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Abstract

In a two-dimensional pattern matching problem, a known template image has to be located in another
image, irrespective of the template’s position, orientation and size in the image. One way to accomplish
invariance to the changes in the template is by forming a set of feature vectors that encompass all the
variations in the template. Matching is then performed by finding the best similarity between the
feature vector extracted from the image to the feature vectors in the template set. In this report we
introduce a new concept of a Generalized Transform. The Generalized Transform offers a relatively
robust and extremely fast solution to the described matching problem. An algorithm for scale invariant
pattern matching based on the Generalized Transform is introduced.



1. Introduction

Pattern matching is an important technique in digital image processing. The evolution of

computer technology has enabled many practical applications based on pattern matching, especially in

industrial automation. An example of a process to be automated is the visual inspection of circuit

boards. Typically, we are interested in finding a missing component in circuit boards on a production

line. The procedure is based on a digital picture of the circuit board. In such image, one could search

for a predefined template corresponding to the desired component. So given a test imageI, we are

interested in finding the location of the templateIt within this image. Typical test and template images

are given in Figure 1.

To properly define a pattern matching problem, all the valid transformations of the template

should be clearly specified. In a majority of the applications, the template will appear shifted, rotated

and scaled in the test image.

Approaches for solving the proposed problem can be divided into two categories: correlation

based solutions and image understanding solutions [BB82, GMO99]. Correlation based solutions

predominantly use a cross correlation to find the potential locations of the template, whereas image

understanding solutions attempt to model the objects observed in the template.

Template
ImageItTest ImageI

Figure 1: Pattern matching application Figure 2: Classic Correlation



In this paper we present a statistical sampling approach to pattern matching. We also introduce

a new generalized transform and some of its properties. This transform provides the basis for a robust

real-time scaling invariant pattern matching algorithm.

2. Classic Correlation Based Pattern Matching

Traditional pattern matching techniques include normalized cross correlation [BB82] and pyramidal

matching [CC98]. Normalized cross correlation is the most common way to find a template in an

image. The following is the basic concept of correlation: Consider a sub-imagew(x,y) of size K × L

within an imagef(x,y) of size M × N, whereK × M and L × N. The normalized correlation between

w(x,y)andf(x,y)at a point(i,j) is given by
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wherei = 0,1, …M – 1, j = 0,1 …N – 1, w (calculated only once) is the average intensity value of the

pixels in the templatew. The variable ),( jif is the average value off in the region coincident with the

current location of w. The value ofC lies in the range –1 to 1 and is independent of scale changes in the

intensity values off and w.

Figure 2 illustrates the correlation procedure. Assume that the origin of the imagef is at the top left

corner. Correlation is the process of moving the template or sub-imagew around the image area and

computing the valueC in that area. The maximum value ofC indicates the position wherew best

matchesf. Since the underlying mechanism for correlation is based on a series of multiplication

operations, the correlation process is time consuming. With new technologies such as MMX,

multiplications can be done in parallel, and the overall computation time can be reduced considerably.



The basic normalized cross correlation operation does not meet speed requirements for many

applications [BB82].

Normalized cross correlation is a good technique for finding patterns in an image as long as the

patterns in the image are not scaled or rotated. Typically, cross correlation can detect patterns of the

same size up to a rotation of5° to 10° [NW99]. Extending correlation to detect patterns that are

invariant to scale changes and rotation is difficult. Approaches based on multidimensional Discrete

Fourier Transforms and Principal Component Analysis have been proposed [UK97]. But they are not

very adequate, due to the slowness of the learning phase and requirements for non-integer operations

[UK97].

3. Statistical Sampling Based Pattern Matching

Low discrepancy sequences have been successfully used in a variety of applications that require

spatial or multidimensional sampling [C86, NW99]. A low discrepancy sequence can be described as a

sequence that samples a given space as uniformly as possible. Thus, the density of points in relation to

the space volume is almost constant.

Images typically contain a lot of redundant information. In a correlation based pattern matching a

template image could be subsampled according to a two-dimensional low discrepancy sequence

[NW99]. A set S of N coordinates of the template could be formed and the correlation computed only

in relation to these coordinates. Such an algorithm has been proposed in [NW99b].

