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Abstract

The demand for images, video sequences and computer animations

has increased drastically over the years. This has resulted in image and

video compression becoming an important issue in reducing the cost of

data storage and transmission time. JPEG is currently the accepted

industry standard for still image compression,but alternative methods

are also being explored. Fractal Image Compression is one of them.

This scheme works by partitioning an image into blocks and making

use of Contractive Mapping in which the range blocks are covered

by domains. In this project we proposes to implement a method of

partitioning an image, which would reduce the encoding time.
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1 Introduction

The encoding step in fractal image compression involves very large time com-

plexity. In this project we proposes to implement a method to reduce the

encoding time. First an introduction to fractals and fractal image compres-

sion is presented. Then the complexity involved in the encoding time is

looked into and �nally a plan to implement the improvement is given.

1.1 Fractals

The term Fractals was coined by Mandelbrot[6] in 1975. A general de�nition

of a fractal is a set F that has any of the following properties[2]:

� F has detail at every level.

� F is exactly, approximately or statistically self-similar.

� The Hausdor� Besicovitch[6, 2] dimension of F is greater than its topo-

logical dimension.

� There is a simple algorithmic description of F.

The de�ning characteristic of a fractal is that it has a fractional dimension[7].

1.2 Self-similarity

Subsets of fractals when magni�ed, appear similar or identical to the original

fractal and to other subsets. This property called self-similarity[2, 7] makes

fractals independent of scale and scaling. Thus there is no characteristic size

associated with a fractal.



1.3 A�ne Transformations

An a�ne transformation[5, 3] maps a plane to itself. The general form of an

A�ne Transformation is
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A�ne transformations can skew, stretch, rotate, scale and translate an input

image.

1.4 Attractor

Repeatedly applying an a�ne transformation repetitively on any image re-

sults in an image called the attractor[2, 7]. The attractor is unchanged for any

further application of the a�ne transformation. Each a�ne transformation

has a characteristic attractor associated with it.

1.5 Iterated Function Systems

An iterated function system[5, 1] is a collection of a�ne transformations that

map a plane to itself. This collection de�nes a map W given by

W (:) =
[
wi(:)

1.6 Contractive Mapping Fixed-Point Theorem

The contractive mapping �xed-point theorem[1, 3] states that if we are given

a contractive map W, then there is an attractor denoted by xw with the

following properties:

� Applying the a�ne transformation to the attractor yields the attractor.

This attractor xw is called the �xed point of W, i.e.

W (xw) = xw = w1(xw) [ w2(xw) [ : : : [ wn(xw)



� Given any input image, if we run the a�ne transformations su�ciently

large number of times, the resulting image is the attractor, i.e.

xw = S1 = lim
n!1

W �n(S0)

� xw is unique.

2 Fractal Image Compression

M.Barnsley[5] suggested that storing images as a collection of transforma-

tions would result in image compression. In this section we see how the

theory of fractals can be used to compress images.

2.1 Self-Similarity in Images

A typical image does not contain the type of self-similarity found in fractals.

But, it contains a di�erent sort of self-similarity. The �gure on the next page

shows regions of Lenna that are self-similar at di�erent scales. A portion of

her shoulder overlaps a smaller region that is almost identical, and a portion

of the re
ection of the hat in the mirror is similar to a smaller part of her

hat.



The di�erence here is that the entire image is not self-similar, but parts of

the image is self-similar with properly transformed parts of itself. Studies[6,

5, 2] suggest that most naturally occurring images contain this type of self-

similarity. It is this restricted redundancy that fractal image compression

schemes attempt to eliminate.

2.2 Partitioned Iterated Function Systems

To facilitate compression we extend the Iterated Function System(Section

1.5) to allow us to partition an image into pieces which are each transformed

separately. A modi�ed a�ne transformation for Partitioned iterated function

systems is
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Here si and oi are the contrast and brightness adjustments for the transfor-

mations.



2.3 Ranges and Domains

The problem of fractal image compression is to �nd the best domain that

will map to a range. A Domain is a region where the transformation maps

from, and a range is the region where it maps to.

2.4 A Simple Encoder and Decoder

2.4.1 The Encoder

Consider an image that is 256 � 256 in size and each pixel is one of 256

grey levels. The image is partitioned into 8 � 8 pixel non-overlapping sub-

square ranges, and 16 � 16 overlapping sub-square domains. For each of the

Ranges Ri we now search through all of the Domains D which best covers

this range. We write out the position of the range, the best domain and

the transformation. This process is repeated till all the ranges have been

covered.

2.4.2 The Decoder

The decoding step is very simple. We start with any image and apply the

stored a�ne transformations repeatedly till the image no longer changes.

This is the decoded image.

Jacquin[1] originally encoded images with fewer grey levels using a method

similar to this example. A similar method has also been used to encode

contours[2].

2.5 Quadtree Partitioned Encoding and Decoding

A weakness of the previous method is that the size of the range is �xed.

This results in areas with �ne detail not being covered well and vice-versa.

A generalization of the �xed size Ri is the use of quadtree[2] partitioning



of the image. In this scheme a square in the image is broken up into four

equal-sized sub-squares when it is not covered well. This process repeats

recursively starting from the whole image and continuing until the squares

are small enough to be covered. This method yields better results than the

simple encoder[2].

3 Encoding Time

3.1 Simple Encoder

For the example considered above, there are 1024 ranges and 58,081 domains.

There are eight ways that each domain can be mapped to a range and this

yields 464, 648 square that have to be compared for each range. The time

complexity of this search is linear in the number of domains. Various tech-

niques have been proposed to overcome this complexity. One such technique

is the classi�cation of domains based on some feature such as edges[1] or

bright spots. A domain once discarded removes from the pool of domains all

other similar domains for the current range. Another technique is to classify

the domains as multi-dimensional keys and this reduces the complexity from

O(N) to O(log(N))[4].

3.2 Quadtree encoder

The Quadtree encoder is adaptive in nature and therefore the number of

computations necessary depend on the input image detail. Nevertheless the

complexity is still quite large. This is because the partitioning of the image

is based on how well the candidate range matches a domain.



3.3 Improvement

It is reasonable to base the partitioning of the image, on the variance, rather

than the match of a candidate range with the domain. Doing this would

miss some of the larger squares, but would result in signi�cant reduction in

encoding time[2]. This is because none of the previously discarded ranges

would have to be compared to the domains. In this project we proposes to

implement this improvement to the quadtree partitioned fractal compression

scheme.

4 Implementation Plan

4.1 Coding

`C' code for quadtree partition based fractal compression already exists[2].

This code will have to be studied. The changes for the proposed improvement

will have to be implemented and tested.

4.2 Performance Study

A reduction in the encoding time is bound to a�ect the compression ratio.

A comparison of the performance of the new method with the old method,

with respect to encoding time and compression ratio is also proposed.

4.3 Pitfalls to avoid

� Images encoded by fractal methods have no characteristic size. A 256�

256 image can be encoded and restored at 512�512. This has the e�ect

of making the compression ratio 4 times larger. This will be avoided

and images will be decoded at the original size only.



� PSNR is not a measure of perceived image quality, and will not be used

to compare the images.

� The performance tests will be carried out for a diverse set of images so

that `freak' e�ects do not distort the results.
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