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Abstract 

Gaussian filters are widely used for image smoothing but it is well known that this type of filters blur the 

image features (e.g., edges). Anisotropic filtering draws more and more attention for its ability of feature-

preserving smoothing. However, most existing anisotropic filters are quite time-consuming. In this report I 

will discuss the combination of anisotropic filtering and recursive implementation for image smoothing such 

that the anisotropic smoothing could be performed in a fast way.  

 

1.  Introduction 

Additive noise is commonly seen in many types of images (e.g., biomedical images and remote sensing 

images). Gaussian low-pass filtering is known to be an efficient and simple way for image smoothing. 

However, Gaussian filtering blurs image edges while smoothing image noise. The reason is that Gaussian 

filters are isotropic in the sense that all surrounding pixels affect the center one in a similar fashion 

regardless their intensity variations. Hence, edges and noise are treated in the same way, which yields noise 

reduction as well as edge blurring. 

To remedy the problem of traditional Gaussian filtering, anisotropic filtering has drawn more and more 

attention. Several categories of anisotropic filtering have been proposed. Bilateral Filtering [7, 12, 13] is a 

straightforward extension of Gaussian filtering by simply multiplying an additional term in the weighting 

function. A PDE-based technique, known as anisotropic heat diffusion, has also been studied [4, 8] although 

it was shown that it is in some sense equivalent to the bilateral filtering [11]. Another popular technique for 



anisotropic filtering is by wavelet transformation [18]. The basic idea is to identify and zero out wavelet 

coefficients of a signal that likely correspond to image noise. By carefully designing the filter, we 

can smooth image noise while maintaining the sharpness of the edges in an image [19]. Finally, 

the development of nonlinear median-based filters in recent years has also resulted in promising 

results. One of those filters is called mean-median (MEM) filter [20, 21, 22]. This filter, different 

from the traditional median filter, can preserve fine details of an image while smoothing the noise. 

Although various techniques have been proposed for anisotropic filtering in order to preserve image 

features, they are, however, generally much more time-consuming compared to the simple and efficient 

implementation of Gaussian filters. Some authors have studied fast implementation of bilateral filtering 

using FFT technique [12]. Their method, however, is just an approximation of bilateral filtering. In this 

report I discuss another way to implement anisotropic filtering. The intuition behind my method comes from 

the implementation of Gaussian filtering using recursive scheme [5, 6], which only requires a small constant 

number of MACs (multiplications and accumulations) regardless the size of the neighborhood being 

considered. However, the recursive scheme was originally designed for isotropic Gaussian filtering and little 

work has been done on combining the recursive scheme and the anisotropic filtering. 

This report is organized as follows. Section 2 reviews several recursive techniques that are closely 

related to the proposed approach. Section 3 gives a detailed description of the proposed method and 

experimental results and comparisons will be given in Section 4. Finally Section 5 concludes the report.  

 

2.  Prior Work 

The recursive implementation of several types of filters had been discussed in the literature. In [1, 2, 3], 

Deriche studied the recursive implementation of filters with exponential weighting functions. However, as 

pointed out in [5], all the recursive implementations seen in [1, 2, 3] are based on non-Gaussian filtering 

such that they do not have the impressive properties that Gaussian filters have (e.g., isotropic property). In 
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[5], the authors proposed a recursive implementation of the Gaussian filter. Their approach is based on a 

rational approximation of the Gaussian function given by:     
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to be limited to | . From (1), one can derive the following recursive implementation of 

Gaussian filtering: 
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where  and b  are constants derived from the standard deviation 0321 /)(1 bbbbB ++−= 3210 ,,, bbb

σ  of the Gaussian filter. It was claimed in [5] that the above recursive implementation of the 

Gaussian filter only requires 6 MACs per output pixel.  

As we saw in Section 1, Gaussian filtering is isotropic such that it does not preserve the sharpness of 

image features while smoothing noise. The main goal of this report is recursive implementation of 

anisotropic filtering. Fortunately there have already been several papers dealing with this issue. The first 

paper is the one by Alvarez et al. [9, 10], who discussed the recursive realization of the nonlinear version of 

the exponential filters seen in [1, 2, 3]. The idea is that, instead of using constant parameter α , we can 

consider a varying parameter nα , which depends on the norm of the derivative of the input signal. 
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where h(.) is a non-decreasing function with 0)0( >= εh . For simplicity, the authors in [9, 10] chose h(.) 

as a linear function: sMsh ⋅+= ε)( , where M is a positive constant. 

