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Abstract 

Finding object contours in noisy images is a challenging task because of the amorphous 

nature of the object and the lack of sharp boundaries. Classical edge-based segmentation methods 

have the drawback of not connecting edge segments to form a distinct and meaningful boundary. 

Many level set approaches, which can deal with changes of topology and the presence of corners, 

have been developed to extract object boundaries. Previous researchers have used image gradient, 

edge strength, area minimization and region intensity to define the speed function. However, no 

paper mentions the edge/gradient direction. Our approach will incorporate direction and 

magnitude in the speed function.  

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Many computer vision applications involve the decomposition of image into regions with 

homogeneous properties, which are related to the nature of the application. The boundary of an 

object is an important feature for the object detection, classification and tracking. Edge based 

approaches are not suitable for boundary extraction in noisy images [1]. They will detect edges 

that are not part of an object’s boundary or miss parts of a boundary when the intensity contrast is 

weak. In general, additional effort is needed to connect the incomplete edges into a distinct and 

meaningful object boundary. 

Several approaches have been proposed to extract object boundaries in images using 

closed curves. Roughly speaking, there are two types of boundary search approaches. One uses a 

closed contour represented by a parameterized curve. The problem of finding the desirable 

contour is posed as an energy minimization problem. The classical Euler-Lagrange formulation of 

the active contour is called ‘snake’ [2]. This kind of method relies on an initial guess of the 

boundary, image features and parameters. Moreover, its performance suffers from the change of 

topology and the presence of corners.  

To overcome these problems, the level set approach has been proposed [3]. The guiding 

principle of level set methods is to describe a closed curve γ in 2R  as the zero level set of a 

higher dimensional function ),,( tyxΦ in 3R . Instead of propagating the curve γ  directly, we 

consider the evolution of function ),,( tyxΦ  with a speed function F and extract the zero level set 

of points to obtain the boundary curve. Since level set methods represent the curve in an implicit 

form, they greatly simplify the management of the contour evolution, especially for handling 

topological changes. Most of the challenges in level set methods result from the need to construct 

an adequate model for the speed function.  

 

2. Background 

We consider the generation of a family of contours. Let an initial curve 0r  undergo 

deformation in a Euclidean plane. Let ),,( tyxr denote the family of curves generated by the 

propagation of 0r  in the outward normal direction N
r

with the speed F. We ignore the tangential 

velocity because it does not influence the geometry of the deformation, but only its 

parameterization [4]. The curve velocity ),,( tyxrt  is denoted by 

NFtyxrt
r

=),,( ,    (1) 

where F is a scalar function and N
r

 is a unit normal vector. 



According to the level set method, we can express the closed curve )(tr  in an implicit 

form as  

}0),,(|),{(),,( =Φ= tyxyxtyxr ,  or 0))),(( =Φ ttr . (2) 

By the chain rule, 
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yielding the movement equation of curves,  

0|| =Φ∇+Φ Ft , with 0)0,,( rtyx ==Φ .  (3) 

The speed function is essentially a decreasing function of a set of features. These features 

should have very high values at the final shape boundary. In general, speed function models can 

be classified as edge-based and region-based.  

 

2.1 Speed Function Due to Image Gradient 

Caselle et al. [5] proposed the geometric active contour followed by Malladi et al. [6].  
The model proposed by Caselle and Malladi was based on the following speed function:  

      |1|/)( IGkaF ∗∇++= σε ,   (4) 

where k  is the curvature of the curve, a , ε and p are constants and  |1| IG ∗∇+ σ is the edge 

gradient using a Gaussian filter σG  with a known standard deviation σ. Since the stop criterion is 

the magnitude of the gradient, the speed slows down at strong edges. The drawback of this model 

is that it only detects objects with edges defined by strong gradients.  F is never small enough to 

stop the curve evolution in a noisy image and the curve may extend beyond the boundary. 

Moreover the pulling back force is not strong hence it may not be able to pull back the expanding 

contour if it were to propagate and cross the desired boundary.  

 

2.2 Speed Function Due to Region Intensity 

 Chan et al. [7] proposed an active model based on Mumford-Shan segmentation 

technique and the level set method. Their model can extract objects whose boundaries are not 

necessarily defined by gradient or with very smooth boundaries. They introduced the energy 

function ),,( 21 CccF , defined by 
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where 0,,0,0 21 >≥≥ λλvu are fixed parameters,  ),(0 yxu is the intensity of pixel (x,y), C is the 

curve, while the constants 1c and 2c  depending on C, are the average of 0u inside or outside the 



curve C . Finding the object boundary turns out to be the minimization of the energy ),,( 21 CccF . 

For the level set formulation of the variation active contour model, they deduced the associate 

Euler-Lagrange equation for Φ as 
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where n
r denotes the exterior normal to the boundary Ω∂ , n

r
∂Φ∂ / denotes the normal derivation of 

Φ at the boundary, and )(Φεδ  is the regulation function. 

