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Abstract

Conventional grayscale error di�usion halftoning produces worms and other objectionable artifacts.

Tone Dependent error di�usion for grayscale halftoning (Li and Allebach) helps reduce these artifacts

by controlling di�usion of quantization errors based on the input graylevel value. Allebach et al.

design error �lters weights and thresholds for each (input) graylevel optimized based on a human

visual system (HVS) model. In this report we extend tone dependent error di�usion to color. A

visually optimum deisgn approach for tone dependent error �lters (for each color plane) is presented.

The resulting halftones are seen to overcome most of the traditional error di�usion artifacts.

I. Introduction

Digital Halftoning is the process of transforming a continuous tone image (grayscale or color) to an image

with reduced number of levels so that it can be displayed (or printed) on devices with limited reproduction

palettes. Common examples are converting an eight-bit per pixel grayscale image to a binary image, and a

24-bit color image (with eight bits per pixel per color) to a three-bit color image.

In grayscale halftoning by error di�usion, each grayscale pixel is thresholded to white or black, and the

quantization error is fed back, �ltered, and added to the neighboring grayscale pixels [1]. Although an error

�lter is typically lowpass, the feedback arrangement causes the quantization error to be highpass �ltered, i.e.

pushed into high frequencies where the human eye is least sensitive. The original error di�usion halftoning

algorithm by Floyd and Steinberg is known to produce halftone images with smooth texture in slowly varying

regions and sharp rendering of detail [1]. However, it also su�ers from worms and other objectionable artifacts.

Many error di�usion variations and enhancements have been developed to improve halftone quality, which

includes using variable thresholds [2], [3], [4], variable weights [5] and di�erent scan paths [6].

Recently, tone dependent error di�usion methods have been developed for grayscale error di�usion [7], [8].

These methods include using error �lters with di�erent values for di�erent graylevels in the input image. The

quantizer threshold is also modulated based on the input graylevel [7]. In this project, we formulate the
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Fig. 1. System block diagram for grayscale error di�usion halftoning where m represents a two-dimensional spatial

index (m1;m2) and h(m) is a �xed 2-D nonseparable FIR error �lter

design of tone dependent color error di�usion halftoning systems. The design procedure trains error �lters

for each color plane to minimize the perceived error between a constant valued continuous tone color image

and its corresponding halftone pattern. A color human visual system (HVS) model takes into account the

correlation amongst color planes. The color HVS model that we employ, is based on a transformation to the

Linearized CIELab color space [9] and exploits the spatial frequency sensitivity variation of the luminance

and chrominance channels in the Linearized CIELab representation. The e�cacy of Linearized CIELab in

computing color reproduction errors in halftoning is shown in [10]. The resulting halftones overcome many

of the artifacts associated with traditional error di�usion viz. worms/directional artifacts and false textures.

The color HVS model helps minimize the visibility of the halftone pattern.

Section II brie
y reviews ideas in grayscale tone dependent error di�usion halftoning. The color HVS

model used in error �lter design is described in Section III. Section IV formulates the design problem for tone

dependent color error di�usion. Section V compares color halftones generated by the proposed method with

traditional color error di�used halftones. Section VI summarizes the contributions of the report and concludes

with open research problems.

II. Grayscale Tone Dependent Error Diffusion

Grayscale error di�usion halftoning e�ectively shapes the quantization error into high frequencies, where

the human eye is less sensitive. The system block diagram shown in Fig. 1, is also known as a noise-shaping

feedback coder. The design of the error �lter h(m) holds the key to the quality of the generated halftone.

Tone dependent error di�usion methods involve using error di�usion �lters with di�erent sizes and values

for di�erent graylevels [7], [8]. Optimal error weighting matrix design for selected graylevels based on \blue-

noise" spectra was introduced in [11]. The tone dependent error di�usion (TDED) algorithm in [7] searches

for error �lter weights and thresholds to minimize a visual cost function for each input graylevel.
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The threshold matrix used by Li and Allebach [7] is based on a binary DBS pattern for a constant input

of mid-gray. For the error �lter design, the authors chose the magnitude of the DFT of the DBS pattern as

an objective spectrum for the halftone pattern for input graylevel values in the midtones (21-234). For the

highlight and shadow regions (graylevel values in 0-20 and 235-255) the objective spectrum is the DFT of the

graylevel patch. For color error di�usion, independent design for each color plane would ignore the correlation

amongst color planes . The criterion for the error �lter design must hence be based on a color HVS model.

The perceptual model used in our design is explained next.

