EE381K-14 Multidimensional Digital Signal Processing
Problem Set \#4: Practice Midterm \#1 Based on the Fall 1996 Midterm \#1
Date assigned: February 18, 2008
Date due: February 25, 2008

Reading: D\&M, Chapters $1 \& 2$; Lectures 1-9

You may use any computer program to help you solve these problems, check answers, etc.
Homework is due on Friday, February 25th, by 11:00 AM. You may turn in the homework to Prof. Evans' office in ENS 433B, by fax to 471-6512, or by e-mail. If you submit the homework by fax, please let me know by e-mail.

Regularly scheduled office hours for Prof. Evans are Wednesdays 10-11 AM, Thursdays 12:30-1:30 PM, and Fridays 9:00-10:00 AM in ENS 433B. Feel free to send questions by e-mail to bevans@ece.utexas.edu.

Be sure to submit your own independent homework solutions.

Problem 4.1 Finite-Extent 2-D Convolution

Determine the two-dimensional convolution of the two sequences $x\left[n_{1}, n_{2}\right]$ and $h\left[n_{1}, n_{2}\right]$ sketched in Figure 1. (Note: Both sequences have sample values equal to 1 at the locations indicated by large black dots and are zero elsewhere.)

Figure 1: The two sequences to be convolved in Problem 1.8.

Problem 4.2 Non-Separable 2-D Discrete-Time Fourier Transform
$H\left(\omega_{1}, \omega_{2}\right)$ is 1 in the shaded regions in Figure 2 and 0 in the unshaded regions. Determine $h\left[n_{1}, n_{2}\right]$.

Figure 2: $H\left(\omega_{1}, \omega_{2}\right)$ for Problem 4.2.

Problem 4.3 Elliptic Passband
The ideal circular lowpass filter has the impulse response

$$
h_{c}\left[n_{1}, n_{2}\right]=\frac{W}{2 \pi} \frac{J_{1}\left(W \sqrt{n_{1}^{2}+n_{2}^{2}}\right)}{\sqrt{n_{1}^{2}+n_{2}^{2}}}
$$

and frequency response

$$
H_{c}\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1, & \omega_{1}^{2}+\omega_{2}^{2} \leq W^{2}<\pi^{2} \\ 0, & \text { otherwise } .\end{cases}
$$

Determine the impulse response of the ideal elliptical lowpass filter that has the frequency response

$$
H_{e}\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1, & \frac{\omega_{1}^{2}}{a^{2}}+\frac{\omega_{2}^{2}}{b^{2}} \leq W^{2}<\pi^{2} \\ 0, & \text { otherwise } .\end{cases}
$$

where $0<a \leq b \leq \pi$. Plot the 2-D impulse response, $h_{e}\left[n_{1}, n_{2}\right]$.
Problem 4.4 Filtering Using the Discrete Fourier Transform
Consider an image $x\left[n_{1}, n_{2}\right]$ of 512×512 pixels to be filtered by a system with an impulse response $h\left[n_{1}, n_{2}\right]$. The sequence $h\left[n_{1}, n_{2}\right]$ is an 11×11 sequence that is zero outside $0 \leq$ $n_{1} \leq 10$ and $0 \leq n_{2} \leq 10$. Compare the computations

$$
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * * h\left[n_{1}, n_{2}\right]
$$

and

$$
v\left[n_{1}, n_{2}\right]=\mathcal{D} \mathcal{F} \mathcal{T}_{k_{1}, k_{2}}^{-1}\left(\mathcal{D} \mathcal{F} \mathcal{T}_{n_{1}, n_{2}}\left\{x\left[n_{1}, n_{2}\right]\right\} \cdot \mathcal{D} \mathcal{F} \mathcal{T}_{n_{1}, n_{2}}\left\{h\left[n_{1}, n_{2}\right]\right\}\right)
$$

where the forward DFT and inverse DFT are 512×512 points in size. For what values of $(n 1, n 2)$ does $v\left[n_{1}, n_{2}\right]$ equal $y\left[n_{1}, n_{2}\right]$?

Problem 4.5 1-D Discrete Sine Transform
Develop an algorithm to compute the forward discrete sine transform using an appropriate discrete Fourier transform algorithm. The forward discrete sine transform is defined as

$$
X_{s}[k]=\sum_{n=0}^{N-1} 2 x[n] \sin \frac{(2 n+1) k \pi}{2 N}
$$

for $k=0,1, \ldots, N-1$.