 The problem with this method is that we have to estimate the intensity distribution of the 

region; however, the distribution model may degrade in a noisy image.  

 

3: The Proposed Method 

The proposed approach uses the edge direction as well as the gradient magnitude. A 

strong edge can stop the curve evolution by its gradient magnitude. A weak edge can halt the 

curve by its edge map direction, which points toward the closest boundary. The result of 

evolution will be a curve that goes through the most homogenous region to fit the object 

boundary. When the speed function is small, the evolution process ceases.   

 

3.1 Edge Map 

The motivation for the edge map comes from the fact that the magnitude of the intensity 

gradient cannot restrict the level set flow completely and the edge direction will help us localize 

the edge. We introduce a concept, edge map, to represent the gradient magnitude and direction. 

Edge flow detects the image boundaries by identifying the location, which has non-zero edge 

flow coming from two opposite directions. We explore the isotropic and linear characteristics of 

Gaussian filters to obtain the edge map, which accounts for the local edge gradients and their 

neighborhood.  

A 2D isotropic Gaussian filter with standard deviation σ is applied to the image ),( yxI . 

The smoothed image is denoted by ),( yxIσ . Further, the gradient images ),( yxg x and ),( yxg y  

are computed by the first order difference of ),( yxIσ  along x-axis and y-axis respectively. Then, 

the local edge vector at pixel ),( ss yxs =  along the orientation θ  is a linear combination as 

θθθθ ∠+= ))sin()()cos()((),( sgsgsE yx
r

.   (7)  

where gx(s) and gy(s) are the gradients, for pixel s, along the x-axis and y-axis respectively.  



),( θsE
r

 is the local edge vector along the orientation θ. It gives us the local intensity 

change, which is widely used in edge detectors. Our edge map for pixel s is defined by  
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The integration range parameter 'θ is now estimated. Without loss of generality, for the 

pixel ),( ss yxs = , we compute the intensity difference with pixel  )sin,cos(' θθ dydxs ss ++=  as  

|)()sin,cos(|),( ssss yxIdydxIsDiff +−++= σσ θθθ ,   (9)  

where σ5=d .We assume that ),( θsDiff  is usually no less than ),( πθ +sDiff  when the boundary 

is a distance d away from the pixel s in the direction θ. However it is still not enough to know 

where the boundary is exactly. To quantify the prediction of the boundary, an index ),( θsP  is 

assigned to every pixel with the same offset distance, d, from the pixel s by  
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A large index value implies a boundary located in that direction. We choose 'θ  in order 

to maximize the integration of ),( θsP  in the corresponding half plane: 
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The edge map )(sM
r

 is a vector pointing toward the closest boundary pixel with its 

magnitude representing the total gradient energy in the half plane Figure 1 shows an example of 

the edge map for 1=σ . Each arrow indicates the magnitude and the direction of a pixel. The cycle 

points are the edge pixels obtained by the Canny edge detector. As we can see, the direction of 

the edge map points to its nearest boundary as its magnitude varies with the distance from the 

boundary.  

 
Fig. 1. Edge map for each pixel. 

 



3.2 Speed Function  

We define our speed function in the outward normal direction of the curve as 

)(/)( MgkcF
v

ε−= ,    (12) 

where c and εare  constants, k is the curvature and )(Mg
v

 is a scaling function of the edge map 

M
v

. Physically, c denotes an expansion term, kε  plays the smoothing role and )(Mg
v

 is a stop 

criterion. The value of )(Mg
v

 depends on the magnitude of the edge map as well as its direction. 

We give its formula as follows. 

Let θ be the angle between the edge map and the outward normal vector N
r

. Then, 
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The ability to slow down the speed function varies with the direction of the edge map. An 

edge map with a low magnitude value in the direction opposite to the outward curve normal 

direction will have a halting ability comparable to that of the strong edge map. Thus, the speed 

function has values close to zero near high image gradients or edges. 

 

4. Segmentation of Thermal Images 

The general framework introduced in section 3 is applied to segment thermal images. The 

objective is to construct boundary elements of the given structure in the image. 

We tested thermal images, from various applications such as medicine, defense and 

surveillance, with excellent results. We make no assumption about the object’s shape, but use 

only three or four random points inside or around the interesting object as the initial points. Initial 

pixels locate the place where the evolution begins and provide some gradient information. The 

use of more initial pixels reduces the total segmentation time but has only a small effect on the 

final result.   