The algorithm has two stages. In the first, possible matches are computed based on a subsampled

correlation. A threshold in the correlation value determines the exclusion or inclusion of a match. In the

second, the edge information of the template is used to accurately locate the potential match indicated

by the first stage. Typically, for a 100 X 100 template, a set of 61 points in enough to provide a robust

correlation basis (160 times faster) for the first stage candidate list generation procedure [NW99].



In a pattern matching application where only shift invariance is desired, a Halton low discrepancy

sequence can be used [C86, NW99b]. Typically, 61-70 points from the template should be selected.

5. Generalized Transform

Assume thatN vectors (signals) of lengthN are given. Denote these vectors byif . A matrix A

can be defined, such that 10 fAf = , 21 fAf = , …, 01 fAfN =− , if the matrix B (NxN) formed by setting

each of its columns to the corresponding vectorif is regular (non-singular). Some properties that arise

from the definition ofA andB are that:

P1)AB=B’, whereB’ is the matrixB with a column-wise shift (i.e. Nmodif 1+ corresponds to the column

i of B’). B is regular and so isB’. Thus 1−= B'BA .

P2) IAN = (NxN identity). Thus, eigenvalues ofA are given by ( ( )kexp Nk
πλ 2= , k = 0, …, N-1).

P3) The matrixA can be decomposed as 1−= BBVXXA , whereV is theNxN diagonal matrix formed by

the eigenvalues ( )kexp Nk
πλ 2= [GL91].

From the stated properties it is clear that theNxNmatrix 1−
BX expresses the desired Generalized

Transform (GT). Theorem 1 proves the shift invariance property for the GT. Theorem 2 shows that if

the vectors if are shifted versions of each other, then1−
BX is the Fourier matrix. Theorem 3 provides a

way to compute the GT in an efficient manner. For proofs see the appendix.

Theorem 1: The matrix 1−
BX defines a shift invariant transformation for the set of vectorsif .

Shift Invariant Pattern Matching

Figure 3: (a) Reference pattern, (b) Sampled pattern (c) Edges Information.



Theorem 2: If the vectors if are shifted versions of each other (i.e. )]in([ff Ni += ) then 1−
BX is the

Fourier matrix (for a definition of the Fourier matrix see [GL91]).

Theorem 3: Given a regular matrixB the generalized transform can be computed as 111 −−− = BWDX NB ,

whereD is an arbitrary complex diagonal matrix. To define a unitary transform the diagonal elements

of D should be set to �
−

=

=
1

0

2
)(

N

i

inv
ik kBd , where )(kBinv

i represents the Discrete Fourier Transform of

the ith column of 1−B .

|g(k)|fp f0

f3

Choosing a frequency in the GT domain corresponds to selecting a line of the matrix1−
BX . Due

to the shift invariance property, for a fixed frequency, the set of vectorsf maps to points in a circle in

the complex plane (figure 4). If we set 0
1 fXg B

−= , then )k(g is the radius of the circle at frequencyk.

Theorem 3 states that for a unitary transform this radius is given bykd/1 . Moreover, the sequence

kd/1 (k=0,…,N-1) forms a spectrum equivalent to the Fourier spectrum.

4. Scaling Invariant Pattern Matching

The requirement for scaling invariance might arise in applications where the distance between the

camera and the imaging plane is variable. Usually, in scaling invariance applications the scaling range

is fixed and finite due to physical constraints of the imaging system.

Figure 4: GFT Based Circle Figure 5: Pattern Matching Sampling Strategy
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Given an arbitrary vectorf and a set of vectors, represented byB (see section 3), a simple

projection based algorithm for detecting the closest vector tof , among the columns ofB is presented

in Table 1 (a). The procedure assumes thatf is close enough to a vector inB, so that projecting to a

lower dimensionality does not compromise accuracy [RW00b]. An optimal way of selecting the

projection matrix, based on the shift invariant property of the GT, is presented in Table 1 (b). The

procedure is based on an optimal procedure for detecting delays in signals [RW00b].

A scaling invariant pattern matching algorithm, based on the Projection Match algorithm and in

statistical sampling is presented in Table 2. The algorithm explores the finite range of the scaling factor

to create an efficient image matching process.

Figure 5 presents the sampling process that generates the set },...,{ 10 −Nff . The template is rescaled

(using bilinear interpolation) toN different discrete scaling factors, evenly distributed in the finite

range. At each scaling factor, the sameN distinct Halton points (in reference to the center of the image)

are sampled. Note that the template image rescaled to the smallest scale determines the extent of the

sampling area.

