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Abstract

With the improvement of synthetic aperture radar (SAR) technology, larger areas are

being imaged and the resolution of the images has increased. Larger images have to be

transmitted and stored. Due to the limited storage and/or downlink capacity on the

airplane or satellite, the volume of the data must be reduced. This makes compression

of SAR images with minimal loss of information important. Mean squared error (MSE)

and peak signal-to-noise ratio (PSNR) are the commonly quoted performance measures

for comparing the compression algorithms. However, these measures inherently assume

that the distortion is image independent noise, which is not a valid assumption in image

compression algorithms. We propose a way to measure the distortion caused by compres-

sion and decompression of an image, by decoupling the distortion into a linear e�ect and

additive uncorrelated noise, which models the nonlinear distortion. Using this procedure,

the linear frequency distortion can be quanti�ed by a weighted mean of the deviation from

an all-pass system. The noise can be weighted according to a speci�c application before

measuring the signal to noise ratio. Since the nonlinear distortion, such as blocking e�ect

and mosquito noise, is a high frequency e�ect, we use a discrete Laplacian operator to em-

phasize higher frequencies in the image and use a measure correlation measure to quantify

this distortion. Our simulation results show that the proposed metrics are consistent with

image quality.
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1 Introduction

Synthetic Aperture Radar (SAR) is an active remote sensing system which has applications in

agriculture, ecology, geology, oceanography, hydrology and in the military [1]. SAR systems

increase their e�ective aperture by using the motion of a satellite or an airplane they are

mounted on. The primary reason which gives SAR systems such diverse applications is that

they have the ability to take images in all weather conditions.

With the improvement of SAR technology, larger areas are being imaged and the resolution

of the images has increased. This causes larger images to be transmitted and stored. Due to

the limited storage and/or downlink capacity on the airplane or satellite the data rate must

be reduced. This motivates the compression of SAR images. The high entropy of SAR images

results in very low compression ratios when lossless compression techniques are used [1]. To

achieve higher compression ratios, lossy image compression techniques are used [2, 3].

SAR data is inherently complex-valued but it is frequently converted to real data for inter-

pretation by human observers or machine algorithms [3]. However, when precise measurement

of topographic elevation is required (interferometric SAR), the phase information is very im-

portant. Thus to preserve this information accurately, lossless or near lossless compression is

required [4].

SAR imaging techniques introduce speckle noise, which is a form of multiplicative noise [5].

The presence of speckle noise and the fact that more useful information is contained in the

higher frequency bands make SAR images quite di�erent from optical images [6]. Due to

these di�erences, classical image compression techniques do not perform as well when applied

to SAR images [7, 8]. Although many di�erent compression techniques have been applied

to SAR images, they have been compared using peak signal-to-noise ratio or mean squared

error [2, 7, 9, 10]. However, these measures inherently assume that the distortion is image

independent noise, which is not a valid assumption in image compression algorithms. In this

work, we propose three new quality metrics, which aim to quantify the linear and nonlinear

distortions independently.

Section 2 brie
y introduces the two compression techniques which we use in this work.

Section 3 discusses the standard metrics and the metrics we propose. Sections 4 and 5 explain

how we actually measure the distortion and discussed the results we obtain. Section 6 concludes

the work.

2 Lossy Image Compression Techniques

In this work, we choose two lossy image compression techniques and apply them to SAR im-

ages. One of these, the Joint Photographic Experts Group (JPEG) algorithm, is the presently
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accepted lossy still image compression standard. JPEG is a discrete cosine transform (DCT)

based image compression standard. The primary advantage of JPEG is its low computational

complexity and the availability of fast hardware and software implementations. At high com-

pression ratios the quality of JPEG compressed images degrade due to severe blocking artifacts.

The other algorithm, set partitioning in hierarchical trees (SPIHT), is a more recent, dis-

crete wavelet transform (DWT) based compression technique [11]. DWT based techniques, in

general, give compressed images of better visual quality. However, at very high compression

ratios, artifacts in the form of mosquito noise become visible.

3 Quality Metrics

Since the aim of image compression is to reduce the number of bits required to represent a image

without destroying useful information, a measure of image quality for a �xed compression ratio

is required.

3.1 Commonly used Quality Measures

The mean squared error (MSE) is one of the commonly used performance measures in image

and signal processing. For an image of size N �M it can be de�ned as

MSE =
1

NM

N�1X
n=0

M�1X
m=0

(x[n;m]� x̂[n;m])2

where x[n;m] is the original image and x̂[n;m] is the decompressed image. Peak signal-to-noise

ratio (PSNR) is a variation of MSE and is de�ned as,

PSNR = 10 log
10

( peak-to-peak value of the original image )2

MSE

These metrics assume that the distortion is caused only by additive, image independent noise.