 

4.1 Examples of Thermal Images 

Segmenting thermal medical images is a means of identifying diseased tissues. Once 

diseased tissue has been segmented, it is useful to compare it with the normal tissue and see how 

it changes with pathology. For example, utilization of thermal imaging has been an effective 

method in the evaluation of vascular disease. Figure 2 shows a patient with vascular disease of 

the legs. The increased flow of blood through the vessel produces more heat, which is recordable 

with a thermal imaging procedure. Thermal imaging provides clues to the potential of developing 



vascular disease, which may lead to stroke or cancer. An unsatisfied result is shown in Figure 2(f) 

with a general level set method proposed by [6]. The speed function without gradient directions 

cannot maintain the closed curve along the object boundary.  

 
Fig. 2 (a)  Fig. 2(b)    Fig. 2(c) 

 
Fig. 2(d)    Fig. 2 (e)       Fig. 2 (f)  

Fig. 2. (a) Three initial pixels. (b-d) Evolution of the boundary. (e) Final segmentation result. (f) Evolution 

without considering gradient directions. 

 

Figure 3(a) shows a thermal image of a rat and four calibrating emitters. The four circles 

correspond to four emitters (only three are really apparent) at different temperatures, and the 

oblong shape is a live rat. The variability in shape adds to the segmentation challenge. The 

purpose of this experiment is to measure the thermal temperature of the rat. Figure 3(b) shows the 

boundaries of the rat and the four thermal emitters. The efficacy of this technique is really 

phenomenal, since using an edge operator on the image yields nowhere near a complete contour 

for the fourth emitter.  

   
Fig. 3 (a)     Fig.3 (b) 

Fig. 3. (a) A thermal image of a rat and four calibrating emitters (only three are visible). (b)  Segments of 

the rat and emitters. 

 

Figures 4(a) shows an image taken from a sensor mounted on a helicopter. The result 

shows an example that our approach captures the corners. Figure 4(b) demonstrates how our 



approach deals with noisy parts in the object. The curve flows around the noisy parts, because the 

curve always looks for the relatively homogenous region around its current position. After being 

isolated by the curve, the noisy parts are removed. This process implies that the curve ‘knows’ 

where the noisy parts are during its propagation. The result of our method is shown in Figure 4(d). 

The computed boundary captures the corners faithfully. In contrast, snake-based approaches tend 

to smooth the corners of solid objects. The boundary resulting from the snake proposed by Kass 

et al. [2] is shown in Figure 4(f), with the initial boundary shown in Figure 4(e). The final 

boundary produced by the snake approach looks too smooth because the first and the second 

derivatives are used as constraints in the classical snake [2].  

 
Fig. 4 (a)   Fig. 4 (b)  Fig. 4 (c)  Fig. 4 (d)  

             
Fig. 4 (e)    Fig. 4 (f)        

 

4.2 Approach Comparison 

The importance of the gradient direction in the speed function is emphasized in our paper. 

The introduction of the gradient direction as defined in our paper, overcomes the disadvantages in 

the general level set methods, which are summarized in [8].  

 

a) The speed function may not turn out to be zero in multiple objects segmentation.  

Fig.3 (a) shows a thermal image of a rat and four circular calibration emitters with very 

different intensities. The speed function of the brighter emitters can easily be reduced to zero 

while the dark emitters with low contrast from the background are likely to be missed by the 

evolving curve under the same model parameters. The active contour meets another problem in 

segmenting the rat and emitters, i.e. different shapes. Additional care is to be taken to set different 



model parameters for the rat and emitters separately. In contrast, our proposed method segments 

all the five objects using the same parameters. 

 

b) Embedding the object.  

If one object has one or more objects located inside, the general level set method and the 

active contour will not capture all objects of interest.   Our proposed curve flows around the noisy 

parts or the embedded objects, because the curve always looks for the relatively homogenous 

region around its current position. After being isolated by the curve, the noisy parts or embedded 

objects are located. This process implies that the curve ‘knows’ the noisy parts or embedded 

objects during its propagation. Fig.4(c) shows how the noisy parts or the embedded objects are 

located even though we remove them in Fig.4 (d). 

 

c) Gaps in Boundaries.  

Gaps in Boundaries are not a problem in the active contour model because the smoothing 

restriction and internal iterate values make the contour complete. However, they are the drawback 

of the level set method when applied to noisy images. The contour in the level set method is in an 

implicit form, which may simply leak through gaps.  

 

5. Conclusion 

In this paper we have presented a level set approach to segment thermal images. The edge 

map is introduced as the main component of the speed function. The edge map points toward the 

nearest boundary and its magnitude represents the total gradient energy in the half plane. The 

proposed approach uses both the edge direction and the gradient magnitude to overcome the 

problems resulting from weak edges. As shown in our experiments, our approach has several 

desirable features besides those of the general level set method. Good boundaries can be extracted 

from many kinds of thermal images with very few initial pixels inside or around the object; the 

final result is relatively independent of the initial guess; adding more initial pixels can reduce the 

total segmentation time; the parameters set in our experiments can work for thermal images from 

various applications; and the curve ‘knows’ where the isolated noisy parts are. 
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