UNIVERSITY OF TEXAS AT AUSTIN
Dept. of Electrical and Computer Engineering
Mid-Term \#2
Date: October 30, 1996
Course: EE 381K

Name: \qquad
Last,
First

Alias: \qquad

- The exam will last 90 minutes.
- You may use any books during the exam
- The only notes you may use are those taken for this class, which includes course handouts and homework solutions.
- Calculators are allowed.
- You may use any standalone computer system, i.e., one that is not connected to a network.
- All work should be performed on the midterm itself. If more space is needed, then use the backs of the pages.

Problem	Point Value	Your Score	Topic
1	15		2-D IIR Filtering
2	15		3-D IIR Filter Stability
3	15		2-D LSI System
4	15		Constrained 2-D FIR Filter Design
5	20		McClellan Transformation
6	20		Potpouri
Total	100		

Problem 2.1 Two-Dimensional IIR Filtering
A 2-D system is described by the difference equation

$$
y\left[n_{1}, n_{2}\right]-0.9 y\left[n_{1}, n_{2}-1\right]+0.5 y\left[n_{1}-1, n_{2}-1\right]=x[n]
$$

Find the impulse response of $y\left[n_{1}, n_{2}\right]$ for $0 \leq n_{1} \leq 3$ and $0 \leq n_{2} \leq 3$ under the assumption that $y\left[n_{1}, n_{2}\right]=0$ for $n_{1}<0$ or $n_{2}<0$. (You can give the answer as numbers plotted on a grid of (n_{1}, n_{2}) points as we do for 2-D numeric convolution problems.)

Problem 2.2 Stability of a 3-D IIR Filter. 20 points.
Consider a first-octant 3-D IIR filter with system function

$$
H_{Z}\left(z_{1}, z_{2}, z_{3}\right)=\frac{1}{1-\frac{2}{5} z_{1}^{-1}-\frac{3}{10} z_{2}^{-1}+\frac{2}{5} z_{3}^{-1}}
$$

Note that the support of a first-octant 3-D filter is for $n_{1} \geq 0, n_{2} \geq 0$, and $n_{3} \geq 0$. Determine whether or not the filter is stable and justify your answer.

Problem 2.3 2-D LSI System. 20 points.
Consider the 2-D linear shift-invariant system described by the two-dimensional difference equation

$$
y\left[n_{1}, n_{2}\right]=a y\left[n_{1}+1, n_{2}-1\right]+b y\left[n_{1}+1, n_{2}\right]+c y\left[n_{1}, n_{2}+1\right]+x\left[n_{1}, n_{2}\right]
$$

(a) Since the system is LSI, determine the support of the impulse response $h\left[n_{1}, n_{2}\right]$.
(b) If $x\left[n_{1}, n_{2}\right]=u[-n 1,-n 2]$. determine an appropriate set of initial conditions so that $y[n 1, n 2]$ can be recursively computed.

Problem 2.4 Constrained 2-D FIR Filter Design. 20 points.
We want to design a 5×5 FIR filter to approximate the ideal frequency response

$$
I\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \left(\frac{\omega_{1}}{0.5 \pi}\right)^{2}+\left(\frac{\omega_{2}}{0.25 \pi}\right)^{2}=1 \\ 0 & \text { otherwise }\end{cases}
$$

The support of the filter to be designed is

$$
-2 \leq n_{1} \leq 2 \quad \text { and } \quad-2 \leq n_{2} \leq 2
$$

We saw in class that the frequency response can be written in the form

$$
H\left(\omega_{1}, \omega_{2}\right)=\sum_{i=1}^{F} a_{i} \phi_{i}\left(\omega_{1}, \omega_{2}\right)
$$

(a) If $h\left[n_{1}, n_{2}\right]$ is to have the same symmetries as $i\left[n_{1}, n_{2}\right]$, what is F, the number of independent coefficients?
(b) Assuming that $a_{i}=h\left[n_{1}, n_{2}\right]$ for some n_{1} and n_{2}, determine the set of basis functions $\left\{\phi_{i}\left(\omega_{1}, \omega_{2}\right)\right\}$.

Problem 2.5 McClellan Transformation

A McClellan transformation can be used to design zero-phase FIR filters of any dimensionality from a 1-D zero-phase FIR prototype. In particular, it can design one-dimensional filters. Let $G\left(e^{j \omega}\right)$ be a $(2 N+1)$-point zero-phase FIR filter with the frequency response

$$
G\left(e^{j \omega}\right)
$$

A 1-D filter with frequency response $H\left(e^{j \Omega}\right)$ is designed using the transformation

$$
\cos \omega \longrightarrow F(\Omega)=\cos 2 \Omega=2 \cos ^{2} \Omega-1
$$

(a) Draw and label a curve of Ω vs. ω for this transformation. (This is the one-dimensional equivalent of a topographic map or contour plot that we used in transforming onedimensional filters to multiple dimensions.)
(b) Draw and label $H\left(e^{j \Omega}\right)$ for $0 \leq \Omega \leq 0$.
(c) Determine the length of $h[n]$.

Problem 2.6 Potpourri.

(a) 10 points. Back by popular demand is the Discrete Sine Transform $X_{s}[k]$ of the discretetime signal $x[n]$:

$$
X_{s}[k]=\sum_{n=0}^{N-1} 2 x[n] \sin \left(\frac{\pi(2 n+1) k}{2 N}\right)
$$

On the last exam, you developed an algorithm for computing the forward Discrete Sine Transform. Give an explicit formula (algorithm) for the inverse Discrete Sine Transform.
(b) 5 points. Dr. Harold Stone's talk was entitled "Fourier-Wavelet Techniques in Image Searching". Give two reasons why his template matching was not robust.
(c) 5 points. Dr. Alan Bovik's talk was entitled "FOVEA: Foveated Vergent Active Stereo System for Dynamic Three-Dimensional Scene Recovery."
i. In stereo vision, two images are taken by cameras placed side-by-side and depth of objects in the scene is computed. Computation of depth is an ill-defined problem in that the depth computation does not have a unique solution. How did the FOVEA System overcome this?
ii. How did the FOVEA System reduce the amount of computation it performed to compute each surface in the scene?

