Literature Survey Non-negative Matrix Factorization

Joel A. Tropp
jtropp@ticam.utexas.edu

Texas Institute for Computational and Applied Mathematics
The University of Texas at Austin
Austin, TX 78712

Multi-DSP
EE 381K
5 March 2003

Introduction

Suppose we have a set of N non-negative, d-dimensional data vectors. Form the $d \times N$ matrix \boldsymbol{X} whose columns are the data points.

We would like to find a set of $K \ll N$ representatives. We hope that linear combinations of representatives will approximate the data well.

Problem can be expressed as factoring $\boldsymbol{X} \approx \boldsymbol{V} \boldsymbol{H}$ with $\boldsymbol{V}^{d \times K}$ and $\boldsymbol{H}^{K \times N}$.

Applications: Dimensionality reduction, feature extraction, matrix approximation, compression.

L'ancien Régime

Principal Component Analysis (PCA)

ce The goal of PCA is to find the best K-dimensional projection of the data in the least-squares sense.

How? First, form the (scaled) covariance matrix

$$
\boldsymbol{S}=\sum_{n=1}^{N}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}\right)^{t}
$$

Then select the top K eigenvectors of \boldsymbol{S} as the basis for the projection subspace.

Pros: Straightforward to implement; provably optimal in terms of least-squares.

Cons: The eigenvectors lack intuitive meanings; optimality is achieved through cancelation effects.

Source: R. O. Duda, P. E. Hart and D. G. Stork. Pattern Classification. 2nd ed. New York: John Wiley and Sons, 2001.

An Alternative

Non-negative Matrix Factorization (NNMF)
To avoid cancelation effects, constrain the factors \boldsymbol{V} and \boldsymbol{H} to have non-negative entries.

Lee and Seung have shown empirically NNMF yields a parts-based representation for images.

For text, NNMF seems able to distill semantic groups.
Source: D. D. Lee and H. S. Seung. "Learning the parts of objects by non-negative matrix factorization." Nature. Vol. 401, pp. 788-791. 21 October 1999.

IMPLEMENTATIONS

Least Squares

Measures quality of approximation with $\|\boldsymbol{X}-\boldsymbol{V} \boldsymbol{H}\|_{F}$.
© Update rules:

$$
\boldsymbol{H}_{j k} \leftarrow \boldsymbol{H}_{j k} \frac{\left(\boldsymbol{V}^{t} \boldsymbol{X}\right)_{j k}}{\left(\boldsymbol{V}^{t} \boldsymbol{V} \boldsymbol{H}\right)_{j k}} \quad \boldsymbol{V}_{i j} \leftarrow \boldsymbol{V}_{i j} \frac{\left(\boldsymbol{X} \boldsymbol{H}^{t}\right)_{i j}}{\left(\boldsymbol{V} \boldsymbol{H} \boldsymbol{H}^{t}\right)_{i j}} .
$$

Kullback-Leibler Divergence
(Measures quality of approximation with

$$
\sum_{i, k}\left(\boldsymbol{X}_{i k} \log \frac{\boldsymbol{X}_{i k}}{(\boldsymbol{V H})_{i k}}-\boldsymbol{X}_{i k}+(\boldsymbol{V} \boldsymbol{H})_{i j}\right) .
$$

Update rules:

$$
\begin{aligned}
\boldsymbol{H}_{j k} & \leftarrow \boldsymbol{H}_{j k} \frac{\sum_{i} \boldsymbol{V}_{i j} \boldsymbol{X}_{i k} /(\boldsymbol{V} \boldsymbol{H})_{i k}}{\sum_{i} \boldsymbol{X}_{i j}} \\
\boldsymbol{V}_{i j} & \leftarrow \boldsymbol{V}_{i j} \frac{\sum_{k} \boldsymbol{H}_{j k} \boldsymbol{X}_{i k} /(\boldsymbol{V} \boldsymbol{H})_{i k}}{\sum_{i} \boldsymbol{X}_{i j}} .
\end{aligned}
$$

Source: D. D. Lee and H. S. Seung. "Algorithms for non-negative matrix factorization." NIPS. pp. 556-562. 2000.

