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Abstract 

The effect of steering delay quantization on beamformer frequency and azimuth response is 

not well understood.  This project will attempt to analyze the relationship between steering delay 

quantization, with its corresponding impact on computational complexity, and beamformer 

response error.  Results found here should benefit both conventional beamforming and modern 

adaptive beamforming applications. 

 

I. Introduction 

Through temporal and spatial sampling, it is possible to determine the frequency and 

spatial characteristics of a signal despite interference.  Acoustic applications include the 

detection, localization, and characterization of objects or acoustic sources, and this branch of 

signal processing in both the time and space domains is commonly referred to as beamforming. 

The most intuitive example of a beamformer is the delay-sum beamformer (Fig. 1).  For 

simplicity, this paper will restrict itself to linear, uniformly spaced arrays of omni-directional 

sensors.  Suppose that we are interested in a signal emanating from a point source in a particular 

direction with propagation speed c.  If the source is distant enough, it is customary to model the 
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signal as a plane wave.  The name delay-sum beamformer is derived from the fact that the sensor 

outputs are delayed so that a wavefront arrives at the summation in phase.  The signal then adds 

coherently while noise and interference signals add incoherently. 
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where b(t,θ) is the beamformer output, xk(t) are the sensor outputs, and τk(θ) are the necessary 

delays to steer the beamformer toward direction of arrival θ. 

An azimuthal and frequency beamformer response is shown in Fig. 2.  Note that the 

response has quantifiable mainlobe width and sidelobe level characteristics that can vary 

considerably with respect to frequency [1].  Much like traditional temporal filters, there is a 

fundamental trade-off between mainlobe width and sidelobe levels.  Weighting coefficients, also 

called shading coefficients, similar to time-domain windowing coefficients are almost always 

applied to the sensors to shape the response to specifications.  The discussion of shading 

coefficients lies outside the scope of this paper. 

 

II. Background 

To implement each necessary delay using analog circuitry would be cost prohibitive.  

However, discrete time systems have the problem that simple delays must be integer multiples of 

the sampling period.  With a uniformly spaced linear array, there exists a set of beams, called 

synchronous beams, which can be exactly formed using these delays.  However, if the A/D 

converters only sample at the Nyquist rate of the signal of interest, these beams are quite sparse 

and offer little angular resolution. 
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One solution is to simply choose the time sample that is closest to the desired delay.  

However, this alters the array pattern in a way that has no simple closed-form solution except in 

special cases.  For example, Fig. 3(a) is the quantized counterpart of the ideal response in Fig. 

3(b), where τk = -kTs/2, Ts is the sampling period, and the discrete time delays have been rounded 

down to the nearest integer delay [2].  Note that even in this simple case, the effect can be quite 

large.  Little has been published on the consequences of time quantization on beamformer 

response, and this is the problem my project will focus on. 

Most beamforming research today has moved away from data-independent beamforming to 

time-varying algorithms that alter the beamformer according to information extracted from the 

sensor and beamformer outputs.  One large sub-category of this is adaptive beamforming, which 

varies the weights on the different sensors so that the beamformer converges to some statistical 

optimum.  Such adaptive algorithms lie outside the scope of this project, but they should benefit 

from the results found here since many of their algorithms rely on well-known data-independent 

beamforming methods.  For example, adaptive beamformers can become unstable, so [3] 

combines the robust qualities of a filter-and-sum beamformer with adaptability through the 

control of one parameter, which can be tuned to optimize the filter toward a given criterion.  For 

two relatively modern comparisons of different data-dependent beamforming methods, see [4, 5]. 

 

III. Comparison of Conventional Low-Pass Beamformers 

Mucci [6] gives a comparison of the major data-independent beamformer algorithms.  My 

project will focus on low-pass applications, so this section will summarize the performance of 

three low-pass beamformers: delay-sum, interpolation, and DFT.  Throughout this section, the 

variables are defined as follows: N = number of sensors, NB = number of beams. 
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Delay-Sum Beamformer.  The primary disadvantage of the delay-sum beamformer is that, 

to avoid serious beamformer response degradation due to steering delay quantization, the A/D 

converters must sample considerably faster than the Nyquist rate.  Not only does this 

significantly increase the cost of the A/D converters, but it also requires a large amount of 

memory to store all of these samples.  This algorithm requires NBN MACs per output sampling 

period.  Almost always, the delay-sum beamformer is an inferior choice for a design.  However, 

given its intuitive implementation, it is often used as a benchmark for other algorithms, 

especially since it is computationally efficient. 

Interpolation Beamformer.  A detailed description of interpolation beamformers (Fig. 4) is 

given in Section IV.  The sampling frequency of an interpolation filter is often close to the 

Nyquist rate, much lower than the equivalent delay-sum beamformer, with corresponding 

savings in the memory required.  The algorithm in Fig. 4 requires NBNC MACs per output 

sampling period, where NC is the length of the FIR interpolation filter.  Since beamforming and 

interpolation are both linear, shift-invariant operations, they can be exchanged.  The resulting 

pre-beamforming interpolation algorithm would require NCN MACs per output sampling period. 

DFT Beamformer.  Taking the Fourier transform of (1) and approximating Xk(ω) with a K-

point DFT: 
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which can implemented as shown in Fig. 5 using the efficient FFT algorithm.  Fi is the sampling 

frequency of the A/D converters.  One advantage of this method is that steering delay 

quantization is completely avoided, and so Fi can be set to the Nyquist rate.  For a linear, 

uniformly-spaced array, it is possible to take advantage of the linear dependence of (2) with 

respect to k, and we can form multiple beams using another FFT: 
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The best scenario for computational complexity is approximately N2log(N) MACs per output 

sampling period, which is more efficient the higher N is.  However, note that this would require 

N2 words of memory to store input data, which is considerable.  Also, the θn are not uniformly 

spaced, as may be required, and their positions are determined by other beamformer parameters. 

