Computing Coset Vectors

$\operatorname{FPD}(\mathbf{S})=\{\mathbf{U} \mathbf{l} \bmod \mathbf{S} \mid \mathbf{l} \in \operatorname{FPD}(\Lambda)\}$

1. FPD fundamental parallelepiped
2. S is an $\mathrm{N} \times \mathrm{N}$ resampling matrix (non-singular integer matrix) having Smith form $\mathbf{S}=$ $\mathbf{U} \Lambda \mathbf{V}$
3. Vector modulo a matrix
$\mathbf{x} \bmod \mathbf{M}=\mathbf{x}-\mathbf{M}\left\lfloor\mathbf{M}^{-1} \mathbf{x}\right\rfloor$
4. $\mathbf{x} \bmod \mathbf{M}=\mathbf{x}-\mathbf{M}\left[\mathbf{M}^{-1} \mathbf{x}\right]$
5. $\operatorname{FPD}(\Lambda)$ is a rectangular prism that is of dimensions $\Lambda_{11} \times \Lambda_{22} \times \ldots \times \Lambda_{\mathrm{NN}}$ where Λ_{ii} is the i th diagonal entry of Λ
6. I is a point in the rectangular prism of data $\operatorname{FPD}(\Lambda):\left\{0, \Lambda_{11-1}\right] \times\left[0, \Lambda_{22-1}\right] \times \ldots \times[0$, $\left.\Lambda_{\mathrm{NN}^{-}} 1\right]$ assuming that $\Lambda_{11}, \Lambda_{22}, \ldots \Lambda_{\mathrm{NN}}$ are positive.

Smith Forms for Upsampling and Downsampling

1. Smith form is not unique
2. $\mathbf{S}=\mathbf{U} \Lambda \mathbf{V}$
3. $\mathbf{S}^{-1}=\mathbf{V}^{-1} \Lambda^{-1} \mathbf{U}^{-1}$
4. Downsample [1] by $\mathbf{S}: \mathrm{x}_{\mathrm{d}}[\mathbf{n}]=\mathrm{x}[\mathbf{S} \mathbf{n}]=\mathrm{x}[\mathbf{U} \Lambda \mathbf{V} \mathbf{n}]$
5. Upsample [1] by \mathbf{S} :

$$
x_{u}[\mathbf{n}]=\left\{\begin{array}{cc}
x\left[\mathbf{S}^{-1} \mathbf{n}\right] & \text { if } \mathbf{S}^{-1} \mathbf{n} \in I \\
0 & \text { otherwise }
\end{array}\right.
$$

Upsampler and Downsampler in Cascade

1. In 1-D when can we swap the order of a down/upsampler cascade?

- L and M are relatively prime.
- $\mathrm{ML}=\mathrm{L}$ M, which always true in 1-D.

2. The same conditions are true in m-D. Since matrix multiplication does not in general commute, the relative primeness can be with respect to the multiplication on the left or multiplication on the right. The product of L and M commutes when the rational matrix $\mathrm{L}^{-1} \mathrm{M}$ has rational eigenvalues [3].

References

1. B. L. Evans, "Designing Commutative Cascades of Multidimensional Upsamplers and Downsamplers," IEEE Signal Processing Letters, vol. 4, no. 11, pp. 313-316, Nov. 1997.
2. .B. L. Evans, R. H. Bamberger, and J. H. McClellan. "Rules for Multidimensional Multirate Structures," IEEE Transactions on Signal Processing, vol. 42, no. 4, pp. 762-771, Apr. 1994.
3. B. L. Evans, T. R. Gardos, and J. H. McClellan, ``Imposing Structure on Smith Form Decompositions of Rational Resampling Matrices," IEEE Transactions on Signal Processing, vol. 42, no. 4, pp. 970-973, Apr. 1994.
