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Abstract. Matrix approximation problems with non-negativity constraints arise during

the analysis of high-dimensional non-negative data. Applications include dimensionality

reduction, feature extraction and statistical factor analysis. This paper discusses a general

algorithm for solving these problems with respect to a large class of error measures. The

primary goal of this article is to develop a rigorous convergence theory for the algorithm.

It also touches on some experimental results of S. Sra [1] which indicate the superiority of

this method to some previously proposed techniques.
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1. Introduction

Suppose that A is a d × N matrix whose columns are vectors of non-negative data. The

problem of extracting r linear features from A can be stated as solving the approximation

problem A ≈ VH , where V is a d × r matrix of feature vectors and H is an r × N matrix of

coefficients. We quantify the approximation error using a measure that reflects the prove-

nance of the data. For example, if we are working with probability distributions, it makes

sense to use the variational distance or the Kullback-Leibler divergence.

A common way to find features is to compute a partial singular value decomposition (SVD)

of the data matrix [2]. Although partial SVD provides the best approximation to A in the

sense of total least squares, it yields feature vectors that have both positive and negative

components. Such features have no interpretation if the data are non-negative. If the data

consist of pixel intensities from images, what does a negative intensity signify? If the data

consist of word counts from documents, what does a negative word count mean?

To address this metaphysical complaint, several groups of researchers have proposed

adding non-negativity constraints to the approximation problem. Paatero and Tapper ad-

vocated solving minV ,H≥0 ‖VH − A‖F for statistical factor analysis [3]. In their first paper

on the subject [3], they suggest using an alternating least-squares algorithm [3] to solve

the problem. Later Paatero proposes instead a modified gradient descent [4] and a conju-

gate gradient method [5]. Independently, Lee and Seung considered the same optimization

problem for some applications in machine learning. They originally solved it using an al-

ternating projected gradient technique [6]. More recently, they have provided two optimally

scaled gradient descent algorithms which respectively minimize the Frobenius norm and the

Kullback-Leibler divergence of the approximation error [7]. None of these algorithms have

been compared in the literature, and proper convergence proofs are scarce.

We shall call the problem of approximating A ≈ VH subject to the constraints V , H ≥ 0

non-negative matrix approximation (NNMA). The present work discusses an alternating min-

imization algorithm for solving NNMA problems where the approximation error is measured
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using a very general type of function. The primary goal is to provide a rigorous account of

the convergence of this algorithm. I shall also touch on the work of my colleague Suvrit Sra,

who has performed some preliminary experiments to compare the actual behavior of this

algorithm with some of the other proposed methods [1].

2. Mathematical Background

2.1. Point-to-Set Maps. To understand the convergence of the algorithm, we need some

elementary concepts from the theory of point-to-set maps. The power set P(Y ) of a set Y

is the collection of all subsets of Y . A point-to-set map Ω from the set X to the set Y is a

function Ω : X −→ P(Y ). The composition of two point-to-set maps Ω1 : X −→ P(Y )

and Ω2 : Y −→ P(Z ) is defined by (Ω2 ◦ Ω1)(x) = ∪y∈Ω1(x)Ω2(y) [8].

Suppose that X and Y are endowed with topologies so that we may speak of convergence.

A point-to-set map Ω is closed at x̂ ∈ X if {xk} ⊂ X , xk −→ x̂, yk ∈ Ω(xk) and yk −→ ŷ

together imply that ŷ ∈ Ω(x̂). In words, every convergent sequence whose elements lie in

the sets {Ω(xk)} must have its limit in the set Ω(x̂). A map is closed on X if it is closed at

each point of X . The composition of two closed maps is always closed [8].

We also define two different types of stationary points. A fixed point of the map Ω :

X −→ P(X ) is a point x for which {x} = Ω(x). Meanwhile, a generalized fixed point of Ω

is a point x for which x ∈ Ω(x) [9].

2.2. Iterative Algorithms. Many procedures in mathematical programming can be de-

scribed using the language of point-to-set maps. An algorithm is a point-to-set map Ω :

X −→ P(X ). Given an initial point x0, an algorithm generates a sequence of points via

the rule xk+1 ∈ Ω(xk). Now, suppose that J : X −→ R+ is a continuous, non-negative

function. An algorithm Ω is monotonic with respect to J whenever y ∈ Ω(x) implies that

J(y) ≤ J(x). If, in addition, y ∈ Ω(x) and J(y) = J(x) imply that y = x, then we say that

the algorithm is strictly monotonic.
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Theorem 2.1 (Zangwill [10]). Let Ω be an algorithm that is monotonic with respect to J .

