bessel transform.

zv := 4000

$$\mathbf{p} \coloneqq 1..400$$
 $\mathbf{r}_{\mathbf{p}} \coloneqq \frac{\mathbf{p}}{0.5}$
 $\mathbf{q}(\mathbf{r}, \mathbf{z}) \coloneqq 2 \cdot \frac{\pi}{\mathbf{z}}$
 $\int_{0}^{1} \int_{0}^{1} \frac{\mathbf{r} d}{J_{0} \left(2 \cdot \pi \cdot \frac{\mathbf{r}}{\mathbf{z}} \cdot \mathbf{r} \right) \cdot \exp\left(j \cdot \pi \cdot \frac{\mathbf{r}^{2}}{\mathbf{z}}\right) \cdot \mathbf{r} \mathbf{l} d\mathbf{r} \mathbf{l}$

Radial dependence evaluated using the Fourier-Bessel transform.

The University of Texas at Austin Fourier Optics EE383P

9

|

11

