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Abstract 

Scalar imaging techniques are widely used in fluid mechanics, but the effects of imaging system 

blur on the measured scalar gradients are often inadequately considered. Depending on the flow 

condition and imaging system used, the blurring can cause unacceptable errors in gradient related 

measurements, which are much larger than those for the scalar itself. Planar Laser-Induced 

Fluorescence (PLIF) images of turbulent jet fluid concentration were corrected for blur based on 

the Richardson-Lucy Expectation Maximization (R-L-EM) image restoration algorithm. This 

algorithm relies on the shot-noise limited nature of PLIF images and the measured Point Spread 

Function (PSF). The restored PLIF images show much higher peak dissipations and thinner fine-

scale structures in the images, particularly when the structures are clustered. 
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1. Introduction 

The spatial resolution of the optical system is very important for flow imaging experiments and it 

depends on many factors [1], e.g. pixel size of the detector array, depth of the collection optics and 

magnification. In many scalar imaging experiments, the resolution is usually quoted in terms of the area 

that each pixel images in the flow. For an ideal optical system or for an optical system used at high f# (f# 

= f/D, where f is the focal length and D is the diameter of the lens) and magnification is close to the 

design condition, resolution is nearly diffraction limited. However for low light level flow imaging 

experiments, such as Raman, Rayleigh and Planar Laser Induced Fluorescence (PLIF) imaging, fast (low 

f#) optics are commonly used. For these experiments, pixel size is not the only factor that limits the 

resolution. The imaging system blur should also be considered, since the image is the convolution of the 

Point Spread Function (PSF) with the irradiance distribution of the object. The smallest objects that can 

be resolved are related to the size and shape of the PSF. PSF also tends to progressively blur increasingly 

smaller structures. This is essentially a result of the system’s inability to transfer contrast variations in the 

object to the image. 

Depending on the flow condition and imaging system used, the PSF could be of the same order as the 

characteristic length scale of the scalar structures in the flow field, which may cause unacceptable error in 

the scalar measurement. To represent the TRUE scalar structure statistics, e.g. thickness, dissipation and 

Probability Density Function (PDF), it is necessary to restore the flow scalar experimental images. This 

project will introduce image restoration technique in flow scalar imaging applications and focus on how 

scalar measurements are affected. PLIF images of turbulent jet fluid concentration were corrected for blur 

based on the Richardson-Lucy Expectation Maximization (R-L-EM) image restoration algorithm. The 

shot-noise limited nature of PLIF images and the measured PSF are used to get reliable restoration. 

2. Background 

The general model [3-9] for a linear degradation caused by blurring and additive noise is 

),(),(),(),( yxnyxoyxhyxi +∗=     (1) 
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where ),( yxi  is the blurred and noisy “observed image” corresponding to the observation of the “true 

image” ),( yxo , ),( yxh is the blurring function or PSF of the imaging system, ∗  is the convolution 

operator, ),( yxn  denotes the additive noise such as the electronic or quantization noise involved in 

obtaining the image. In Fourier domain, the degradation is 

),(),(),(),( vuNvuOvuHvuI +⋅=     (2) 

where ),( vuI , ),( vuH , ),( vuO  and ),( vuN  are the continuous Fourier transforms of ),( yxi , ),( yxh , 

),( yxo  and ),( yxn  respectively and u and v are the spatial frequencies.  

The purpose of restoration is to determine ),( yxo  knowing ),( yxi  and ),( yxh . This inverse 

problem has led to a large amount of work. Main difficulties are coming from the additive noise [3-9] and 

the PSF [7-9]. The modeling of blurring can be divided in two parts: blurring function and noise modeling. 

Some ideal PSF models are Gaussian, out-of-focus and linear motion blur [3]. In astronomy, data 

extracted from clear stars in observed image is used to fit a synthetic PSF function by weighted least 

square method [7, 8]. The PSF measurement techniques are also discussed in [1]. The diversity of 

algorithms [3-9] developed nowadays reflects different ways of recovering a “best” estimate of the “true 

image”. Wiener and regularized filters are better for known PSF and additive noise [3, 4]. Some iterative 

restoration techniques [10], e.g. Expectation Maximization (EM) algorithms, work better for known PSF 

and unknown additive noise. Blind image restoration algorithms [5, 6] are more proper for unknown PSF 

and additive noise. Flow imaging experiments have a lot in common with astronomy observations. They 

both involve low light level imaging. In both cases images are degraded by imaging optical system and 

suffer from signal dependent noise (Poisson noise), CCD camera read-out noise and quantization noise. 

