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Abstract

With growing traffic of multimedia on the Internet the need for better coding tech-
niques for music, importance of efficient music indexing and MIDI conversion cannot be
over stressed. For any such application automatic music transcription is a key process.
The development of robust automatic music transcription systems depends on the ef-
ficiency with which the polyphonic components of music can be resolved. An efficient
pitch estimation technique that handles real world signals is presented. A Bayesian
probability based model is used to weigh the pitch candidates in order to select the
best pitch estimate. This method gives the flexibility to impose constraints on the time
varying characters of the incoming data. In comparison to the conventional autocor-
relation based method, we find that the method to be more consistent across pitch

transitions although computationally expensive.



1 Introduction

In the field of music signal processing, one of the most intriguing problems has been of
automatic music transcription. Its applications include Karaoke, Music-Minus-One systems,
content based audio retrieval and music indexing. From a musical point of view, the most
important attribute of harmonic sounds is their fundamental frequency. Thus the basic
requirement for a music transcription system is to detect the fundamental frequencies of
sounds, and attribute them to the corresponding sources of generation. A key component in
any automatic music transcription system therefore is a robust pitch tracker.

Pitch tracking of monophonic signals is practically a solved problem. However, mono-
phonic pitch trackers fail to segregate the sound sources when the signal is polyphonic, as
is the case in any real world music recording. A reliable algorithm for multi-pitch contour
tracking is critical for many auditory processing tasks. However, due to the difficulty of
dealing with the interference from noise intrusions and mutual interference among multiple
harmonic structures, the design of such an algorithm is very difficult and still an open arena
for research.

Musical signals can be well represented as a sum of harmonically related sinusoids mo-
tivated by consideration of the sound generation mechanisms of many musical instruments.
We consider the problem of estimating the harmonic model parameters in a Bayesian frame-
work which has the potential to incorporate a priori knowledge about the structure of the
data and of its parameters. Constraints can be imposed upon the time-domain variation
of model parameters to reflect the high correlation of frequency and harmonic structures
over time. A pitch estimation approach, which uses knowledge in this format, in order to
resolve the simultaneously occurring partials is presented. Unlike the temporal correlation
approach, this method integrates data across frames to verify the sanity of pitch estimate.
Comparison is made with the conventional Summary AutoCorrelation Function method.

Some observations and avenues for future work are discussed.



2 Background

Several pitch tracking algorithms have been proposed for tracking musical signals. Brown|1]
proposed a method which uses Constant QQ spectrum for recovering the spectral information
from the signals . Several enhancements have been proposed to this algorithm|2, 3]. However,
this algorithm is more effective in monophonic environment.

Auditory modelling of musical signals is another approach to handle polyphonic pitch
tracking|4]. This method is popular since, it not only explains a wide range of psychoacoustic
phenomena in hearing (such as 'missing pitch’ phenomenon), but also tries to organize sounds
to their sources of production. An automatic transcription system using this method and a
’blackboard’ architecture to organize data has been proposed by Martin[5]. However, this
approach does not use auditory cues which are necessary to resolve harmonics.Kashino and
Tanaka |6] have proposed an approach based on automatic tone modeling. This approach
extracts tone models from the signal which is being analyzed. There are several limitations
on this method of pitch tracking. Since, the model is self learning, there are stricts constraints
on the type of data that it can handle.

In the method proposed in this report, an auditory model is used as the front end for
signal processing. It acts as a tool to extract data about fundamental frequency, its harmon-
ics, and their corresponding amplitudes. A simple bayesian probability network is used to
organize this information as hyper data. A probabilistic weightage is given to all the possible

harmonics and the best pitch estimate is selected.

3 Implementation

3.1 Auditory Model Front End:

The model proposed by Meddis and O’Mard|[7] is popular for accurately representing the ac-
tual behaviour of humar cochlea and is especially sensitive to “missing pitch” phenomenon.

