Synthetic Aperture Radar Image Compression

By
Magesh Valliappan
Guner Arslan

Synthetic Aperture Radar (SAR)

\checkmark SAR?

- Active imaging system
- Working in the frequency range $1-10 \mathrm{GHz}$
- All-weather system
- High resolution compared to real aperture radar
\checkmark Applications
- Agriculture, ecology, geology, oceanography, hydrology, military...
\checkmark Nature of SAR images
- High volume of data
- Speckle noise
- More information in high frequencies than optical images

Lossy Image Compression Techniques

Joint Photographic Experts Group (JPEG)

- Discrete Cosine Transform
- Fast implementation
- Blocking artifacts

Set Partitioning In

 Hierarchical Trees (SPIHT)- Discrete Wavelet Transform
- Good visual quality
- Ringing effect for high compression ratios

Quality Metrics for SAR Images

Standard Metrics

- Mean Squared Error (MSE)
- Signal to Noise Ratio (SNR)
- Peak Signal to Noise Ratio (PSNR)

Other Metrics for SAR Images

- Weighted Signal to Noise Ratio (WSNR)
- Linear Distortion Quality Measure
- Correlation of Edge Information

Simulations

Space borne Imaging Radar-C and X-Band

 Synthetic Aperture Radar512×512 Sub-Images
8 bit grayscale
Pre-filtered by a modified σ-filter

- adapted to handle spot noise

Estimation of a Linear Model

Linear Least Square Estimate
Linear Model is needed to

- compute the Noise Image
- estimate the Distortion Transfer Function (DTF)

Drawbacks

- Model assumes uncorrelated additive noise
- Variance of the estimate

Results - WSNR and PSNR

Results - Linear Distortion Measure

Results - Correlation

Conclusions

Standard metrics does not give results consistent with visual quality
\checkmark A framework for evaluation of SAR Images

- Weighted Signal to Noise Ratio
- Linear Distortion Measure
- Distortion of edge information

SPIHT outperforms JPEG