Since the di�erence between the decompressed and the original image is not uncorrelated noise,

this assumption is invalid. However, they are commonly used in image processing applications

due to the lack of a more appropriate simple metric.

3.2 Alternative Quality Measures

The overall degradation of an image can usually be decoupled into two e�ects - frequency

distortion and noise injection. These two e�ects are di�erent in nature and have to be quanti�ed

separately. The compression - decompression scheme has to be modeled as a linear �ltering

operation followed by the addition of an uncorrelated noise image as shown in Figure 1. We can
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Figure 1: Model of compression-decompression

de�ne a distortion transfer function (DTF) as the deviation of the linear model from an all-pass

system. Since the noise image is now uncorrelated, it can be used with an appropriate noise

measure. Based on the application of the SAR images we can weight the DTF and the noise

image in the frequency domain to obtain application-speci�c metrics, weighted signal-to-noise

ratio (WSNR) and a linear distortion measure. In this work, we consider SAR images that are

interpreted by humans and therefore use a linear model of the human visual system to derive

suitable weighting functions [13].

The noise image is uncorrelated with the original image, but not independent. As a result,

nonlinear distortions are also treated as uncorrelated noise. However, the magnitude of the

nonlinear distortions, such as blocking artifacts and mosquito noise, is signi�cant only at high

compression ratios. These artifacts are predominantly high frequency e�ects. So, �ltering the

decompressed images to extract the edge information enhances the e�ect of these artifacts. A

measure of the correlation between this image and a similarly �ltered version of the original

image can be used to give a metric for nonlinear distortion. SAR images have useful edge and

texture information, which are also emphasized by this technique.

4 Implementation of the Metrics

The images we use in our simulations were acquired by the Spaceborne Imaging Radar-C/X-

Synthetic Aperture Radar (SIR-C/X-SAR) [12]. Since the original images are too large to

handle we crop them to 512� 512 8 bit grayscale sub-images. The simulations are performed

on several images representing di�erent geographical regions such as cities, rivers, volcanos and

oceans. Since the distortion becomes severe we do not go beyond compression ratios of 8:1.

4.1 Pre-�ltering

The nature of SAR imaging systems causes SAR images to be corrupted by speckle noise.

Speckle noise removal is a research area by itself and is not a part of this work. However,
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since speckle noise a�ects the compression ratio of an image, we pre-�lter our images with a

3 � 3 �-�lter, which has been used in the literature for speckle noise removal [5]. The �-�lter

is a selective averaging �lter, which excludes those pixels within the window that are beyond a

range (��) of the center pixel. � has to be chosen suitably to obtain su�cient noise smoothing

and at the same time preserve edges.

The �-�lter however is not capable of handling spot noise. When all the surrounding pixels

lie outside the range (��) the �-�lter does not perform any averaging. We modify the �-�lter

to handle this special case, by replacing the pixel by the average of all the other pixels within

the window. The results are shown in Figure 2. The di�erence image shows the pixels where

the modi�cation of the �lter has had an e�ect.

(a) (b) (c) (d)

Figure 2: (a) Original image (b) Original � �lter (c) Modi�ed � �lter (d) di�erence of (b) and (c)

4.2 Estimation of the Linear Model and Noise Image

Starting with the 512�512 original image we form a 1024�1024 image by re
ecting the image

in both dimensions. We similarly form a 1024�1024 image from the decompressed image. This

helps to reduce the e�ect of false edges across image borders in the discrete Fourier transform

(DFT). We model the linear �ltering operation as a wraparound convolution of the extended

original image and a linear �lter. We also assume that the �lters have a small region of support.

This assumption is valid for the JPEG and SPIHT algorithms since JPEG uses 8 � 8 block

processing and SPIHT uses 9/7 tap �lters. Therefore, we can assume that the �lter's frequency

response is slowly varying in frequency domain.

We compute the DFTs of the extended original and decompressed images. Then, we divide

the frequency domain into 256 non-overlapping windows each of size 64 � 64. We assume

that the transfer function is constant in each window and then estimate its value for each

window independently. For each window we rearrange the encompassed elements of the DFT

of the images to form column vectors, denoted by x and y for the original and decompressed,

respectively. We compute H, the frequency response of the model in each window, such that
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e = y �Hx is uncorrelated with x. That is

e
H
x = (y�Hx)x = 0 thus H = (yHx)=(xHx)

It can be shown that this is the optimal solution for H also in the least squares sense.

Having estimated H in each window, we now have an estimate of a linear model. To

estimate the noise image we have to extract the linear component from the original image.