It conmsists of a filterbank, followed by a nonlinearity function and a periodicity detection



stage. Each bandpass filter is implemented by four cascaded second order filter sections,
which realize an 8th order filter with a “gammatone” impulse response. The bandwidth of
each filter is set to Equivalent Rectangular Bandwidth (ERB) of the cochlear tuning curve.
The nonlinearity of half-wave rectification and smoothing are added to the filter bank out-
put to simulate the unidirectional response and ’phase locking’ behavior of the inner hair
cells of the cochlea. This signal output is fed in to a short averaging window, and then
autocorrelated. Defining a windowing function w(t), we can summarize the operation as:

T (t, to) = 2(O)w(t —t0); Repan, (T,t0) = [0 w(t to)ay(t — 7, t0)dt

At a fixed time, summing up the autocorrelation outputs across all the cochlear channels
for each time lag, a peak is detected at a lag at which, the auditory system percieves a pitch.
The inverse of this time lag is pitch frequency. A block diagram of the complete operation

is given in Fig. 2.
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Fig. 2. Complete operation of auditory model front end [4] with gammatone

filterbank of 54 channels followed by halfwave rectification and autocorrelation



3.2 Bayesian Modeling of Data

The data is segmented into frames d; of length N, chosen to make the frame duration around
20 ms, during which time we assume the data is stationary. The model is constructed as a
sum of unknown number of concurrently sounding notes, where the parameters of note ¢ in
frame 7 are: fundamental frequency w!, number of harmonics H/and harmonic amplitudes
by, A maximum limit of @ notes is imposed, but each note can be switched in to or out
of the model via a binary indicator variable 7/, which is estimated along with the other
parameters. Hence the model order selection is implicitly carried out within the estimation
process. Each note is expressed as a general linear model, in terms of a harmonic basis
matrix G, the amplitudes b7, and an error term e; which is assumed gaussian, independant

and identically distributed with variance o7 .
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s(w) = [sin(wty)sin(wts)...sin(wty)]

c(w) = [cos(wty)cos(wty)...cos(wty)]

Denoting the notes in a frame q as ©f = {{,w{, H!, b}, the likelihood for a frame i is

given by
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A least-squares or maximum likelihood method would seek to maximize the above equa-



tion, but we here we pose the model in a bayesian framework which enables us to impart
prior information into the model via a prior: probability densities on the parameters, and
which also provides a basis for probabilistic model selection.

Fig. 3 shows a graphical model representing the linear model for a set of Nyframes
of data (termed a block). The hyperparameters {Af }are any prior knowledge we may use
about the notes parameters. Block hyperparameters decide the prior distributions of the
note parameters and assist in converging to a local best-fit model.

The hyperparameters in this implementation are the average pitch 14, variation o2,across
Nyframes and the indicator function I'?of the particular note in the block. We can observe
that instantaneous frequency in a frame, w! depends on {v9,02,}. The parameters are
assigned prior distribution which are same as listed in [8]. Since, the level of data hierarchy
used in the current implementation is not very deep, only a uniform prior of the harmonics
H! and a uniform prior for the probability of a note being played in the frame are used.

The joint posterior distribution for all parameters is obtained as follows:

p({61},{AL}, {02 }{d:}) o p({6¢},{AL}, {02 }) x I p(di| {61}, 02)

After marginalization of amplitudes and error variances, the posterior distribution of a

model given the observed data is given by:

Nq 2 na P67}l Mo)p(Mg)
PMa. (Bl o®) o ool Ml M) 2
G (GtG ) 1G2

Where M =2 H? 01 = {w?, H1} e = N/2+«a and p(Mg) = p({T'9}1.0). A compos-
qeQ Q Q

P. =1y — (1 =
ite basis matrix G¢is formed from the concatenation of the included basis matrices ¢ € Q.
The error variance hyper parameters cand fare chosen to be small. This probability is
maximised numerically by repeated iterations. A stream of dependent samples from the
posterior are generated and used for estimation.The implementation consists of iteratively

sampling for each note and minimizing the error residual r{ in terms of note parameters:
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Fig 3. Bayesian modeling of data in pitch estimation process. The second

diagram shows how the hyper parameters are related in hierarchy to the data.

