
Seismic Wave Migration
Lecture by Prof. Brian L. Evans (UT Austin)

Based on Lecture Notes by Prof. Russell M. Mersereau (Georgia Tech)
Scribe: Mr. Er-Hsien Fu

THE SEISMIC PROBLEM

• Source is nearly impulsive
• Received signal contains multiple reflections
• Arrival times of reflected signals are of interest
• Data is “stacked” so that the received signal is “as if” source and receiver are at the

same point



THE MIGRATION PROBLEM

• We can compensate for this effect if the acoustic velocity is known
• Determining the acoustic velocity is itself a difficult problem

THE APPROACH
• Measurements made at surface

• A reflection from a point sets off an expanding spherical wavefront
• This propagates according to the acoustic wave equation
• The actual recorded signal is complicated

• Propagation governed by the 2-D hyperbolic wave equation
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x: Position along earth
z: Depth
s(x,z,t):Acoustic Seismic Wave

Direction of Propagation
(of recorded signals)



• The wave field becomes less complicated and easier to interpret, if we could look at it
at a greater depth.  This is equivalent to looking at it in an earlier time

• s(x,0,t) can be measured at the surface—serves as a boundary condition for the partial
differential equation

• We want s(x,zo,t), which is the wave profile at depth zo

• Approach is to use the wave equation to propagate s(x,z,t) backwards from depth z
from 0 to zo, which is called migration.  We want to extrapolate from s(x, z0, t) to s(x,
z0 + ∆z, t).

DEVELOPMENT
• Define the 2-D Fourier transform of the wave field with respect to x and t at depth z

2

2

2

2

22
2

2

22
2

2

),,(),,(

),,(),,()(
),,(

),,(),,()(
),,(

)](exp[),,(),,(

z

zkS

z

tzxs

zkSzkSj
t

tzxs

zkSkzkSjk
x

tzxs

dxdtxktjtzxszkS

x

xx

xxxx

xx

∂
Ω∂

⇔
∂

∂

ΩΩ−=ΩΩ⇔
∂

∂

Ω−=Ω−⇔
∂

∂

−Ω−=Ω ∫∫

• Taking the Fourier transform of both sides of the wave equation
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We have turned a partial differential equation in the space-time domain into an ordinary
differential equation in the wavenumber-frequency domain.

CONTINUOUS SOLUTION

Case 1:

( ) ( ) 



 −−+



 −=Ω

<−Ω

ΩΩ zkBzkAzkS

k
c

xcxcx

x

2
1

2

22
1

2

2 22

2

2

2

expexp),,(

0

• These solutions do not correspond to propagating waves
• They can be eliminated on physical grounds



Case 2:
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• The positive exponent corresponds to an upwardly propagating wave.
• The negative exponent corresponds to a downwardly propagating wave.  Set B=0.
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• The necessary extrapolation can be performed using a linear, shift-invariant filter
• The desired frequency response is all-pass with a hyperbolic phase response.

DISCRETIZED SOLUTION
• For sampled measurements s(n1∆x, l∆z, n2∆t), the extrapolation can be performed by

a digital filter.  Let 
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where ω1 = wavenumber kx and ω2 = temporal frequency Ω and
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• For |α ω2| > |ω1|, transfer function has unit magnitude and phase
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and corresponds to propagating waves.

• In the evanescent region, |α ω2| < |ω1|, waves do not propagate but are attenuated.
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Filter design problem.  We design either
• an all-pass filter with the proper phase characteristic
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• a fan filter where the Propagating Region is the passband and the Evanescent Region
is the stopband (pages 274-275 of the first edition of Dudgeon & Mersereau).

evanescent- tending to vanish or pass away like vapor


