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Abstract

Image halftoning converts a high-resolution image to a low-resolution image, e.g. an 8-bit grayscale

image to a binary image, for printing and display. Conventional error di�usion halftoning produces

worms and other objectionable artifacts. Tone Dependent error di�usion (Li and Allebach) helps

reduce these artifacts by controlling di�usion of quantization errors based on the input graylevel

value. Allebach et al. design error �lters weights and thresholds for each (input) graylevel optimized

based on a Human Visual System (HVS) model. Color HVS models would signi�cantly impact the

design of optimum error �lters for (tone-dependent) color error di�usion. A survey of tone dependent

grayscale halftoning methods and the linear color vision model used by Evans et al. is presented.

I. Introduction

Digital Halftoning is the process of transforming a continuous tone image (grayscale or color) to an image

with reduced number of levels so that it can be displayed (or printed) on devices with limited reproduction

palettes. Halftoning is more complicated than simply truncating each multi-bit intensity to the lower resolu-

tion. Simple truncation would give poor image quality because the quantization error would be spread equally

over all spatial frequencies.

Halftoning methods in current use may be categorized as classical screening, search based methods and

error di�usion. Screening applies a periodic array of thresholds to each graylevel of the multi-bit image.

Pixels are converted to black if they are below the threshold or white otherwise. Classical screening is

limited by the fundamental tradeo� between spatial resolution and rendered graylevels. The dither array

cell should be as small as possible for increased spatial resolution but as large as possible to reproduce more

graylevels. Direct binary search (DBS) [1] produces high quality halftones by iteratively searching for the

best binary pattern to match a given grayscale image by minimizing a distortion criterion. The distortion

criterion incorporates a linear spatially-invariant model of the human visual system as a weighting function

[2]. Due to its implementation complexity however, it is impractical for use as a direct halftoning method



2

in desktop printers. DBS is still implicity used for the purpose of screen design. Importantly, DBS serves

as a practical upper bound on achievable halftone quality for other algorithms. Error di�usion [3] generates

high quality halftones at an implementation cost greater than that of screening but signi�cantly less than

DBS. Computationally, screening amounts to pixel-parallel thresholding, whereas error di�usion requires a

neighborhood operation and thresholding. The neighborhood operation distributes the quantization error

due to thresholding to the unhalftoned neighbors of the current pixel. The term \error di�usion" refers to

the process of di�using the quantization error along the path of the image scan. Recently, tone dependent

error di�usion halftoning algorithms have been developed [5], [6] for grayscale error di�usion. These methods

include using error �lters with di�erent values for di�erent graylevels in the input image. The quantizer

threshold is also modulated based on the input graylevel [5]. In this project, I propose to formulate the design

of tone dependent color error di�usion halftoning systems. The aim is to perform an extension of the tone

dependent algorithm for grayscale halftoning in [5] to color while incorporating a color HVS model in the

error �lter design.

Section II summarizes the key ideas in grayscale and color error di�usion halftoning. Section III describes

tone dependent error di�usion halftoning for grayscale images. Section IV explains a pattern-color separable

HVS model employed in [7],[8] for color error di�usion halftoning. Section V discusses design and implemen-

tation issues in tone dependent color error di�usion. Example halftones generated by the methods discussed

in the report are presented in section VI. Section VII concludes the report.

II. Background

We use m to denote a 2-D spatial index (m1;m2).

In grayscale halftoning by error di�usion, each grayscale pixel is thresholded to white or black, and the

quantization error is fed back, �ltered, and added to the neighboring grayscale pixels [3]. The system block

diagram shown in Fig. 1, is also known as a noise-shaping feedback coder. In Fig. 1, x(m) denotes the graylevel

of the input image at pixel location m, such that x(m) 2 [�1; 1]. The output halftone pixel is b(m), where

b(m) 2 f�1; 1g. Here, 1 is interpreted as the absence of a printer dot and �1 is interpreted as the presence

of a printer dot. Q(�) denotes the standard thresholding quantizer function given by

Q(x) =

8><
>:

+1 x � 0

�1 x < 0

(1)
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Fig. 1. System block diagram for grayscale error di�usion halftoning where m represents a two-dimensional spatial

index (m1;m2) and h(m) is the impulse response of a �xed 2-D nonseparable FIR error �lter having scalar-valued

coe�cients.