4 Simulation and results

The estimation algorithm is a two stage process. In this first stage of the algorithm, the
global kernels propose a state space move for note parameters for a particular note ¢ but
across all frames ¢ = 1... Ny, whereas in the second stage, local kernels propose a state change

locally within a frame. The algorigthm can be summarized as follows:

1. Assign prior distributions for w, H}.

2. For each frame:

(a) Calculate the summary autocorrelation function

(b) Perform peak picking and select possible fundamental frequency candidates above

a threshold
(c) Multiply the peaks with the reliability vector

(d) pass the output through a weighted median filter to get the best pitch frequency

corresponding to highest peak.



(e) Find error by comparing the evolving model and observed data

(f) Update the reliability vector enhancing the weight of the most recently chosen

peak.

(g) Repeat the process to minimize the error r!

A few samples of music with clearly distinguishable pitches and very less vibrato were chosen.
The above discussed algorithm was compared with the conventional Summary AutoCorrela-
tion Function (SACF) method. Given a good starting (e.g., results from previous block), the
convergence is rapid typically 100 -120 iterations. It is to be noticed that such iterations are
not performed in the case of SACF method. Hence the SACF method is computationaly ef-
ficient. It was observed that since the SACF method handles data frame by frame, the pitch
transitions are not correctly tracked by it. we can see erroneous pitch detections.The pro-
posed algorithm however, applies salience information before declaring pitch estimates,hence

eliminates the possibility of incorrect pitch estimates as can be seen in Fig. 4.

5 Conclusion

In this project, a probabilistic approach was applied to estimate pitch in polyphonic en-
vironment. Simple hyperparameters were used to wiegh the probability of pitch candidates.
The algorithm is more efficient in tracking constant and slow variation of pitches. It is less
error prone at pitch transitions in comparison to SACF method. It can give constant pitch
estimates which come in more handy in the context of music transcription. However, the
algorithm smears the strong attack transients due to integration across frames. It can be in-
ferred that if the pitch detected by such an algorithm were used in music synthesis, then the
music would be “mellowed” down. It was noted that addition of hyperparameters increases
the computation exponentially. Hence, there is a need to wiegh the feasibility adding each

new parameter. In this implementation, low level of hyperparameters (restricted to note



level) has been used. However, pitch estimation can be made more efficient by the use of

higher level data such as chords, and permissible chord transitions.
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Fig. 4. Experimental runs of the proposed algortihm with samples of flute

and violin. Pitch frequency and corresponding salience vectors are plotted



References

1]

2]

3]

[4]

[5]

[6]

7]

18]

19]

J.C. Brown, “calculation of a Constant Q Spectral Transform,” J. Acoust. Soc. America.

Vol. 89, pp 425-434, 1992.

J. C. Brown and M. S. Puckette, “An Efficient Algorithm for the Calculation of a Constant

Q Tra nsform,” J. Acoust. Soc. Am. Vol. 92 pp. 2698-2701, 1992.

J. C. Brown and M. S. Puckette, “A High Resolution Fundamental Frequency Determi-
nation Based on Phase Changes of the Fourier Transform,” J. Acoust. Soc. Am. Vol. 94,

pp 662-667, 1993.

D. P. W. Ellis, “A Perceptual Representation of Sound for Source Seperation,” J. Acoust.
Soc. Am. Vol. 91, Issue4, pp 2334, April 1992.

K.D Martin, “A Blackboard System for Automatic Transcription of Simple Polyphonic
Music,” Tech. Rep. No. 385, MIT Media Lab, Perceptual Computing Section, Massachus-

setts Institute of Technology, Massachussetts, CA July 1996

K. Kashino and H. Tanaka, “A Sound Source Seperation System with the Abilityof Au-
tomatic Tone Modeling”, Proc. of International Computer Music Conference. pp 248-255
Aug. 1993

R.Meddis and L. O’Mard,”A Unitary Model for Pitch Perception,” J. Acoust. Soc.
Amer.,Vol. 102, pp 1810-1820, Sept. 1997

P. J. Walmsley, S. J. Godsill and P. J. W. Rayner, “Polyphonic Pitch Tracking Using
Joint Bayesian Estimation of Multiple Frame Parameters,” Proc. 1999 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, Oct.
17-20,1999

K. D. Martin, “Sound-Source recognition: A Theory and Computational Model,” PhD

Thesis, Massachusetts Institute of Technology, Massachusetts, CA, June 1999



