Periodically Sampled Systems

Lecture and notes by Prof. Brian L. Evans (UT Austin)
Scribe: Ying Lu (UT Austin)
Based on notes from Prof. Russell Mersereau (Georgia Tech)
February 11, 2005

1 Processing Signals on Arbitrary Lattices

Figure 1: Block diagram of linear shift-invariant filtering input signal x to produce output signal y.

- Almost any signal processing operation that can be performed on rectangularly sampled signals can be performed on arbitrarily sampled ones.
- Filtering
- Spectrum Analysis
- Interpolation
- The response of the LSI system $h(\mathbf{n})$ shown in Fig. 1 is

$$
y(\mathbf{n})=\sum_{\mathbf{k}} x(\mathbf{k}) h(\mathbf{n}-\mathbf{k})=\sum_{\mathbf{k}} h(\mathbf{k}) x(\mathbf{n}-\mathbf{k})
$$

- To compute the system frequency response, start with an analog continuousspace complex sinusoid with fixed frequency $\boldsymbol{\Omega}$, sample it with sampling matrix V, and take the discrete-time Fourier transform:

$$
\begin{gathered}
x_{a}(t)=e^{j \boldsymbol{\Omega}^{T} \mathbf{t}} \\
x(\mathbf{n})=e^{j \boldsymbol{\Omega}^{T} \mathbf{V} \mathbf{n}} \\
y(\mathbf{n})=\sum_{\mathbf{k}} h(\mathbf{k}) x(\mathbf{n}-\mathbf{k}) \\
y(\mathbf{n})=e^{j \boldsymbol{\Omega}^{T} \mathbf{V} \mathbf{n}} \underbrace{\left[\sum_{\mathbf{k}} h(\mathbf{k}) e^{-j \boldsymbol{\Omega}^{T} \mathbf{V} \mathbf{k}}\right]}_{\text {Frequency Response } H\left(\mathbf{V}^{T} \boldsymbol{\Omega}\right)}
\end{gathered}
$$

The relationship between the discrete-time and continuous-time Fourier domains is $\omega^{T}=\boldsymbol{\Omega}^{T} \mathbf{V}$. Hence, $\omega=\mathbf{V}^{T} \boldsymbol{\Omega}$.

2 Scanning

- Sometimes it is convenient to map multidimensional signals to 1-D and vice versa.
- Should broadcast TV signals be processed as a 3-D signal or a 1-D signal? See Figure 2

3 Lexicographic Ordering

This topic was covered in Section 7.4 of the first edition of the Dudgeon \& Mersereau but it is not available in the Chapter 2 handout. See Fig. 3.

- Consider an $N \times N$ image, $x\left(n_{1}, n_{2}\right)$
- Now create an N^{2}-point 1-D sequence by concatenating the columns of x. See Fig. 4

$$
\begin{gathered}
\quad g\left(N n_{1}+n_{2}\right)=x\left(n_{1}, n_{2}\right) \\
n_{1}=\text { Column Index } \quad n_{2}=\text { Row Index }
\end{gathered}
$$

Figure 2: Sampling for broadcast TV signals.

4 Relating the Discrete-Time Fourier Transforms (DTFTs)

- Fact: The 1-D Discrete-Time Fourier Transform of g and the 2-D Discrete-Time Fourier Transform of x are related as follows:

$$
G(\omega)=\sum_{n=0}^{N^{2}-1} g(n) e^{-j \omega n}
$$

Let $n=N n_{1}+n_{2}, 0 \leq n_{1}<N, 0 \leq n_{2}<N$,

$$
\begin{gathered}
G(\omega)=\sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-1} g\left(N n_{1}+n_{2}\right) e^{-j \omega\left(N n_{1}+n_{2}\right)} \\
G(\omega)=\sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-1} x\left(n_{1}, n_{2}\right) e^{-j \omega N n_{1}} e^{-j \omega n_{2}}=X(N \omega, \omega)
\end{gathered}
$$

Fig. 5 shows one scan line passing through the origin. Due to the periodicity of the Fourier domain, the scan line replicates every 2π along the ω_{2} axis, and every $\frac{2 \pi}{N}$ along the ω_{1} axis.

- $G(\omega)$ is a scanned version of $X\left(\omega_{1}, \omega_{2}\right)$.

Lexicographic ordering in $n \stackrel{F}{\longleftrightarrow}$ Scanning in ω
Scanning in $t_{1}, t_{2} \stackrel{F}{\longleftrightarrow}$ Lexicographic ordering of 2-D Fourier series coefficients

Figure 3: Lexiographic ordering

Figure 4: 1-D Sequence

5 Why Might This Be Useful?

- 2-D Filters can be designed using 1-D design algorithms.
- 1-D hardware can be used to implement 2-D Filters.
- 2-D hardware can be used to do 1-D processing.
- Compensation for scan lines, etc.

Figure 5: Relationship between the 2-D DTFT and the 1-D DTFT. Replicas of the scan line due to the periodicity of the 2-D Fourier domain are not shown.

6 Periodic Sequences

\diamond A sequence is rectangularly periodic if

$$
\begin{gathered}
\tilde{x}\left(n_{1}, n_{2}+N_{2}\right)=\tilde{x}\left(n_{1}, n_{2}\right) \\
\tilde{x}\left(n_{1}+N_{1}, n_{2}\right)=\tilde{x}\left(n_{1}, n_{2}\right) \\
N_{1}: \text { Horizontal Period } \\
N_{2}: \text { Vertical Period }
\end{gathered}
$$

\diamond More generally, $\tilde{x}\left(n_{1}, n_{2}\right)$ is periodic with periodicity matrix \mathbf{N} if

$$
\tilde{x}(\mathbf{n})=\tilde{x}(\mathbf{n}+\mathbf{N} \mathbf{r}), \forall \mathbf{n} \in \mathcal{I}, \forall \mathbf{r} \in \mathcal{I}
$$

where \mathcal{I} is the set of all integer vectors of same dimension as \mathbf{n}.

1. $|\operatorname{det} \mathbf{N}| \neq 0$ is the number of samples in one period of \tilde{x}.
2. \mathbf{N} is an integer matrix and $|\operatorname{det} \mathbf{N}|$ is a positive integer.
3. The columns of \mathbf{N} represent periodicity vectors.
4. \mathbf{N} diagonal \Longrightarrow rectangular periodicity.
