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1 Introduction

The problem with designing FIR �lters based on windows is that it is not very

eÆcient for �lter design. In general, the �lter length is twice the optimum

length in each dimension. Optimal �lter design seeks to minimize an error

function e(n1; n2) that is the di�erence between the designed �lter impulse

response h(n1; n2) and the ideal impulse response i(n1; n2).

We de�ne an error function
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Choose the �lter coeÆcients to minimize some measure of this error
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where Rtile is the region of the fundamental frequency tile �� � !1 < � and
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�� � !2 < �. Note that

lim
p!1

Ep = E1

2 Optimum Least Squares Method

In this method, we truncate the ideal response (with h(n1; n2) and i(n1; n2)

being real-valued):
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(Parseval0s Relation)

=
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X
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where R is the region of support of h. To minimize E2
2 , set

h(n1; n2) =

8><
>:
i(n1; n2) for (n1; n2) 2 R

0 otherwise

3 Optimum Design With Constraints

E(!1; !2) =
X

(n1;n2)

X
2R

h(n1; n2)e
�j!1n1e�j!2n2 � I(!1; !2)

We have been treating the �lter coeÆcients as if they are independent.

They may be constrained, e.g. in the design of a zero-phase �lter. If h(n1; n2) =

h�(�n1;�n2), or since h(n1; n2) is real-valued h(n1; n2) = h(�n1;�n2) then

E(!1; !2) = h(0; 0) +
X

(n1;n2)

X
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0

2 h(n1; n2) cos(n1; !1 + n2!2)� I(!1; !2)
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=
FX
i=1

a(i)�i(!1; !2)� I(!1; !2)

where assuming that the �lter is (2N + 1)� (2N + 1),

0

2N+1

N

The number of degrees of freedom is F =
(2N + 1)2 + 1

2
= 2N2+2N+1,

a(i) is the ith free parameter. For a zero-phase �lter,

a(i) =

8><
>:
h(0; 0) i = 1

2h(n1; n2) i = (2N + 1)n2 + n1 + 1

�i(!1; !2) is the i
th basis function, which is

�i(!1; !2) = cos(n1!1 + n2!2)

for i = (2N + 1)n2 + n1 + 1. The mapping from (n1; n2) to i follows a raster

scan that begins at the origin and proceeds along the n1 direction:
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i n1 n2

1 0 0

2 1 0

: : : : : : : : :

N N � 1 0

N + 1 N 0

N + 2 �N 1

: : : : : : : : :

For di�erent choices of constraints, F , a(i), and �i(!1; !2) will be di�erent,

but for any linear constraints, the error can always be written in this form.

4 Example

Suppose we want to design a circularly symmetric lowpass �lter

I(!1; !2) =

8><
>:

1 for !2
1 + !2

2 � R2

0 otherwise

i(n1; n2) = f(
q
n2
1 + n2

2)

h(n1; n2) = f̂(
q
n2
1 + n2

2)

Consider a 5� 5 �lter:
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Only 6 of the 25 coeÆcients are free because all the coeÆcients that lie at

the same distance from the center (radius) must have the same value.

H(!1; !2) = h(0; 0)

+ h(1; 0) [2 cos(!1) + 2 cos(!2)]

+ h(2; 0) [2 cos(2!1) + 2 cos(2!2)]

+ h(1; 1) [4 cos(!1) cos(!2)]

+ h(2; 2) [4 cos(2!1) cos(2!2)]

+ h(2; 1) [2 cos(!1 + 2!2) + 2 cos(!1 � 2!2) + 2 cos(!2 + 2!1) + 2 cos(!2 � 2!1)]

F = 6:

a(1) = h(0; 0) �1(!1; !2) = 1

a(2) = h(1; 0) �2(!1; !2) = 2 cos(!1) + 2 cos(!2)

...
...

a(6) = h(1; 2) �6(!1; !2) =
2 cos(!1 + 2!2) + 2 cos(!1 � 2!2)

+2 cos(!2 + 2!1) + 2 cos(!2 � 2!1)
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5 Least Squares Design
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By taking the partial derivative of E2
2 with respect to each of the a(i)

terms and setting the result to zero, we obtain the following system of linear

equations:
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If �ik = 0 for i 6= k, i.e., the basis functions are orthogonal, then these

equations become particularly easy to solve. We can have a symbolic math

environment such as Maple or Mathematica solve these F 2 + F integrals for

us.