The matching phase consists in sliding the sampling structure defined by the statistical sampling

over the test image (as in figure 2), and at each pixel location extracting the corresponding vectorf .

Projection Match Algorithm

STEP1: Compute and store FBP = , whereF is an
arbitraryKxN matrix. (Done once at learn time)

STEP2: Compute fFp =
STEP3: Find the closest line-vector top , among the

lines ofP.

Choosing a Projection Matrix F

STEP1: For the matrixB compute 1−
BX unitary, according to

Theorem 3.
STEP2: SelectK/2 frequencies (K integer) of the GT ofB
according to the optimization below [RW00b]. Whereg(k) is

the GT of 0f at frequencyk ( 0f is the first column of B).
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STEP3: Set the lines ofF to be the real and imaginary parts of

the selectedK/2 lines of 1−
BX . The kth frequency corresponds

to the kth line of 1−
BX .

Table 1: (a) Projection Match Algorithm and (b) selecting
the Projection matrix.



Then, finding the vectorf closest to f determines a match. A full normalized correlation between the

chosen vectorf and f determines a score. The best match is the match with highest score among all

pixel locations. This procedure is presented in Table 2 (b).

5. Computational Complexity and Performance

The main advantage of the pattern matching algorithm presented in section 4 is its relatively

low computational complexity compared to classical procedures. In order to compute the

computational complexity, assume that the template is of sizeMxM, the test image is of sizeNxN and

that K discrete scale steps are used. In all cases, complexity will be measured as number of required

multiplications. Assume also thatM << N .

The classic correlation approach would be to compute the correlation of the test image with the

K rescaled template images. The classic statistical sampling approach would incorporate statistical

sampling into the correlation computation. Finally, the algorithm proposed in section 4 incorporates GT

projection and a randomized correlator to reduce computation even further. By inspection we obtain the

number of multiplications in Table 3.

Pattern Matching Learning Phase

Inputs: template Image, scaling factor range ),( 10 ss and N

(matching granularity). Define Nsss /)( 01 −=∆ .

STEP1: Create 2D Holton set for rectangle of sizeXs0 by

Ys0 , where (X,Y) is the template size. Store the set ofN

reference coordinatesS= )},(),...,,{( 1100 −− NN yxyx .

STEP2: For i=1 to N {
Rescale template image to scaling factor siss ∆+= 0

Extract the pixel values of theN Holton samples

(image center as reference)ÿresults in if }

STEP3: Set each if as a column ofB and compute the

projection matrixF as suggested in Table 1 (b). Randomized
Correlator for lines ofP can be learnt in this step [RW00].

Pattern Matching Runtime

Inputs: Test Image, learnt data.
For each pixel (i,j) do:
STEP1: Shift the set of reference coordinates to the

pixel (i,j). Extract the intensity (pixel) values tof .

STEP2: Compute fFp =
STEP3: Find line vector in P closest to p
(Randomized Correlator could be used)

STEP4: Compute normalized correlation betweenif

(corresponding to the line vector in STEP3) andf .

This is the score.
STEP5: If (score > threshold) match is found, exit
search.

Table 2: Scale Invariant Pattern Matching Algorithm (a) learning and (b) matching



The scale invariant pattern matching algorithm was implemented in the LabVIEW environment.

Based on experiments, the required number of Halton samples was determined to be between 60-80 (N)

and the number of projection vectors between 4 and 8 (K).

6. Summary

In this paper we presented a new algorithm for real-time scale invariant pattern matching. The

proposed algorithm was based on the shift invariance property of a new transform. We showed how to

compute this transformation for a given set of basis signals.

One advantage of the proposed approach is that any affine transform can be included as part of the

algorithm. Transformed versions of the template image should be Halton sampled and these samples

included in the estimation of the generalized transform. A continuation of this work would be to

explore the relationships between the GT and other transforms, and study the application of the

proposed pattern matching approach to image indexing.
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Algorithm Number of Multiplications
Classic Correlation 22NKM
Classic Statistical Sampling 22NK
Proposed Algorithm 22 2))()1(( KNNpOKp ≈++

Table 3: Computational complexity of the proposed algorithm


