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INTRODUCTION
❦

❧ Suppose we have a collection of N non-negative,

d-dimensional data. Form a d×N matrix A whose

columns are the data points.

❧ What data? Images, document word counts, . . .

❧ We would like to find r � N representative vectors. We

hope that non-negative linear combinations of the

representatives will approximate the data well.

❧ Problem can be expressed as approximating

A ≈ V H,

where V d×r and Hr×N are non-negative.

❧ Quantify the error using a measure that reflects

knowledge about the problem domain

❧ Applications: Dimensionality reduction, feature extraction,

compression, sparse matrix approximation
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ALTERNATING LEAST SQUARES
(ALS)

❦

Problem

❧ Measuring the error with the Frobenius norm yields the

minimization

min
V ,H≥0

‖A− V H‖F .

Algorithm

❧ Make an initial guess H0.

❧ For j ≥ 0, alternate between the least-squares problems

Vj+1 ∈ arg min
V ≥0

‖A− V Hj‖F

Hj+1 ∈ arg min
H≥0

‖A− Vj+1H‖F .

❧ The subproblems can be solved using a finite algorithm of

Lawson and Hanson (1973).

❧ This approach was first considered by Paatero and Tapper

(1994). No meaningful convergence proofs were provided.
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CONVERGENCE OF ALS
❦

❧ Assume that Vj ,Hj have full rank r at each step j.

❧ Then each of the minimizations has a unique solution.

❧ The minimizers are continuous functions of the fixed

variable.

❧ It follows from a theorem of R. Meyer (1976) that

1. ‖Vj+1 − Vj‖F −→ 0 and

‖Hj+1 −Hj‖F −→ 0.

2. So the sequences converge or have a continuum of

accumulation points.

3. Every accumulation point is a fixed point of the

algorithm.

❧ Weaker convergence results are possible without the rank

assumption.

❧ Convergence may be sublinear, so hybrid algorithms

make more sense.
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EXTENSIONS
❦

Other Error Metrics

❧ Might try to minimize the information divergence of the

approximation

min
V ,H≥0

D(A ‖ V H)

❧ Might try to minimize another Bregman divergence

❧ Alternating algorithms apply; similar convergence proofs

❧ Solving the subproblems may be much more difficult.

Other Constraints

❧ Write approximation as A ≈ V DH .

❧ If V ,H are unconstrained, ALS yields the SVD

approximation.

❧ If V ,H are constrained to have 0-1 entries, problem

amounts to clustering.
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