These physical similarities suggest that a better starting point in applying image restoration techniques in 

flow scalar image restoration is to consider those successful ones in astronomy. 

3. Richardson-Lucy Expectation Maximization (R-L-EM) algorithm 

The Richardson-Lucy algorithm ([11, 12]), also called the expectation maximization (EM) method, is 

an iterative technique used heavily for the restoration of astronomical images in the presence of Poisson 
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noise [7-9]. It attempts to maximize the likelihood of the restored image by using the Expectation 

Maximization (EM) algorithm. The EM approach constructs the conditional probability density [7, 10] 

)()()|()|( ipopoipiop =      (3) 

where )(ip  and )(op  are the probabilities of the observed image i and the true image o respectively. 

Here )|( oip  is the probability distribution of observed image i if o were the true image. The Maximum 

Likelihood (ML) solution maximizes the density )|( oip  over o  

)|(maxarg oipo
o

ML =       (4) 

where “argmax” means “the value that maximizes the function”. For true image o with Poisson noise 
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The maximum can be computed by setting the derivative of the logarithm to zero 

0)|(ln =∂∂ ooip       (6) 

The EM algorithm consists of two steps [11]: expectation step (E-step) and maximization step (M-

step). These two steps are iterated until convergence. In practice, they are usually combined together to 

reduce the storage of results from E-step. Assuming the PSF is normalized to unity, a typical iteration is 
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where ),(),( yxhyxh −−=∗  and ),()( yxo k is the estimate of the true image ),( yxo  after k iterations. 

The image ),(),( )( yxoyxh k∗  is referred to as the re-blurred image [13]. 

Figure 1 is the flow chart of the basic iteration procedures of the R-L-EM algorithm [14] and it 

converges to the ML solution for Poisson statistics in the data. Constraints, e.g. non-negativity (estimate 

of the image must be positive), finite support (the object belongs to a given spatial domain), band-limited 

(the Fourier transform of the object belongs to a given frequency domain) and local and global 

conservation of flux at each iteration, can be incorporated in the basic iterative scheme. 

Every iteration of the EM algorithm increases the likelihood function until a point of (local) 

maximum is reached. One way to suppress the noise amplification with increasing iterations is to use the 
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Fig. 1 Flow chart of the R-L-EM algorithm [14] 

following iterative scheme  

{ }),(),( )1()1( yxofyxo kk ++ =  (8) 

where f is the projection operator that enforces the 

set of constraints on ),()1( yxo k +  and some forms 

of f are given in [7-9]. In order to enforce 

constraints, the projection and back-projection 

operations can be performed using the Fast Fourier 

Transform (FFT). Each iteration needs one FFT in 

the projection step and one in the back-projection 

step depending on how many constraints are 

applied. Other computations are vector operations  

that have little impact on CPU time. Thus the R-L-EM algorithm is essentially an algorithm with two 

FFTs per iteration. The stopping rule is often based on the statistics of residual noise [4] 
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−+
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where ε  is a small number. There are many modifications and improvements to overcome different 

drawbacks in the original R-L-EM algorithm, e.g. noise handling [7-9] and iteration acceleration 

(automatic acceleration [13]). 

4. Simulation Results 

PLIF is a well-developed technique and has been used extensively in studying non-reacting flows [1]. 

The acetone PLIF images used here are from “Condition 2” in [2] for a high Re jet flow and one image is 

shown in Figure 2. Here i(x,y) is the observed PLIF image corresponding to the jet fluid concentration 

field and is essentially shot-noise limited (Poisson noise) due to the high differential cross section (∼ 10-24 

cm2/sr) and the large number of molecules in the cold jet flow. Scalar dissipation rate is an important 

quantity in turbulent scalar flow theory and modeling, which is defined as 

),(),(),( yxiyxiDyx ∇⋅∇⋅=χ     (10) 
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Fig. 2 Acetone PLIF image [2]  Fig. 3 Measured SRF and LSF for a Nikon lens f/2.8 [2] 
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(a) Relative error vs. number of iterations   (b) Total flux ratio at each iteration 
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(c) Scalar dissipation field of Figure 2   (d) Restored dissipation field   
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(e) Cross-cut profile of (d) at x=100 pixel  (f) Relative errors for the peak dissipation of (e) 