6 Discrete Solution

The plain Least Squares solution has the following disadvantages:

� Need to evaluate integrals (let a computer program do that)

� No possibility of frequency weighting
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A solution that solves both problems is to sample the points in the 2-D

frequency plane and use frequency weighting, e.g.

Ê2
2

4
=
X
m

Wm [H(!1m; !2m)� I(!1m; !2m)]
2

� Wm � 0

� Error can be controlled by the values of the weights and locations of

the samples.

� The coeÆcients that minimize Ê2
2 are given by

FX
i=1

a(i)�ik = Ik

�ik =
X
m

Wm�i(!1m; !2m)�
�

k(!1m; !2m)

Iik =
X
m

WmIi(!1m; !2m)�
�
k(!1m; !2m)

where k = 1; 2; : : : ; F .

To see the e�ects of frequency sampling in 1-D, run matlab and then type

�ltdemo and compare a Remez (Parks - McClellan) design with an FIR-LS

(FIR Least Squares) design. The FIR Least Square �lters are up to 4 times

longer than Remez �lters in each dimensions. About half of the FIR-LS

length is necessary to meet the stopband speci�cation. Also the �lter meets

its speci�cations only at the sampling points, and between these points the

response may shoot up or fall to a large extent.
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7 Design Using Transformations

7.1 Background

Consider a 1-D zero-phase �lter of length 2N + 1

h(n) = h(�n)

H(ej!) =
NX

n=�N

h(n)e�j!n

= h(0) +
�1X

n=�N

h(n)e�j!n +
NX
n=1

h(n)e�j!n

= h(0) +
NX
n=1

h(n)(e�j!n + ej!n)

=
NX
n=0

a(n) cos(!n)

where a(n) =

8><
>:
h(0) ; n = 0

2h(n) ; 1 � n � N

A common trigonometric identify expresses cos(!n) as a polynomial of

degree n in the variable cos(!):

cos(n!) = Tn (cos(!))

where Tn(x) is the n
th Chebyshev Polynomial

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)� Tn�1(x)
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) H(!) =
NX
n=0

a(n)Tn(cos(!))

7.2 Derivation of the Chebyshev Recursion

cos(A) cos(B) =
1

2
cos(A+B) +

1

2
cos(A�B)

Let A = ! and B = (n� 1)!. Then,

2 cos(!) cos(n� 1)! = cos(n!) + cos(n� 2)!

cos(n!) = 2 cos(!) cos(n� 1)! � cos(n� 2)!

Tn(cos(!)) = 2 cos(!)Tn�1(cos(n� 1)!)� Tn�2(cos(!))

Tx = 2xTn�1(x)� Tn�2(x)

7.3 The Transformation

McClellan suggested that we can obtain a 2-D zero-phase FIR �lter if we

make the substitution

F (!1; !2)! cos(!)

Then

H(!1; !2) =
NX
n=0

a(n)Tn (F (!1; !2))

F should be chosen to be the frequency response of a zero-phase FIR �lter

� F is real ) H is real ) zero phase.

� F is (2Q + 1)� (2Q + 1)) H is (2NQ + 1)� (2NQ + 1) because H

is a polynomial in F .
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The discrete-time Fourier transform of a 3�3 zero-phase �lter reduces to

F (!1; !2) = A +B cos(!1) + C cos(!2) +D cos(!1 � !2) + E cos(!1 + !2)

What does the frequency response look like?

Consider the set of points f (!1; !2) : F (!1; !2) = const g. These points

de�ne a closed surface or series of closed surfaces in the (!1; !2) - plane.

F=constant

� For all the points on the contour H is constant.

� Contour shape depends upon A, B, C, D, and E.

� Value of H also depends upon fa(n)g for n = 0; 1; : : :N .

7.4 Procedure

� Design transformation

� Design prototype
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