Given an initial point x0, suppose that the algorithm generates a sequence {xk} that lies in a

compact set. Then the sequence has at least one accumulation point x̂, and J(x̂) = lim J(xk).

Moreover, if Ω is closed at x̂ then x̂ is a generalized fixed point of the algorithm.

Theorem 2.2 (Meyer [9]). Assume that the algorithm Ω is strictly monotonic with respect

to J and that it generates a sequence {xk} which lies in a compact set. If Ω is closed at an

accumulation point x̂ of {xk} then x̂ is a (strong) fixed point of Ω. Moreover, if X is normed,

‖xk+1 − xk‖ −→ 0. It follows that {xk} converges in norm to x̂ or that the accumulation

points of {xk} form a continuum.

2.3. Infimal Maps. Suppose that f : X × Y −→ R+. Then, we may define the infimal

map M : X −→ P(Y ) by My(x) = arg miny∈Y f(x, y). Define y 7−→ Mx(y) similarly.

Theorem 2.3 (Dantzig-Folkman-Shapiro [11]). If f(x̂, ·) is continuous on Y , then M is

closed at x̂.

Theorem 2.4 (Fiorot-Huard [12]). If the infimal maps Mx and My are both single-valued

then the algorithm Ω
def

= Mx ◦ My is strictly monotonic with respect to f .

In Theorem 2.4, the definition of Ω would more properly read Ω
def

= ({x}×Mx)◦(My×{y}).

3. The Algorithm and Its Convergence

3.1. The Algorithm. A formal statement of our problem is

min
V ,H≥0

D( VH || A ),

where D( · || · ) is a non-negative function for which D( B || A ) = 0 if and only if B = A.

This function need not be symmetric, so we shall call it a divergence rather than a metric.

Except for the most trivial divergences, a global optimization in both variables V and H is

intractable. We may trace the difficulty to the appearance of the term VH . On its account,

the problem is a quadratic program (or worse), which will generally be NP-complete [13].
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Therefore, we cannot expect any algorithm to produce a global optimum. For many diver-

gences, however, it is possible to produce the global minimizer with respect to one variable

if the other variable is fixed. This observation serves as the basis for a natural algorithm.

Algorithm 1 (Alternating Minimization). Let A ∈ R
d×N
+ . Given a positive number r ≤

min{d, N} and a tolerance ε > 0, the following procedure attempts to compute matrices

V ∈ R
d×r
+ and H ∈ R

r×N
+ that minimize the divergence D( VH || A ).

(1) Select an initial matrix H0 ∈ R
r×N
+ .

(2) For k = 0, 1, 2, . . ., solve the following optimization problems:

Vk+1 ∈ min
V≥0

D( VHk || A ).

Hk+1 ∈ min
H≥0

D( Vk+1H || A ).

(3) Terminate when ‖Vk+1Hk+1 − VkHk‖F < ε.

We may expect this algorithm to perform better than a gradient-based algorithm, since it

performs a global optimization of one variable at each step.

3.2. Remarks on Implementation. In practice, the algorithm should be executed mul-

tiple times, beginning with different H0. From the multiple solutions, we select one with

minimal divergence. The starting points may be chosen at random, although an educated

guess about H0 may produce better results.

The implementation of Step (2) depends on the existence of an algorithm for solving

the univariate optimizations. If the divergence is convex in its first argument, we can per-

form each minimization in polynomial time using standard techniques [13]. For common

divergences, specialized procedures are faster. For example, one may use the Non-Negative

Least-Squares (NNLS) algorithm of [14] to minimize the Frobenius norm of the error.

The time cost of Step (3) is an exorbitant O(rdN). More realistic implementations would

not multiply the matrices together to check for convergence. A faster test would just compute

the norm between successive Vk and/or successive Hk. But numerical experience suggests
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that a constant number of iterations is sufficient, so it may not be necessary to test for

convergence at all [1].

3.3. Convergence I. Under very mild conditions, the iterates produced by Algorithm 1

converge in a weak sense.

Theorem 3.1. Assume that the divergence D( · || A ) is continuous in its first argument.

Every accumulation point of the sequence of iterates (Vk, Hk) produced by Algorithm 1 is a

generalized fixed point of the algorithm.