Fig. 4 Restoration results of the R-L-EM algorithm for the acetone PLIF image in Figure 2 
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Fig. 5 PDF for (a) Dissipation layer thickness, (b) Peak dissipation rate 

where D is the mass diffusivity and is set to one here to simplify the analysis. The 20% dissipation layer 

thickness is defined as twice the distance from the peak dissipation to where the dissipation falling to 20% 

of the peak value. It is obvious that any change in peak dissipation will also affect the layer thickness. The 

problem is to restore the true concentration o from the observed i and study the influences of image 

restoration on the scalar dissipation rate and dissipation layer thickness. 

The PSF is measured by the scanning knife edge technique in [2]. The Step Response Function (SRF) 

is actually measured and differentiated to get the Line Spread Function (LSF). Figure 3 shows the 

measured SRF and LSF for a Nikon 105mm lens f/2.8 with a back-illuminated CCD camera (Cryocam S5 

series). The PSF used here is constructed from the measured LSF by assuming an isotropic PSF. The 

iteration stops when the relative error is less than 0.002 or the maximum iteration number of 500 is 

reached. The relative error normally drops rapidly in the first few iterations and slows with the increasing 

restoration. Figure 4 (a) shows the path of the relative error from a 382-iteration R-L-EM restoration on a 

PLIF image in Figure 2. 

The conservation of total flux is illustrated in Figure 4(b). The total flux ratio is defined as 

Total Flux Ratio = ∑∑ +

yxyx

k yxiyxo
,,

)1( ),(),(    (11) 

Maintaining the conservation of total flux is important for flow imaging application since the restoration 

should not alter the total number of photons detected. 

The peak dissipation in the restored field is higher and the dissipation layer is thiner as comparing 

observed dissipation field in Figure 4(c) and the corresponding restored one in 4(d). The peak dissipation 

of the dissipation layer centerline is significantly reduced by the imaging system blur as shown in Figure 
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4(e), which are cross-cut profiles at x = 100 pixel from Figure 4(c) and 4(d). The relative errors between 

the observed and restored peak dissipation rate are shown in Figure 4(f) and typically 10% relative errors 

are observed. The maximum relative error occurs when the dissipation layers are thin and clustered 

together, which could be of the order of 60%, e.g. peak index 5 in Figure 4(e) and 4(f). 

The PDF of the dissipation layer thickness and peak dissipation rate, as shown in Figure 5, are also 

generated by counting 3000 PLIF images. The restored layer thickness PDF shifts left comparing with 

that of the observed PDF, which means that the restored dissipation layers are usually thinner than those 

observed layers. The restored peak dissipation PDF shifts right with respect to that of the observed PDF, 

which tells that the restored peak dissipation rates are usually higher than those observed peak dissipation 

rates. This clearly shows that imaging system blur reduces the peak dissipation rate and broads the 

dissipation layer. By the R-L-EM image restoration algorithm, to some extend, the resolution is improved 

(we can measure thinner layers) and peak dissipation rate measurement accuracy is improved. 

5. Conclusions and future work 

Planar Laser-Induced Fluorescence (PLIF) images of turbulent jet fluid concentration were corrected 

for blur based on the Richardson-Lucy Expectation Maximization (R-L-EM) image restoration algorithm. 

This algorithm is most cognizant of the physical constraints on the PLIF images (shot-noise limited) and 

the measured PSF by the scanning knife-edge technique. The restored PLIF images show much higher 

peak dissipation and thinner fine-scale structures in the images, particularly when the structures are 

clustered. This is further verified by the right-shifting of the peak dissipation PDF and the left-shifting of 

the dissipation layer thickness PDF. These results illustrate the potential of the R-L-EM algorithm to 

improve the flow scalar imaging resolution and gradient related measurement accuracy. 

For most flow scalar imaging experiments, sequence short exposure of scalar images is usually 

recorded and multi-channel restoration technique can be used to get more reliable restorations [15], 

especially when the PSF is poorly known or unknown. Multi-scale restoration techniques are also 

developed to restore astronomy observation images, e.g. wavelet-Lucy algorithm [7], which has a better 

noise handling capability. 
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