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Abstract 

Gaussian filter is widely used for image smoothing but it is well known that this type of filters blur the 

image features (e.g., edges). Two extensions of Gaussian filters will be discussed in this survey. One is the 

anisotropic filtering (bilateral filtering or PDE-based anisotropic diffusion) for feature-preserving smoothing 

and the other is the recursive implementation of various filters that can largely reduce the computational 

time in certain conditions. We will also discuss the combination of anisotropic filtering and recursive 

implementation for image smoothing such that the anisotropic smoothing could be done in a fast way.  

 

1.  Introduction 

Noise is commonly seen in many types of images (for example, biomedical images and remote sensing 

images). It is in a great demand to smooth the images before other tasks could be conducted. Gaussian low-

pass filtering is known to be an efficient and simple way for image smoothing. However, it is well known 

that Gaussian filtering blurs the image edges while smoothing image noise. The reason is that Gaussian 

filters are isotropic in the sense that all surrounding pixels affect the center pixel in a similar fashion 

regardless their intensity variations. Hence, the edges and the noise are treated in the same way, which yields 

noise reduction as well as edge blurring. An example of such effect can be seen from Fig. 1 (b).  

 
To remedy the problem of traditional Gaussian filtering, people have proposed lots of methods, trying to 

achieve the goal of feature-preserving smoothing. All of these methods are called anisotropic filtering and 

can be grouped into two categories. One is called Bilateral Filtering [7, 12, 13], which is a straightforward 

extension of Gaussian filtering. The other is a PDE-based technique, called anisotropic heat diffusion [4, 8]. 

We shall see more details on the various techniques on these topics in the following sections. In Fig. 1 (c), 



we show an example of bilateral filtering on the same noisy image. We can clearly see the difference 

between the isotropic filtering and the anisotropic filtering. Obviously the latter one gives better results.    

 
Another important issue regarding image filtering is the implementation of the various filters. Gaussian 

low-pass filtering can be implemented by direct convolution, which is further accelerated by FFT. 

Anisotropic filters, however, are generally much more time-consuming although some authors studied fast 

algorithms for bilateral filtering [12]. Another fast way for implementing Gaussian filtering is by recursive 

scheme [5, 6]. Recursive implementation requires a constant and small number of MADDs (multiplications 

and additions) regardless the size of the neighborhood being considered. Hence, the time complexity of 

recursive implementation of Gaussian filtering is quite small compared to other sequential algorithms of 

Gaussian filtering [5]. However, the recursive scheme was originally designed for isotropic Gaussian 

filtering and little work has been done on combining the recursive scheme and the anisotropic filtering. 

 
In this project our goal is to explore the possibility of applying the recursive implementation technique 

on the anisotropic filtering. This survey is organized as follows. We shall begin in next section by reviewing 

various techniques for anisotropic image smoothing. Then in Section 3, we shall give a brief description of 

various recursive techniques that have been seen in literatures. In Section 4 we will see some previous work 

that combines the recursive techniques and anisotropic filtering and our proposed approach will be briefly 

described in Section 5. Finally we give our conclusion in Section 6.  

     

 Original Noisy Image           Isotropic Filtering             Anisotropic Filtering 

Figure 1 Example of isotropic (Gaussian) filtering and anisotropic filtering on a medical image. 



2.  Anisotropic Filters 

Anisotropic filtering is generally represented in two different ways. One is by bilateral filtering [7] and the 

other is by PDE-based anisotropic heat diffusion [4]. In the following we will describe both ways one by 

one and later on the close relationship between these approaches will be shown. 

 
The bilateral filtering [7] is a straightforward extension of Gaussian low-pass filtering. As we know, the 

Gaussian filtering is defined by a function as follows: 
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where σ is a given value, known as standard deviation. It is obvious that this function is isotropic with 

respect to the center. Therefore, a direct use of this function on the noisy images will result in blurred edges 

since this function only considers the spatial information without considering the image information around 

the center. The basic idea of bilateral filtering is to add an additional term to the weighting function in (1) 

such that the image information is taken into account:  
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where dσ  and cσ  are preset parameters. The example in the following figure, reproduced from [12], shows 

the difference between the Gaussian filtering (shown in (b)) and the bilateral filtering (shown in (d)).  