Proof Sketch. At each step k, Algorithm 1 composes the two infimal maps,

MH(V ) = arg min
H≥0

D( VH || A ) and

MV (H) = arg min
V≥0

D( VH || A ).

For fixed V , the product map H 7−→ VH is continuous. The divergence is continuous, so

the composition of the product map and the divergence is continuous. Theorem 2.3 shows

that the infimal map MH is closed. Similarly, MV is closed. Therefore, the composition of

the two infimal maps is closed. Since Algorithm 1 minimizes the divergence at each step, it

is monotonic with respect to the divergence. The stated conclusions follow from Theorem

2.1. �

3.4. Convergence II. If we place additional hypotheses on the behavior of the algorithm,

we obtain somewhat stronger conclusions.

Theorem 3.2. Assume that the divergence D( · || A ) is strictly convex in its first argument,

and suppose that the r-th singular values of Vk and Hk are bounded away from zero. Then the

sequence of iterates (Vk, Hk) produced by Algorithm 1 either converges or has a continuum

of accumulation points. Every accumulation point is a (strong) fixed point of the algorithm.

Proof Sketch. Since the r-th singular value of the iterates is bounded away from zero, both

components of an accumulation point (V̂ , Ĥ) of the sequence {(Vk, Hk)} have full rank. The
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set of full-rank matrices is open, so there exists a neighborhood U of V̂ which contains

only full-rank matrices. For V ∈ U , the function H 7−→ D( VH || A ) is strictly convex on

the convex set {H : H ≥ 0}, so it has a unique minimizer. That is, the infimal map MH

is single-valued near V̂ . Similarly, the infimal map MV is single-valued near Ĥ . It follows

from Theorem 2.4 that the algorithm is strictly monotonic near (V̂ , Ĥ). An application of

Theorem 2.2 completes the proof. �

3.5. The Rank Assumption. Unfortunately, the hypothesis on the rank of Vj and Hj in

Theorem 3.2 may not theoretically justified. Consider the matrices

A =




81 0 0

0 81 0

0 0 81




, V =




4 4 3

4 3 4

2 4 4




and H =




9 9 0

0 0 4

0 0 4




.

Even though A and V have full rank, the rank-deficient matrix H is the unique solution to

minH≥0 ‖A − VH‖F. Nevertheless, the iterates have always retained full rank in practice [1].

3.6. Rate of Convergence. We can always rewrite VH = (VT )(T−1
H) for any invertible

matrix T . Observe that any positive, diagonal T has a positive, diagonal inverse. Therefore,

any fixed point (V̂ , Ĥ) is part of a continuum of fixed points. In this situation, an alternating

minimization typically has a sublinear rate of convergence [15]. After using the alternating

minimization to approach a fixed point, it is better in practice to switch to a linearly or

quadratically convergent algorithm, such as gradient descent or Newton’s Method.

4. Experimental Results

Suvrit Sra has performed some limited experiments with Algorithm 1 [1]. He compiled

143 images to form a matrix with dimensions 9216 × 143. He produced Frobenius-norm

approximations for several rank r using three different methods: Algorithm 1, Lee and

Seung’s method [7] and partial SVD. Beginning from identical random starting points, he

ran the alternating minimization for five iterations, and he ran the Lee-Seung algorithm for

30 iterations. The time costs for the two procedures were comparable. Since partial SVD
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Figure 1. Comparison of relative approximation error in Frobenius norm.

The top line represents the Lee-Seung algorithm; the middle line represents

Algorithm 1; the bottom line represents partial SVD [Sra03].

provides an optimal approximation, it serves as a lower bound on the potential accuracy.

Of course, SVD does not respect the non-negativity of the data. The results appear in

Figure 1. The relative error in the results from Algorithm 1 is usually less than half the

relative error given by the Lee-Seung algorithm, and it even approaches the lowest attainable

approximation error. The Lee-Seung error barely drops as the rank increases.

5. Conclusions

I have presented an algorithm for solving non-negative matrix approximation problems

with respect to very general divergences, and I have provided a rigorous account of its

convergence. Experiments performed by Sra [1] indicate that this method provides better

approximations than the Lee-Seung algorithm [7] for Frobenius norm error. Another advan-

tage of the alternating algorithm is that it applies to matrix approximation problems with

other types of constraints. For example, Dhillon has argued that certain clustering problems

also yield to this approach [1]. This is a promising area for future research.
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