Improving Segmented Processing for Interferometric Synthetic Aperture Radar via Presumming

K. Clint Slatton
EE381K: Multidimensional Digital Signal Processing
Professor: Dr. Brian Evans
November 30, 1998
Outline

• Introduction
• Simulation results
• Processor architecture
• Implementation
• Results and conclusions to date
Introduction

• Interferometric Synthetic Aperture Radar (INSAR) data are needed to map Earth’s topography

• Current approach
 – process the data in patches
 • keeps array sizes manageable and allows updating of motion and squint parameters in one scene
 – realign patches (deskew) during post-processing

• Periodic height errors of >1 m occur at the boundaries of these patches
 – unacceptable for mapping low-relief, flood-prone areas
• Footprint of SAR beam pattern covers a swath as the SAR moves on a trajectory
• SAR emits pulses at the pulse repetition frequency (PRF) -> sampling frequency in azimuth
• Coherently sum reflected pulses to synthetically create linear antenna array

-3 dB footprint

\[R(x, R_t) = \sqrt{R_t^2 + (x - x_t)^2} \]

• Range to target varies
 - provides Doppler signature that determines proper phase offsets
• If SAR looking directly broadside, squint = 0

SAR Imaging Geometry
Deskewing

- Motion variations cause patches to be squinted differently
 - patches don’t align after core processing
- Deskewing
 - non-zero squint -> zero Doppler frequency does not occur at closest approach
 - patches must be resampled using Doppler and range information
 - support region of deskewed data is a parallelogram
 - near-range pixels are shifted less than far-range pixels
 - data written out in half-patch sections to avoid data gaps
 - adequate for magnitude images, but not for INSAR phase images
INSAR Measurement

- Two antennas image the target area (assuming single pass mode) -> 2 complex images \((C_1, C_2)\)
- Combine to get phase \(\phi\)
- Phase is more sensitive to deskew than magnitude, so patch boundaries only a problem for INSAR

\[
\begin{align*}
C_i &= R_i + jI_i \\
A_i &= \sqrt{R_i^2 + I_i^2} \\
\psi_i &= \tan^{-1}(I_i/R_i)
\end{align*}
\]

\[
\begin{align*}
C_1 &= R_1 + jI_1 \\
C_2 &= R_2 + jI_2 \\
A_2 &= \sqrt{R_2^2 + I_2^2} \\
\psi_2 &= \tan^{-1}(I_2/R_2)
\end{align*}
\]

\[\angle C_1 C_2^* = \psi_1 - \psi_2 = \phi\]

- Geometry relates \(\phi\) to relative height \(z\)

\[
\sin(\theta - \alpha) = \frac{\rho_1^2 - \rho_2^2 + B^2}{2\rho_1 B} \quad \theta = \alpha - \sin^{-1} \left(\frac{\lambda \phi}{2\pi 2B} \right) \quad z = h - \rho_1 \cos \theta
\]
Point Target Simulation

- **Azimuth response**
 - as SAR moves past target, many returned chirp pulses are collected
 - the return samples corresponding to a given target will consist of samples from these pulses
 - delayed according to the changing range to target
 - result is a new chirp, orthogonal to the range chirp in the data space
 - phase of azimuth spectrum varies rapidly

- **Presumming**
 - low pass filter, then downsample azimuth response
 - reduces patch boundaries by -> slowly varying phase
Point Target Simulation: Nominal

- After nominal azimuth compression
 - target is resolved, but significant sidelobes remain in azimuth direction
 - even after filtering azimuth reference function with a sidelobe reduction filter (kaiser)
 - PRF oversamples in azimuth relative to final posted resolution, so downsampling is acceptable
Point Target Simulation: Presumedmed

- Low pass filter and downsample the azimuth response
 - widens main lobe, reduces sidelobes, makes phase vary slowly
- Downsampling factor restricted to be integer
 - factor of 8 used in simulation to highlight effects
 - azimuth reference function not presumed -> defined for new azimuth response length
- Low pass filter for simulation was kaiser window for simplicity
 - $\beta=3$, 128 taps for point-wise multiplication
Nominal JPLIP Architecture: deskew

- Integer deskew program called immediately after core processing
 - done in spatial domain
 - for each patch
 - do loop over azimuth lines successively reads in 1-D arrays in range from 2-D pre-deskew image array
 - file pointer for this read is integer number of record lengths (uniform)
 - 1-D arrays reassembled into intermediate 2-D array
 - azimuth index in 2-D array depends on range bin via a do loop over range samples and Doppler (squint) values for current patch (non-uniform)
 - do loop over azimuth lines successively writes 1-D arrays from intermediate array, with azimuth index reset to start at 1
 - write 1-D arrays to 2-D post-deskew image array with file pointer equal to integer multiples of record length
JPLIP Architecture: Implement Presumming

- Core processor
 - range compression
 - estimate Doppler frequency
 - calculate arrays for Doppler frequency as function of range
 - azimuth compression
 - inside this subroutine is where presumming is implemented
 - low pass filter (anti-aliasing filter)
 - in frequency-domain multiply azimuth response with 11-tap Parks-McClellan FIR filter
 - multiply with DFT{azimuth reference} and take inverse DFT
 - downsample azimuth response by D
 - take every Dth sample of spatial-domain azimuth-compressed signal
 - restricted to be an integer (D = 2)
 - write out pre-deskewed image array

- Deskew
 - unchanged

FIR: Finite Impulse Response
DFT: Discrete Fourier Transform
JPLIP Results (Nominal Case)

- Processed subset of SAR data acquired over Texas using the JPLIP processor
 - best data set to examine since large area of open water allows patch boundaries to be observed with no obscuring topographic signal
 - 10 km x 10 km scene took roughly 3 hours to process on HP-9000
 - both images are 1296 x 960, 32 bit (4 byte) floating point data = roughly 5 Mb
- Patch discontinuities in the topographic image are severe
 - occur where the patches are written to the output array
Conclusions

- Extracted data transects show patch discontinuities clearly
- Presumming will improve azimuth response
 - sidelobes reduced
 - slowly-varying phase leads to better estimates of $\psi_1, \psi_2 \rightarrow \phi$
 - less likely to have discrete jumps at patch boundaries
 - some discontinuities will remain due to imperfect motion compensation
- Proposed error metric
 - compute the difference in sample means of heights taken on either side of a boundary
end presentation break
Nominal JPLIP Architecture: processing

- Core range-Doppler processing done in one FORTRAN program
 - range compression
 - inverse DFT{DFT{pulse return}•DFT{range reference}}
 - azimuth compression
 - inverse DFT{DFT{1 patch of equi-range bin lines}•DFT{azimuth reference}}
 - while in frequency domain, fractional part of deskew is done
 - separate issue not involving patch boundaries
Presumming’s Effect on Phase
2D Uncompressed SAR Signal

• Transmit pulses $s(t)$:
 – windowed linear FM (chirp) measured in fast time
 – modulates a carrier

• Received signals $r(t)$:
 – attenuated, delayed version of $s(t)$
 – analog demodulated
 – sequence of $r(t)$ signals modulated by Doppler response in slow time

• Convolve $r(t)$ with $s(t)$ to compress in range

• Convolve result with Doppler function to compress in azimuth

2D response of point target

[adapted from Morris and Harkness pg. 223]