 

 

                 (a)           (b)                             (c)          (d) 

Figure 2 Illustration of bilateral filtering [12]. In (a) we show an example of noisy image and the spatial 

kernel (Gaussian) function g(x, y) is shown in (b). The image-related weighting function (second term in 

g’(x, y) ) is shown in (c). The combined weighting function g’(x, y) in (d) shows an anisotropic property. 



Recently a fast implementation of bilateral filtering was proposed by Durand et al [12]. They accelerated 

the bilateral filtering by using a piecewise-linear approximation in the intensity domain and appropriate 

subsampling. Elad [13] discussed the bilateral filtering from a linear algebra point of view and pointed out 

some possible ways to improve it.  

Another commonly seen technique to realize anisotropic filtering is defined by heat diffusion equations. 

The first model about the anisotropic diffusion is well known as Perona-Malik model as seen in [4]. Perona-

Malik model is defined by a non-linear PDE heat diffusion as follows [4]: 
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where g(.) is a positive non-increasing function which suppresses diffusion around image edges where the 

norm of the gradient is high. A common choice for g(.) is given by  
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where K is a preset constant. Strictly speaking, however, Perona-Malik model is not an anisotropic diffusion 

model since the weighting function g(.) is just a scalar function, which does not indicate the anisotropic 

diffusion around a point. A true anisotropic diffusion model was discussed by J. Weickert [8], who defined 

the diffusion PDE as follows: 
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where D(.) is defined as a tensor of u∇ . This matrix gives a direction where the diffusion is preferred 

and another direction where the diffusion is suppressed.  

 
Similar to the relationship between Gaussian filtering and linear heat diffusion, there is also a close 

relationship between bilateral filtering and PDE-based anisotropic heat diffusion as discussed in [11]. Both 

bilateral filtering and anisotropic heat diffusion are quite time-consuming to implement. In the following 

sections we will see one of the strategies to reduce the computational time of both types of filters by using 

recursive implementation.   



3.  Recursive Implementation 

The recursive implementation of several types of filters had been discussed in literatures. In [1, 2, 3], 

Deriche studied the recursive implementation of several types of filters with exponential weighting 

functions. In [3], The author discussed two types of filters. One is called second order recursive filter 

defined by: 
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where α  is a preset constant and k is chosen as 
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 Assume the input signal and output signal are  and , respectively. Then the recursive realization 

of the filtering with convolution mask defined by (6) is derived by the following causal and anti-causal 

sequences: 
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It is clear that the above recursive implementation of such filter requires 8 multiplications and 7 additions 

per output pixel. This fact indicates the computational advantage of recursive implementation of filters. 

In [3], the authors also discussed the recursive realizations of the first order filter and the derivatives of 

both first order and second order filters. They claimed that their recursive implementation of filters is much 

computationally faster than the non-recursive implementation if no parallelism is considered.  

However, as pointed out in [5], all the recursive implementations seen in [1, 2, 3] are based on non-

Gaussian filtering, that is, they are all based on filters defined by exponentially weighting functions. 

Therefore, they do not have the impressive properties that Gaussian filters have. For example, the 



exponentially defined filters are not isotropic (in 2D, not circularly symmetric). In [5], the authors proposed 

a recursive implementation of the Gaussian filter. Their approach is based on a rational approximation of the 

Gaussian function given by:     
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where , , 490895.20 =a 466003.12 =a 024393.04 −=a  and 178257.06 =a . The error )(tε  is proved 

to be limited to | . According to the rational approximation of the Gaussian function, one 

can derive the following recursive implementation of Gaussian filtering: 
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where  and b  are constants derived from the standard deviation 0321 /)(1 bbbbB ++−= 321 ,, bb σ  of the 

Gaussian filter. It was claimed in [5] that the above recursive implementation of the Gaussian filter only 

requires 6 MADDs (multiplications and additions) per output pixel. It is faster than the recursive scheme 

seen in Eq. (8) and furthermore, it gives a more isotropic (circularly symmetric) impulse response [5].   