III. Perceptual Model

This section describes the model for calculating the perceived halftone image. First, we de�ne the Linearized

CIELab color space in which the minimization of the squared perceived error will be performed. The frequency

response of channel-separable human visual model is then described.

A. Linearized Uniform Color Space

The linearized CIELab color space is obtained by linearizing the CIELab space about the D65 white point

[9] in the following manner:
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The Yy component is proportional to the luminance and the Cx and Cz components are similar to the R-

G and B-Y opponent color chrominance components on which Mullen's data [12] is based. The original

transformation to the CIELab from CIEXYZ is a non-linear one [13]. The nonlinearity in the transformation

from CIELab distorts the spatially averaged tone of the images, which yields halftones that have incorrect

average values [9]. The linearized color space overcomes this, and has the added bene�t that it decouples the

e�ect of incremental changes in (Yy; Cx; Cz) at the white point on (L; a; b) values:

r(Yy;Cx;Cz)(L
�; a�; b�)jD65

=
1

3
I (4)

B. Human Visual Frequency Response

Nasanen and Sullivan [14] chose an exponential function to model the luminance frequency response

W(Yy)(~�) = K(L)e��(L)~� (5)
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where L is the average luminance of display, ~� is the radial spatial frequency, K(L) = a Lb and �(L) = 1

c ln(L)+d
.

The frequency variable ~� is de�ned [9] as a weighted magnitude of the frequency vector u = (u; v)T, where

the weighting depends on the angular spatial frequency � [14]. Thus,

~� =
�

s (�)
; where � =

p
u2 + v2 and s (�) =

1� !

2
cos(4�) +

1 + !

2
(6)

The symmetry parameter ! is 0.7, and � = arctan
� v
u
�
. The weighting function s (�) e�ectively reduces the

contrast sensitivity to spatial frequency components at odd multiples of 45o. The contrast sensitivity of the

human viewer to spatial variations in chrominance falls o� faster as a function of increasing spatial frequency

than does the response to spatial variations in luminance [15]. Our chrominance model re
ects this [16]:

W(Cx;Cz)(�) = Ae��� (7)

Both the luminance and chrominance response are lowpass in nature but only the luminance response is

reduced at odd multiples of 45o. This will place more luminance error across the diagonals in the frequency

domain where the eye is less sensitive. Using this chrominance response as opposed to identical reponses for

both luminance and chrominance will allow more low frequency chromatic error, which will not be perceived

by the human viewer.

IV. Tone Dependent Color Error Diffusion

A. Perceptual Error Metric

We train error �lters to minimize a visually weighted squared error between the magnitude spectra of a

\constant" input color image and its halftone pattern. Let x(R;G;B)(m) and b(R;G;B)(m) denote the con-

stant valued continuous tone and halftone images respectively. Then, x(Yy;Cx;Cz)(m) and b(Yy;Cx;Cz)(m) are

the obtained by transforming x(R;G;B)(m) and b(R;G;B)(m) to the YyCxCz space. The calculation of the

perceptual error metric is illustrated in Fig. 2. The constant valued continuous tone color image and its

halftone pattern are transformed to the YyCxCz space. The di�erence in their spectra Err(k; l) is com-

puted as Err(k; l) = X(Yy;Cx;Cz)(k; l) � B(Yy;Cx;Cz)(k; l) where X(Yy;Cx;Cz)(k; l) = FFT (x(Yy;Cx;Cz)(m)) and

B(Yy ;Cx;Cz)(k; l) = FFT (b(Yy;Cx;Cz)(m)). Human visual �lters as discussed in Section III, are applied to the

luminance and chrominance components of the error image in the spatial frequency domain. This corresponds

to a multiplication of the �lter spectra and the error image spectra P(k; l) = Err(k; l)HHV S(k; l). Here,

HHV S(k; l) denotes the FFT of the human visual spatial �lter. Note that, P(k; l), HHV S(k; l) and Err(k; l)

are vector valued. In particular they are 3� 1 vectors with Err(k; l) = (ErrYy(k; l); ErrCx(k; l); ErrCz (k; l)),
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Fig. 2. Block Diagram for Calculating Perceptual Error Metric

HHV S(k; l) = (HLum(k; l);HChrom(k; l);HChrom(k; l)) and P(k; l) = (PYy (k; l); PCx(k; l); PCz (k; l)). We de�ne

the perceived error metric as the total squared error (TSE) given by

TSE =
X
k

X
l

jPYy(k; l)j
2 + jPCx(k; l)j

2 + jPCz (k; l)j
2 (8)

B. Formulation of the Design Problem

The design problem is then to obtain error �lters for each color plane that minimize the TSE de�ned in

eqn. (8), subject to the constraints that all quantization error to be di�used

X
k2S

hm(k; a) = 1; hm(k; a) � 0 8 k 2 S (9)

where the subscript m takes on values R;G and B and hence the constraints are imposed on error �lters

in each of the 3 color planes. The error �lter coe�cients are a function of the input tone a. The design

objective is to obtain error �lter weights for each (R;G;B) vector in the input. This would amount to a

total of 2563 input combinations. We consider input values along the diagonal line of the color cube i.e.

