Seismic Wave Migration
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Based on Lecture Notes by Prof. Russell M. Mersereau (Georgia Tech)
Scribe: Mr. Er-Hsien Fu

THE SEISMIC PROBLEM
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» Sourceisnearly impulsive

* Received signal contains multiple reflections

» Arrival times of reflected signals are of interest

» Datais “stacked” so that the received signal is “as if’ source and receiver are at the
same point



THE MIGRATION PROBLEM
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* We can compensate for this effect if the acoustic velocity is known
» Determining the acoustic velocity is itself a difficult problem

THE APPROACH
* Measurements made at surface
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» A reflection from a point sets off an expanding spherical wavefront
» This propagates according to the acoustic wave equation
» The actual recorded signal is complicated
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» Propagation governed by the 2-D hyperbolic wave equation
0_28 + 0_25 = ia_zs
ox> 0dz° c? ot?



» Thewave field becomes less complicated and easier to interpret, if we could look at it
at agreater depth. Thisisequivalent to looking at it in an earlier time

* g(x,0,t) can be measured at the surface—serves as a boundary condition for the partial
differential equation

*  We wants(x,z,t), which is the wave profile at depth

« Approach is to use the wave equation to propagatgt) backwards from depth
from 0 toz, which is called migration. We want to extrapolate from s{xt)zo s(X,
Zo + Az, t).

DEVELOPMENT

» Define the 2-D Fourier transform of the wave field with respegtandt at depthe
S(k,,z,Q) = J’J’s(x, z,t) exp[—j (Qt — Kk, x)]dxdt

02s(x, z,t)
ox*
02s(x, z,1)
ot?

0%s(x,z,t)  0°S(k,,zQ)
0z 0z°
» Taking the Fourier transform of both sides of the wave equation
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= (—jk,)?S(k,,z,Q) = -k, *S(k,,z Q)

= (jQ)?S(k,,z,Q) = -Q°S(k,,z,Q)
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We have turned a partlal differential equation in the space-time domain into an ordinary
differential equation in the wavenumber-frequency domain.

CONTINUOUS SOLUTION

Case 1:

2
Q——k <0
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S(k,,z,Q) = Aexpg -k, )Ez +Bexp@( -k, )z

» These solutions do not correspond to propagating waves
* They can be eliminated on physical grounds



Case 2:

Q—2—k >0

C

S(k,. 2, +42,Q) = [Aexp(j AzQ) + Bexp(-j AzQ)] S(k,, Z,, Q)
Q= Qz k2

. The positive exponent corresponds to an upwardly propagating wave.
» The negative exponent corresponds to adownwardly propagating wave. Set B=0.
S(k,,z, +Az,Q) = AH(k ,Q) S(k

H(k,,Q) = eprAzwf —k H|Q| >k |c

e The necessary extrapolation can be performed using a linear, shift-invariant filter
» Thedesired frequency response is all-pass with a hyperbolic phase response.
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DISCRETIZED SOLUTION

* For sampled measurements s(n;Ax, 1Az, nAt), the extrapolation can be performed by
adigital filter. Let

x(n;,n,) =s(n,Ax, z,, n,At)

y(n,,n,) = s(n,Ax, z, + Az, n,At)

H(w,,w,) :exp(j\/awzz _a)lz )

where w; = wavenumber ky and w, = temporal frequency Q and
1Az

c At
e For |a wy| > |wy|, transfer function has unit magnitude and phase
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and corresponds to propagating waves.
* Inthe evanescent region, |a wy| < |w|, waves do not propagate but are attenuated.
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Filter design problem. We design either
e anall-pass filter with the proper phase characteristic

z," A(2,2,)
AN (21’22)

« afanfilter where the Propagating Region is the passband and the Evanescent Region
is the stopband (pages 274-275 of the first edition of Dudgeon & Mersereau).

Hp(z,2,) =G ZzNo

evanescent- tending to vanish or pass away like vapor