 
Now we give a short summary on the time complexity of some of the above algorithms. Assume the size 

of the image being considered is  and the size of the mask window is NN × MM × .  

 
Algorithms Time Complexity 

Gaussian low-pass filtering (direct convolution) )( 22MNO  

Bilateral filtering [7] )( 22MNO  

Perona-Malik model [4] )( 2 KNO , where K is number of iterations 

Recursive implementation of exponential filter [3] 8 MADDs (multiplications and additions) per pixel 

Recursive implementation of Gaussian filter [5] 6 MADDs (multiplications and additions) per pixel 
 

Note: According to [5], the recursive implementation seen in (10) is faster than FFT-based Gaussian low-

pass filtering. 



4.  Recursive Implementation of Anisotropic Filters 

Recursive implementation of anisotropic filters is the main goal of this project. As far as I know, there 

have been several papers dealing with this issue. The first paper is the one by Alvarez et al. [9, 10], who 

discussed the recursive realization of the nonlinear version of the exponential filters as seen in Eq. (6). The 

idea is that, instead of using constant parameter α , we can consider a varying parameter nα , which depends 

on the norm of the derivative of the input signal. 
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where h(.) is a non-decreasing function with 0)0( >= εh . For simplicity, the authors in [9, 10] chose h(.) 

as a linear function: sMsh ⋅+= ε)( , where M is a positive constant. 

We now show some simulation results that are reproduced from [9]. In Fig. 3, we show the results by the 

approach seen in [9, 10]. We can see that as M goes smaller and smaller, the smoothed images become more 

and more blurred. In Fig. 4, we show the simulation results by Perona-Malik model [4]. From all these 

images, we can see that the recursive implementation can generate results as good as those we see in Perona-

Malik model but the recursive implementation clearly requires much less computational time.   

In [15, 16], the authors discussed the recursive implementation of the exact Gaussian filter. The 2D 

Gaussian function they considered could be anisotropic in the sense that the principal axis of the Gaussian 

function  could  be  in  any  orientation  and  the  associated  deviations uσ  and  vσ  could  have  any  aspect 

 

    

          (Input image)       (M = 0.25)          (M = 0.1)                (M = 0.05) 

Figure 3  The simulation results by the approach seen in [9, 10]. (Reproduced from [9]) 



    

(Input image)         (K = 10)           (K = 20)                              (K = 50) 

Figure 4  The simulation results by the Perona-Malik approach seen in [4]. (Reproduced from [9]) 

 
ratio. However, they assumed the Gaussian function to be uniformly applied in everywhere of the image. 

Therefore, their method can only be used to smooth or detect the lines with a specific orientation. This 

assumption is certainly invalid for image smoothing with arbitrarily oriented features.   

 

5.  Proposed Approach 

We have seen the two extensions of Gaussian filtering. One is anisotropic filtering for higher smoothing 

quality and the other is recursive implementation of filters for less computational time. The goal of this 

project is to combine these two extensions together such that a fast implementation of anisotropic filters 

could be possible. Although we have seen some previous work on this issue, it is still interesting to go 

further in this direction. Our idea is to design an anisotropic version of the recursive filters as discussed in 

[5, 6]. Our method will be quite similar to the one used in [9, 10] and the idea is also by replacing the 

constant propagation parameters with varying parameters. However, since the filters that we are going to 

work on are different from that seen in [9, 10], the detailed approach is expected to be different and the 

resulting impulse response as well as the experimental results should also be different.     

 

6.  Conclusion 

In this report we reviewed some previous work on two extensions of the classic Gaussian filters. One is the 

anisotropic filtering and the other is recursive implementation of filters. We also saw some work that 

combined these two extensions together, yielding a recursive implementation of anisotropic filters. We 



propose an approach that is related to the recursive implementation of the Gaussian filter [5, 6] and the 

recursive implementation of anisotropic exponential filter [9, 10]. More details will be available soon. 
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