The error �lter h(m) �lters the previous quantization errors e(m) 2 [�1; 1]:

h(m) � e(m) =
X
k2S

h(k) e(m� k) (2)

Here, � means linear convolution, and the set S de�nes the extent of the error �lter coe�cient mask. The

error �lter output is fed back and added to the input. Note that (0; 0) =2 S. The mask is causal with respect

to the image scan. To ensure that all of the quantization error is di�used, h(m) must satisfy the constraint

X
k2S

h(m) = 1 (3)

The quantizer input u(m) and output b(m) are given by

u(m) = x(m)� h(m) � e(m) (4)

b(m) = Q(u(m)) (5)

Although an error �lter is typically lowpass, the feedback arrangement causes the quantization error to be

highpass �ltered, i.e. pushed into high frequencies where the human eye is least sensitive. The feedback ar-

rangement sharpens the original image by passing low frequencies and amplifying high frequencies. Traditional

grayscale error di�used halftones appear sharper than the original and contain highpass noise [10].

Vector Error Di�usion (VED) applies error di�usion in three-dimensional color space. This is generally

done in two ways. The �rst method employs separable �ltering in each plane in each color plane while cleverly

modifying the quantization process (Vector Quantization) to render the nearest attainable color at each pixel

[11]. An alternative framework uses matrix-valued �lters (multi�lters) [7] to take into account the correlation

amongst color planes. A matrix gain model predicts the sharpening and noise shaping characteristics of the

color error di�usion scheme.
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III. Grayscale Tone Dependent Error Diffusion

Tone-dependent error di�usion methods involve using error di�usion �lters with di�erent sizes and values

for di�erent graylevels [5], [6]. Optimal error weighting matrix design for selected graylevels based on \blue-

noise" spectra was introduced in [12]. The tone dependent error di�usion (TDED) algorithm in [5] is based

on the idea that by searching for weights and thresholds to minimize a visual cost function for each graylevel,

the algorithm can be made to produce halftone quality similar to that of DBS [1].

For the TDED algorithm in [5], the error �lter and threshold matrix, denoted by h(m) and t[m; a] respec-

tively, are functions of input pixel value a. The binary output b(m), is determined by

b(m) =

8><
>:

+1; if u(m) � t[m;x(m)]

�1; otherwise.

(6)

The quantization error e(m) and the quantizer input u(m) are then computed as in conventional grayscale

error di�usion. The threshold matrix used by Li and Allebach [5] is based on a binary DBS pattern for the

input graylevel 0.5:

t[m; a] =

8><
>:

tu(a) if p[m; 0:5] = 0

tl(a) otherwise.

(7)

where tu(a) and tl(a) are tone dependent parameters satisfying tu(a) � tl(a). The function p[m;0:5] is a

halftone pattern generated by DBS that represents a constant patch with graylevel 0.5. By substituting (7)

into (6), the thresholding process can be represented by

b(m) =

8>>>>><
>>>>>:

+1 if u(m) � tu(x(m))

�1 if u(m) < tl(x(m))

p[m; 0:5] otherwise.

(8)

For the error �lter design, the authors choose the magnitude of the DFT of the DBS pattern as an objective

spectrum for the halftone pattern for input graylevel values in the midtones (21-235). For the highlight and

shadow regions (graylevel values in 0-20 and 234-255) the objective spectrum is the DFT of the graylevel patch.

Let BDBS(k; l) and BTDED(k; l) denote the DFT of the DBS and the tone dependent error di�usion patterns,

respectively. The goal is then to search for the tone dependent parameter vector v = (tu(a); tl(a); h(m; a))

that minimizes
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J =
X
k

X
l

(jBTDED(k; l)j2 � jBDBS(k; l)j2) (9)

subject to the constraints

tu(a) + tl(a) = 1 (10)

tu(a) � tl(a) (11)

X
k2S

h(k; a) = 1 (12)

h(k; a) � 0 8 k 2 S (13)

A serpentine scan is used in the design. Note that BDBS(k; l) would be replaced by X(k; l) (the DFT of

the input graylevel patch) for the highlight and shadow regions. The algorithm to search for the optimum

tone dependent parameter vector vopt is described in [5].

Since each graylevel requires an error �lter, TDED entails an increase in memory. The number of distinct

error �lters is reduced to half though based on symmetry conditions i.e. h(k; a) = h(k; 1 � a). The use of a

serpentine scan in TDED also limits parallelism, since it can only be implemented as a serial process. In [5]

the authors use a 2-row serpentine scan, where they process two consecutive rows in one direction and the

next two rows in the opposite direction. The 2-row serpentine scan overcomes diagonal worms seen with the

raster scan and is more parallelizable.

IV. Linear Color Vision Model

Damera-Venkata and Evans [7] employ a linear color model based on the pattern color separable model by

Wandell et al. [14], [15]. The linear color model consists of (1) a linear transformation ~T, and (2) separable

spatial �ltering on each channel. Each channel uses a di�erent spatial �lter. The �ltering in the z-domain

is a matrix multiplication by a diagonal matrix D(z). In the spatial domain, the linear HVS model ~v(m) is

computed as

~v(m) = ~d(m)~T (14)

A complete HVS model is uniquely determined by the color space transformation and associated spatial �lters.