In [15, 16], the authors discussed the recursive implementation of the exact Gaussian filter. The 2D 

Gaussian function they considered could be anisotropic in the sense that the principal axis of the Gaussian 
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function could be in any orientation and the associated deviations uσ  and vσ  could  have  any  aspect ratio. 

However, they assumed the Gaussian function to be uniformly applied in everywhere of the image. 

Therefore, their method can only be used to smooth or detect the lines with a specific orientation. This 

assumption is certainly invalid for image smoothing with arbitrarily oriented features.   

 
 
3.  Proposed Approach 

In this section I will discuss a method to selectively smooth image noise. Before we get into the details, let 

us consider a simple example: a one-dimensional signal with some noise and a sharp edge (as shown in Fig. 

1(a)). Clearly an isotropic filter would give a blurred result as shown in Fig. 1(b). To maintain the sharp 

edge of this signal, we need to make output signal look like the one shown in Fig.1 (c). If we compare the 

outputs in Fig.1 (b) and Fig.1 (c), we can see that the anisotropic filtering makes the output closer to the 

original signal; that is, the output goes up on the left side of the edge and goes down on the right side of the 

edge.  In the following we will use this heuristic information to design our filter. In addition to this 

information, we will need to compute some local statistics for each pixel, namely, the local minimum, local 

maximum and local average.     

 

 

 

 
(a) Input signal (b) Isotropic (c) What we want!

 
Figure 1  A simple example to illustrate the goal of our anisotropic filtering  

 

 

3.1. Computing the Local Statistics 

The local min/max/avg of a pixel can be simply defined as the minimal, maximal and averaging 

intensities within a local window with a fixed size. By this definition we can easily compute the 

local min/max/avg by searching all the pixels within the local window. This method is 
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straightforward to implement but it turns out to have two problems. First, it takes a lot of time to 

search for the local min/max or compute the local average for each pixel. Secondly, the computed 

min/max maps by this simple method are not continuously defined over the image domain, which 

means that the resulting min/max maps may contain lots of block-like artifacts.  

In the proposed method, the local statistics are computed in a recursive way. The local average 

for each pixel is computed in the same way as seen in (2). However the propagation rules for the 

local min/max are different. Note that the recursive rule in (2) is equivalent to the following rule.  
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To compute the local minimum, we add several additional “sign” terms to (4) as follows: 
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Here the function sign(x) is defined as 1 if x  and 0 otherwise. Similarly we can compute the 

local maximum using the following recursive rule. 
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3.2. Anisotropic Smoothing 

The local statistics computed above can be used to determine the output for each pixel. The 

following figure shows the local max/min/avg maps of the input signal seen in Fig. 1(a).  
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4.  Experimental Results and Comparisons 

In this section we show several examples of 2D images and the results generated by different methods. The 

first example is a medical image as shown in Fig. 4(a). The rest pictures in Fig. 4 show the results by 

different methods. Pictures in Fig. 5 show another example with some blocks and additive noise.   

    

 

 

 

  (a) Original image           (b) Isotropic filtering       (c) Proposed method      (d) Perona-Malik method [4]
Figure 4  Example I: a medical image and the comparison between several methods.

           

           
 

Figure 5  Example II: a block image and the comparison between several methods. 
Top-left: original image;  top-right: isotropic filtering;  

bottom-left: proposed method; bottom-right: Perona-Malik method [4]. 
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In the following figure, we illustrate the comparison of the computational time for three methods. We 

can see that our method is slower than the isotropic filtering but faster than the Perona-Malik method. 

 

 

 
Figure 6  Comparison of the computational time for three methods  

 

5.  Conclusion 

In this report I describe a recursive method for selectively smoothing images. Our method is better than 

isotropic filtering for its ability of preserving the sharpness of image edges. Experiments also show that our 

method is faster than Perona-Malik method and the results by both methods are quite similar.   
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