(R;G;B) = ((0; 0; 0); (1; 1; 1)::::(255; 255; 255)). This results in 256 error �lters for each color plane. It should

be realized that the TSE is in general not a convex function. Hence, a global minimum cannot be guaranteed.
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(a) Original Color Ramp Image

(b) Floyd-Steinberg error di�usion

(c) Tone Dependent Error Di�usion (TDED) with serpentine scan

(d) Tone Dependent Error Di�usion (TDED) with traditional raster scan

(e) Tone Dependent Error Di�usion (TDED) with 2-row serpentine scan

Fig. 3. Halftone images of color ramp generated by traditional and tone dependent error di�usion

The space of solutions (error �lter weights) however comprises a convex set. The algorithm to search for

the optimum error �lter coe�cients for each color plane is described in [7]. The design is based on a Floyd-

Steinberg [1] support for the error �lter.

V. Results

Fig. 3 shows halftone images generated by TDED with di�erent scan paths. The traditional Floyd-Steinberg

(FS) halftone Fig. 3(b) is also shown for comparison. The TDED halftone in Fig. 3(c) does not su�er from

directional artifacts like diagonal worms. These can be seen in the FS halftone close to the yellow and blue
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extremes of the ramp. False textures in the FS halftone are prominent in the middle of the yellow region (a

third of the ramp length from the left) and in the centre of the ramp where yellow leads into blue. These are

nearly absent in Fig. 3(c). The choice of color to render at extreme levels is also better for the TDED halftone.

In Fig. 3(b) white dots are rendered close to the extreme blue regions of the ramp. These are replaced by a

mixture of magenta, cyan and black dots in the TDED halftone which are less visible. Detail of the halftones

in Fig. 3(b) and (c) are shown in Fig. 4(a) and (b). Diagonal worms are not present in the TDED halftone

and the visibility of the halftone pattern is minimized as well. Serpentine scan generates the best results

with TDED. The conventional raster scan (Fig. 3(d)) still shows the tendency for dots/holes to line up in

horizontal or diagonal worms particularly at extreme levels. While the serpentine scan with TDED almost

completely removes directional artifacts, it can only be executed as a serial process. A 2-row serpentine scan

[7] employed in Fig. 3(e) generates results comparable to Fig. 3(c) and is more parallelizeable.

The results in Fig. 5 explain the role of color HVS model. Note that the green diagonal worms in the shadow

region (extreme levels) under the roof that appear in the FS halftone (Fig. 5 (a)) are pretty much removed in

Fig. 5(b). Monochrome images corresponding to the Yy and Cx components of the FS and TDED halftones

are presented in Fig. 5(c) through (f). The Yy component is obtained by converting the �nal halftone to the

YyCxCz color space and setting both the Cx and Cz components to zero, resulting in (Yy; 0; 0). The resulting

vector is transformed back to the RGB space for display. The Cx component is obtained similarly. Comparing

Fig. 5(c) and (d) for FS error di�usion, we see that both the Yy and Cx components exhibit similar texture.

In contrast, we see in Fig. 5(e) and (f), the Cx component has much lower frequency texture than the Yy

component owing to the more agressive HVS �ltering of the chrominance planes. When viewed as true color

images the overall halftone texture is much less visible in the TDED halftone.

(a) Floyd-Steinberg (b) TDED

Fig. 4. Detail of the Floyd-Steinberg and TDED halftones, blue region (extreme right) of the color ramp
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VI. Conclusion

An input level (tone) dependent color halftoning algorithm was proposed. A linear channel-separable color

HVS model is used to design visually optimum error �lters for each color plane. The resulting halftones are

seen to overcome most traditional error di�usion halftoning artifacts. Future work may investigate the design

of optimum matrix valued �lters for tone dependent vector color error di�usion halftoning.
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(a) Floyd-Steinberg Halftone (b) TDED Halftone

(c) Yy component of the FS halftone (d) Cx component of the FS halftone

(e) Yy component of the TDED halftone (f) Cx component of the TDED halftone

Fig. 5. (a) Floyd-Steinberg and (b) TDED halftones of the house image