Monga, Geisler and Evans [8] evaluate popular color spaces in halftoning applications to �nd the best HVS

model for color error di�usion. Using both objective as well as subjective measures, they identify the trans-

formation to the Linearized CIELab color space [17] as perceptually most accurate. The linearized CIELab
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color space is obtained by linearizing the CIELab space about the D65 white point [17] in the following manner:

Yy = 116
Y

Yn
� 16 (15)

Cx = 500

�
X

Xn
�

Y

Yn

�
(16)

Cz = 200

�
Y

Yn
�

Z

Zn

�
(17)

Hence ~T (based on a sRGB monitor) is sRGB �! CIEXYZ �! Linearized CIELab. The Yy component

is similar to the luminance and the Cx and Cz components are similar to the R-G and B-Y opponent color

components. The original transformation to the CIELab from CIEXYZ is a non-linear one

L� = 116f

�
Y

Yn

�
� 16 (18)

a� = 500

�
f

�
X

Xn

�
� f

�
Y

Yn

��
(19)

b� = 200

�
f

�
Y

Yn

�
� f

�
Z

Zn

��
(20)

where

f(x) =

8><
>:

7:787x + 16
116

if 0 � x � 0:008856

x1=3 if 0:008856 < x � 1

The values for Xn, Yn and Zn are as per the D65 white point [18].

The nonlinearity in the transformation from CIELab distorts the spatially averaged tone of the images,

which yields halftones that have incorrect average values [17]. The linearized color space overcomes this, and

has the added bene�t that it decouples the e�ect of incremental changes in (Yy; Cx; Cz) at the white point on

(L; a; b) values:

r(Yy;Cx;Cz)(L
�; a�; b�)jD65

=
1

3
I (21)

The spatial �lters operate more aggresively on the luminance channel and are based on the luminance

frequency response by Nasanen and Sullivan [19] and the chrominance frequency response by Kolpatzik and

Bouman in [20].

V. Tone Dependent Color Error Diffusion

The extension of TDED to color is non-trivial. There are two alternatives: 1) using separable �lters for

each color plane or 2.) use matrix valued �lters for capturing the correlation amongst color planes as in [7].
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In either case the key issue is the design of the error �lters for each RGB triplet in the input image. The color

HVS model signi�cantly impacts the design. In my approach, I intend to use the color vision model based on

the transformation to the Linearized CIELab space [8] as discussed in Section IV with the key di�erence that

the visual �lters would be applied in the FFT (frequency) domain after taking the FFT of the transformed

image. I propose a separable design for each color plane by considering RGB triplets on the diagonal line

through the color cube i.e. (R;G;B) = (0; 0; 0); (1; 1; 1):::(255; 255; 255). The error �lters would be trained so

as to minimize the visually weighted squared error between the magnitude spectra of the halftone image and

the spectra of the constant color patch for a given RGB triplet.

VI. Simulation Results

The design of the error �lter is the key to high quality error di�usion halftoning methods. The Floyd-

Steinberg error �lter was designed by trial-and-error to give four dyadic taps. Jarvis [21] and Stucki [22]

proposed dyadic 12-tap error �lters to reduce worms. The resulting halftones are however signi�cantly sharper.

Fig. 2 shows an example of Floyd-Steinberg and Tone Dependent error di�used halftones of the barbara image.

For comparison purposes, a direct binary search halftone is also shown in Fig. 2. Visual inspection con�rms

a better dot distribution for the tone dependent error di�used halftone. Worms are broken by di�using

the quantization errors to a wider area at extreme gray levels [5]. The halftone in Fig. 2(c) is however not

sharpened too much as is the case when using the Jarvis or Stucki error �lters.

VII. Conclusion

Tone dependent error di�usion methods for grayscale halftoning are shown to produce halftone quality

comparable to DBS by threshold modulation and by using error �lters dependent on the input graylevel value.

Future work involves the design and analysis of tone dependent color error di�usion halftoning systems. Tone

dependent color quantization could also be considered. The design of optimum (in visual quality) separable

tone dependent error �lters for each color plane, is the focus of this project.
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(a) Original Barbara image (b) Floyd-Steinberg error di�usion

(c) Tone Dependent Error Di�usion (d) Direct binary search

Fig. 2. Comparison of classical Floyd-Steinberg and Tone Dependent error di�usion methods with the iterative direct

binary search method.