 

IV. Interpolation Beamformers 

The fundamental paper on interpolation beamformers remains [7].  Instead of sampling at 

the higher frequency necessary for the delay-sum beamformer, the interpolation beamformer’s 

A/D converters can sample close to the Nyquist rate of the signal.   Samples to be used in the 

beamformer are digitally interpolated.  This decrease in sampling frequency has a corresponding 

reduction in memory.  The trade-off for decreased demand on the analog components is the 

added computational burden of the digital interpolators.  However, since the zero-padding means 

the data is sparse, the additional computational complexity is fairly low. 

One way to decrease beamformer response errors due to steering delay quantization is to 

minimize the maximum possible delay quantization error by increasing the interpolation factor 

and creating a finer partition of the sampling period.  However, this proportionally increases the 

interpolation filter length and computational complexity.  This trade-off between beamformer 

accuracy and computational complexity will be key topic in my investigation. 

As stated in Section II, to avoid distortions in beamformer response due to steering delay 

quantization, a beamformer could be constrained to only use synchronous beams.  Increasing 
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angular resolution requires a larger interpolation factor, M, with a directly proportional increase 

to the length of the interpolation filter.  Another version of the interpolation beamformer, using a 

polyphase decomposition, is shown Fig. 6 [8].  Here, Ts’ = Ts/M, a single post-upsampling 

discrete-time increment.   Hk’ are the DTFTs of hk’[n], where hk’[n] = h[nM + k] and h[n] is the 

FIR interpolation filter.  The memory requirement of this algorithm is equal to that of the 

interpolation beamformer described above, and the computational complexity is NBNCN/M 

MACs per output sampling period.  Thus, this implementation outperforms the post-

beamforming interpolation and pre-beamforming interpolation structures when M > NE and M > 

NB, respectively.  In other words, since there is an affine relationship between M and angular 

resolution, the polyphase decomposition is more efficient if the number of synchronous beams is 

large compared to the number of sensors. 

Another recent variation on the interpolation beamformer is given in [9].  Here, researchers 

experimented with implementing short delays with analog circuitry and long delays digitally.  

Initial results are promising, showing improved control of zeros in the beamformer response 

without increased sampling rates. 

 

V. Digital Interpolation 

The general structure for digital interpolation is shown in Fig. 7.  To recover the frequency 

content of the signal after zero-padding, H(f) should be an ideal low-pass filter with digital 

frequency cutoff at π/M, M being the interpolation factor.  Design of such filters is a classic time-

domain filtering problem.  For data-independent, non-time-varying applications, the interpolation 

filter is optimized beforehand for a certain performance characteristic, such as filter-length to 

minimize computational complexity using the Parks-McClellan algorithm. 
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[10] argues against following the Parks-McClellan algorithm blindly.  For short filter 

lengths, Parks-McClellan filters can have unexpected amplitude and phase errors at the high end 

of the signal band where the beamforming process is more sensitive to such errors.  The paper 

goes on to describe procedures to minimize beamformer errors at the high end of the spectrum 

and to minimize interpolation error at a specific frequency. 

It is also possible to implement an interpolation beamformer with IIR filters [11].  By using 

a bank of all-pass fractional delay filters in polyphase configuration to exploit the sparsity of 

offered by zero-padding, this setup offers computational savings over those using FIR 

interpolation filters.  All-pass filters are used to combat the problem IIR filters have with 

quantization errors.  However, one of the key disadvantages of IIR filters is still present: such a 

beamformer output cannot have linear phase, and is thus unsuitable for certain applications. 

Much of modern research into interpolation deals with the design of fractional delay filters 

[12, 13].  While these can greatly improve beamforming accuracy, as shown in [9], they suffer 

from the fact that they are designed for a very specific delay and thus a filter must be stored and 

processed for each sensor in each beam, greatly increasing computation complexity. 

 

VI. Conclusion 

A brief introduction to beamforming and a preliminary investigation of steering delay 

quantization effects on beamformer response were presented.  This project will attempt to 

analyze the effect of steering delay quantization on the frequency-azimuth response of a general 

interpolation beamformer.  As a yardstick for beamformer accuracy and computational 

complexity, the delay-sum and DFT beamformers were described.  As an important component 

in the interpolation filter, a survey of research on digital interpolators was also given. 
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 Fig. 1.  Delay-sum beamformer. (Fig. 1, [9]) Fig. 2.  Frequency and azimuthal response 
  of a simple beamformer (Fig. 1, [1]) 
 

 
 (a) (b) 
Fig. 3.  Example of the effect of steering delay quantization on the wavenumber-frequency of a 
beamformer.  (a) Quantized beamformer.  (b) Ideal beamformer.  (Fig. 6.9, [2]) 
 

      
 Fig. 4.  Interpolation beamformer with post- Fig. 5.  DFT beamformer.  (Fig. 15, [6]) 
 beamforming interpolation. (Fig. 9, [6]) 
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 Fig. 6.  Polyphase interpolation filter Fig. 7.  Digital interpolation.  (Fig. 6, [6]) 
 along one sensor.  (Fig. 5(c), [8]) 
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