This �ltering operation is done in frequency domain and after the inverse DFT we obtain a

1024� 1024 �ltered image. The noise image is obtained by extracting the 512� 512 sub-image

from the di�erence of the extended original image and the �ltered image.

4.3 Computation of the Weighted Signal-to-Noise Ratio

Since SAR images are also interpreted by humans, an important performance measure is the

visual quality of the decompressed image. Although the human visual system is a nonlinear,

shift-varying, non-separable, non-uniformly sampled system, linear models have been proposed

to approximate it [13][14]. The contrast sensitivity function (CSF), under the assumption of a

linear model, determines the visibility of individual Fourier components of an image, as seen

by a human observer. Using the CSF as a weighting function we obtain

WSNR = 10 log
10

 P
u

P
v jX(u; v)C(u; v)j2P

u

P
v j(D(u; v))C(u; v)j2

!

where X(u; v)andD(u; v) are the discrete Fourier transforms of the original image, noise image

respectively and C(u; v) is the CSF (Figure 3 (d)) [13][14].

4.4 Computation of Linear Distortion Measure

We can measure the distortion introduced by a linear transfer function by measuring the de-

viation from an all-pass transfer function. We de�ne 1�H(!1; !2) as the DTF corresponding

to the transfer function H(!1; !2). The DTF is weighted by the CSF to obtain a measure of

linear distortion, as perceived by a human observer.

4.5 Correlation of Edge Information

To extract the edge information we use a 3� 3 discrete approximation of a Laplacian operator.

To measure the correlation between the �ltered original image and the �ltered decompressed

image we compute the magnitude of the correlation coe�cient, which is given by

CXY =
jCovariance(X; Y )j

�X�Y
(1)
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Figure 3: Proposed metrics and PSNR versus compression ratio (a) PSNR and WSNR values for

JPEG and SPIHT with and without using the proposed model (b) Original and decompressed image

correlation (c) Linear distortion measure (d) Contrast Sensitivity Function

5 Results

The results obtained for a SAR image of the city of Houston are presented here. The results

obtained from WSNR/PSNR are shown in Figure 3 (a). PSNR shows that SPIHT outperforms

JPEG consistently at all compression ratios. However, WSNR results are closer and in fact

at lower compression ratios (2 bits per pixel) the noise performance is comparable and this is

veri�ed by visual inspection of the images. This is because SPIHT generates more low frequency

noise and hence the visual e�ect of the noise is comparable to that of JPEG, even though the

MSE is lower.

The frequency domain representations of the linear models of the compression schemes for

this image at a compression ratio of 1.80 bits per pixel are shown in Figure 4. The linear models

of both compression schemes are lowpass in nature. The JPEG algorithm almost completely

�lters out higher frequency components. The linear model of the SPIHT algorithm shows three

levels corresponding to the subband decomposition technique with lower frequency bands being

quantized to fewer bits. From the models it can be estimated that SPIHT linearly distorts the

images lesser. The Linear Distortion Measure shows similar results for compression ratios in

the range of 1-4 bits per pixel, as seen in Figure 3 (b).

The correlation between the decompressed image and the original image is close to 1 for both

8



−2
0

2

−2

0

2

0.2

0.4

0.6

0.8

ω
1

ω
2

M
ag

ni
tu

de
−2

0
2

−2

0

2

0.5

0.6

0.7

0.8

0.9

ω
1

ω
2

M
ag

ni
tu

de

(a) (b)

Figure 4: (a) Linear Model for JPEG (b) Linear Model for SPIHT

compression techniques, with SPIHT doing better than JPEG (Figure 3 (c)). The correlation

of edge information, however, shows that SPIHT does much better than JPEG, which is more

consistent with the degree of nonlinear distortion observed in the images.

6 Conclusions

Although they are commonly used, standard performance measures such as MSE and PSNR

are not appropriate measures for SAR image compression algorithms. This follows from the

fact that these metrics are noise measures and assume signal independent noise which is not a

valid assumption in image compression algorithms. In this work we propose a new framework

for evaluating the distortion introduced by compression. We measure the linear distortion by

modeling the compression-decompression procedure as a linear �ltering operation followed by

the addition of uncorrelated noise. Both the linear distortion measure and the noise quality

measure can be weighted in frequency domain depending on the application. We use the

contrast sensitivity function, which is based on a linear model of the human visual system,

to weight these measures assuming the decompressed images are consumed by humans. With

high compression ratios, however, the additive noise approximation is invalid and the noise

measures are inappropriate. In this case we use the correlation of edge information, which

gives us a better measure of the nonlinear distortion, since the distortion is primarily a high

frequency e�ect. We have tested the metrics on several SAR images and conclude that these

metrics give more consistent results compared to the commonly applied metrics.
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